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Abstract

The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted 

from molecular dynamics (MD) simulations. While static charge models can answer many 

questions regarding protein conformational equilibrium and protein-ligand interactions, pH-

sensitive phenomena such as acid-activated chaperones and amyloidogenic protein aggregation are 

inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the 

Generalized Born with a Simple sWitching function (GBSW) implicit solvent model provide an 

accurate framework for simulating pH sensitive processes in biological systems. Although this 

combination has demonstrated success in predicting pKa values of protein structures, and in 

exploring dynamics of ionizable side-chains, its speed has been an impediment to routine 

application. The recent availability of low-cost graphics processing unit (GPU) chipsets with 

thousands of processing cores, together with the implementation of the accurate GBSW implicit 

solvent model on those chipsets [E.J. Arthur and C.L. Brooks III, J. Comp. Chem. 37:927, 2016], 

provide an opportunity to improve the speed of CPHMD and ionization modeling greatly. Here we 

present a first implementation of GPU-enabled CPHMD within the CHARMM-OpenMM 

simulation package interface. Depending on the system size and non-bonded force cutoff 

parameters, we find speed increases of between one and three orders of magnitude. Additionally, 

the algorithm scales better with system size than the CPU-based algorithm, thus allowing for 

larger systems to be modeled in a cost effective manner. We anticipate that the improved 

performance of this methodology will open the door for broad-spread application of CPHMD in 

its modeling pH-mediated biological processes.
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Introduction

Proteins typically maintain their native structure and optimal functionality under a narrow 

range of pH.1-3 Consequently, many biological systems tightly control local solvent pH to 
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tune the effectiveness of enzymes, or to promote a useful protein conformation.1,4,5 

Mitochondrial ATP synthase utilizes a trans-membrane proton gradient to power its rotary 

catalysis mechanism,6-8 and the departure from a normal pH range is known to be a driving 

force in forming the amyloid fibrils associated with Alzheimer’s disease.9,10 Additional 

examples of pH driven processes include the proton-activated gate mechanism of the KcsA 

potassium channel,11 and the catalytic pathway of dihydrofolate reductase.12 Finally, a 

notable survey by Aguilar et al. showed that about 60% of the protein-ligand complexes 

indicated that at least one titratable residue of the protein assumed a different protonation 

state between bound and unbound states.13 Although important to many biological 

processes, pH-dependence in bio-macromolecule simulations remains a nonstandard tool 

that awaits both wider acceptance, and finer tuning of its models.

Typical molecular dynamics (MD) simulations fix all amino acid protonation states to those 

of isolated residues in a neutral pH environment. While this pH-insensitive approach is 

sufficient to fold some proteins and observe their conformational equilibria,14 it arguably 

fails to capture phenomena dependent on local ionization effects of side-chains or 

perturbations to a residue’s pKa.15,16 This failure is particularly problematic for histidine 

residues, in that they have two hydrogen atoms that titrate with near-neutral pH. This 

ionizability indicates that in biologically-relevant pH environments histidine’s protonation 

state and tautomeric configuration are often unclear.17

In recent decades a series of models of varying complexity and accuracy promise to bring 

accurate pH responsiveness to MD simulations. Protonation-state modeling of amino acids 

in MD simulations is based on setting up a pH-sensitive extended Hamiltonian that modifies 

the force field parameters and structure of a given molecule. This began by discretely 

titrating protons, and progressing a simulation using instantaneous switches between 

protonated and unprotonated states. Mertz and Pettitt used an open system Hamiltonian to 

model the titration of acetic acid,18 and Sham et al. applied a linear response approximation 

through the protein-dipoles Langevin-dipoles model to calculate lysozyme residue pKa 

values.19 Additional work has been done where Monte Carlo (MC) sampling guides the 

protonation state of an otherwise classical MD simulation. Baptista et al. used explicitly 

represented solvent molecules with an implicit solvent Poisson-Boltzmann (PB) function to 

determine protonation states.20,21 Meanwhile, Mongan et al. utilized generalized Born (GB) 

implicit solvation to add a solvation free energy component to the protonation function.22 

While all these discrete models can predict pKa values for individual amino acids to within 

one pK unit, they are computationally expensive. Whether the expense stems from the need 

to relax numerical instabilities caused by instantaneous protonation / deprotonation events, 

or from the MC algorithms’ ability to titrate only one hydrogen at a time, such methods may 

require an unreasonable amount of time to study large systems with many titratable groups.

One possible solution to these issues with discrete titration methods is to use continuous 

titration of H+ atoms. Brooks and co-workers developed one such method called constant pH 

molecular dynamics (CPHMD), which uses λ-dynamics coupled to transitions between 

protonation states.23,24 This method uses the Generalized Born implicit solvent model with a 

Simple sWitching function (GBSW) model,25 or the related Generalized Born with 

Molecular Volume (GBMV) model,24 to efficiently couple the protonation state to the 
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solvation free energy of the molecule. Khandogin and Brooks then introduced proton 

tautomerism capabilities to this method, which allows multi-site titrating residues, such as 

histidines, to be modeled more accurately.26 Since the method is continuous, there are no 

instantaneous protonation/deprotonation events, and multiple residues can titrate 

simultaneously. Additionally, such continuous titration methods allow for the efficient 

coupling of protonation states among neighboring residues. The result is a pH simulation 

method that can calculate pKa values of protein structures to within 0.75 pK units,16 and can 

resolve the dominant folding pathway of the pH-sensitive HdeA homodimer.15

CPHMD’s efficiency, however, is bound by the rate-limited component of the calculation: 

the GBSW solvent model. As such, when running on a single-core central processing unit 

(CPU), CPHMD achieves on the order of 1 nanosecond (ns) of simulation time per day 

when simulating a solute system of about 1,000 atoms. Since typical uses of CPHMD, such 

as predicting pKa shifts of protein residues, may require many nanoseconds of simulation 

time,16 even smaller proteins, such as lysozymes, may require about a week to converge on 

useful results. Larger systems, such as asymmetric viral capsid subunits with tens of 

thousands of atoms, may require unreasonably long simulation times if captured in full 

atomic detail.27,28 Fortunately, the GBSW solvent model has recently been refactored to 

function on new, parallel graphics processing unit (GPU) hardware, and is now between 1 

and 2 orders of magnitude faster than its CPU counterpart.16,29 By incorporating the 

CPHMD model into the GPU-GBSW algorithm, there holds the promise of speeding up pH 

simulations substantially.

This study represents an increment in the ongoing adaptation of efficient and useful 

algorithms onto parallel-processing GPUs. Such chipsets can contain thousands of 

processing cores, and are able to process C-like languages such as Open Computing 

Language (OpenCL) and Compute Unified Device Architecture (CUDA). This combination 

of features has opened up a new frontier of parallel processing where expensive computer 

clusters can be replaced with single, affordable graphics cards. Simulation packages such as 

CHARMM,30 AMBER,31 OpenMM,32 GROMACS,33 and NAMD34 all offer GPU-

accelerated options for many types of studies, and most of those options receive speed 

increases of greater than an order of magnitude over their CPU counterparts.

Due to OpenMM’s effectiveness in harnessing the capabilities of GPUs with a wide variety 

of hardware, a CHARMM-OpenMM interface was developed to combine the strengths of 

both simulation packages.30,32 CHARMM’s robust algorithms can be used to design and 

parameterize a simulation, and OpenMM’s efficient GPU-based algorithms can be used to 

propagate dynamics.30,32 Now with the recent incorporation of the GBSW solvent model 

into the CHARMM-OpenMM interface, many of CHARMM’s algorithms parameterized for 

use with GBSW, such as CPHMD, can be adapted for parallel processing on GPUs as well. 

In this study we take advantage of the recent incorporation of GBSW onto GPUs, and 

discuss the adaptation of CPHMD onto this new parallel architecture. First we explain the 

underlying theory behind λ-dynamics: how a λ coordinate is used to represent the titration 

state of a residue, and how that coordinate is propagated. Then we delve into how it was 

originally implemented for CHARMM, and examine fitting CPHMD into the GBSW 

algorithm. Here we discuss the algorithmic improvements, and show how many force 

Arthur and Brooks Page 3

J Comput Chem. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contributions on λ are calculated alongside the free energy of solvation. Finally we present 

benchmarks achieved by the new algorithm, and comment on future directions for pH 

simulations.

Methods

The λ coordinates and their underlying energy function for single-site titration

For clarity in following discussions, we present the underlying theory of CPHMD. We start 

by setting up the framework for a single residue with one titrating hydrogen. The 

rudimentary picture of titration events is an equilibrium association/disassociation reaction 

of a model compound A(aq) in aqueous solution from a titrating proton.

(1)

Here, the protonation free energy is defined by

(2)

where kB is Boltzmann’s constant, and T is the temperature. We can approximate the above 

equations through classical simulations by interpreting the protonation interaction as a 

change in free energies:

(3)

This relationship then leads to an estimate of experimental free energy of protonation for a 

single titrating site:

(4)

From this perspective, we infer that titratable groups have an intrinsic free energy of 

protonation that is perturbed by the protein environment mainly through non-bonded 

interactions. We model this perturbation by extending the system’s Hamiltonian with a non-

geometric dimension of λ. As mentioned in the introduction, the CPHMD model uses a 

series of λ coordinates where each λ value tracks the progress of protonation-deprotonation 

events at a single titration site. For a particular residue i, these coordinates are generated 

from

(5)
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where i is the residue being titrated. In this form the θ variable is bound to all real numbers, 

and λ is bound to the continuous range 0 ≤ λi ≤ 1 . The sine-squared function then favors λ 
values near the boundary protonated (1) and unprotonated (0) states. Because λ is only 

physically relevant as it nears these boundary states, we impose cutoffs on interpreting λ. In 

CPHMD an unprotonated state is λi ≤ 0.1, a protonated state is λi ≥ 0.9, and a mixed state is 

0.1 < λi 0.9 . Figure 1 illustrates the protonation states and their corresponding λ values. 

Potentials and their derivative forces on λ are then interpreted as potentials and forces on θ.

The potential energy that governs protonation states contains five λ-dependent components. 

We start with the pH dependence of the deprotonation free energy as follows from ΔGexp in 

Equation 4. This potential connects λ to the pKa of a residue in its isolated, reference state:

(6)

Here, pKa(i) is the pKa of titrating group i. Next we have the potential of mean force (PMF) 

along the λ coordinate from ΔGmodel. This term corresponds to the negative of free energy 

needed to deprotonate a model residue:

(7)

Equation 7 is a quadratic fit to the thermodynamic work potential of deprotonating a model 

compound, and it splits the protonation state into two low-energy wells that represent the 

protonated and unprotonated states. Then a barrier potential is added that disfavors mixed 

states of λ:

(8)

The barrier scaling parameter βi is an empirical coefficient designed to tune the propensity 

for a λ value to remain in either protonated or unprotonated states, while facilitating 

transitions between them. In the current iteration of CPHMD, βi assumes a value of either 

2.5 or 1.75 kcal/mol, depending on the residue. Finally, we arrive at the two charge-

dependent potentials: the Coulombic and generalized Born. The classical Coulombic 

potential is

(9)

Here Kelec is Coulomb’s constant, qa and qb are the partial charges of atoms a and b 
respectively, and rab is the distance between those atoms. Note that this potential for residue 

i includes the interactions between all atoms a in residue i to all other atoms in the system. 

Meanwhile, qa(λi) is a λ-dependent charge of atom a, which follows the form
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(10)

where charges on titrating atom a can be in protonated ( ) and unprotonated ( ) 

states. We note that in an effective charge model of pH, titrating residues are allowed to 

interact. As such, any atom b from a titrating residue j interacting with residue i has its own 

 and . Thus the partial charge qb follows one of two possibilities:

(11)

That is if atom b lies in a non-titrating residue, that atom’s partial charge is simply the 

standard partial charge from that residue’s force field. If atom b lies in a titrating residue j 
and its charge is affected by the protonation state of j, then its partial charge is derived from 

the same λ-dependent relationship from Equation 10. Since atoms near a titrating site can 

have their partial charges affected by titration states, many more than the titrating hydrogen 

atoms can possess a λ-dependent charge state. We also note that at times j = i if we observe 

the Coulombic interaction between two atoms on the same titrating residue. The final λ -

dependent potential is that from the GB solvent model as expressed in the Still equation:35

(12)

where

(13)

Here, qa(λi) and qb follow the same form as in Eqn 10 and 11 respectively; rab is the 

distance between atoms a and ; τ is the factor that scales the Born energy by the difference 

in dielectric values at the dielectric boundary and by any contributing salt effects;36 and the 

values  and  represent the Born radii of atoms a and b respectively. The Born 

radii are the effective distance between an atom and the solute-solvent dielectric boundary, 

and they are calculated through volumetric integration following the GBSW implicit solvent 

model.25

If we pull together the complete potential for a titrating residue i from Eqns 6 through 13, 

then we arrive at the form
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(14)

The so-called “internal energy” term (Uinternal) corresponds to the bond, angle, and torsional 

energy terms of a classical energy force field. In this model, the titration state is dynamically 

independent of this potential. Although several models of CPHMD include a λ-dependent 

van der Waals term (UVDW),26,37,38 during this study it was found that at most it contributes 

a minimal amount to a given residue’s force on λ, while it nearly doubles the calculation 

time of CPHMD. This term is negligible compared to the force on λ from other effects, and 

omitting it from the calculation showed no effect on the accuracy of CPHMD. Thus, in the 

interest of speeding up the original algorithm, the λ-dependent potential UVDW was ignored 

in this implementation of CPHMD.

Although we now have the proper setup for addressing residues with a single titration site, 

such as in lysine, we need to address how CPHMD handles tautomerization in residues such 

as in aspartic acid and histidine.

Proton tautomerism

Similarly to how one λ variable is used to track the progress of titration states of a residue, 

Khandogin and Brooks incorporated tautomeric behavior into CPHMD by providing 

residues with a second λ variable, called x, to track the progress of tautomeric states.26 This 

arrangement is illustrated in Figure 1a with histidine. Just as in λ dynamics for titration 

states, transitions between tautomeric states are linearly interpolated using the x variable. 

What results are potentials that become bivariate in λ and x, and each tautomeric residue has 

four charge states: tautomer A in protonated and unprotonated states, and tautomer B in 

protonated and unprotonated states. What we shall see later is that residues can have 

equivalent states in this setup. Histidine’s protonated state, for example, is a residue 

saturated with protons. As such tautomers A and B of the protonated state are equivalent. We 

now review the influence of including two λ parameters for a tautomeric titrating residue.

The pH dependent potential becomes

(15)

where the pKa values of tautomers A and B are  and  respectively. While these pKa 

values for aspartic acid and glutamic acid are equivalent and only serve as a sampling 

expedient,26 in residues with asymmetric titrating sites such as histidine they are not. The 

PMF for protonation becomes a bivariate polynomial from Equation 7, which then expands 

into the general form

Arthur and Brooks Page 7

J Comput Chem. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(16)

The barrier potential is simply a summation of terms that disfavor the mixed states of both λ 
and x, and follows the form

(17)

Note that there are two barrier scaling parameters  and  for λ and x. Although different 

biases for tautomeric and protonation transitions are possible in this equation, in the 

discussed CPHMD model they are identical for all titrating residues.

The charge-dependent potentials in Eqns 9 and 12 are only modified in that charges for 

atoms can now be dependent on the new x coordinate. The Coulombic and generalized Born 

potentials then follow the forms

(18)

and

(19)

respectively. The bivariate charge qa,i(λi,xi) then follows the form

(20)

Where charges on titrating atom a are derived from the protonated and unprotonated variants 

of both A and B tautomers, , , , and . Similarly, the charge on 

atom b emerges as

(21)
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We now arrive at a general-purpose setup for evaluating the underlying potential for 

continuous transitions among various charge states of a particular residue. Deriving the 

forces with respect to λ and x, while important, serves little purpose for illuminating the 

topics explored in the remainder of this study. With the framework above, we now can 

discuss the construction of the original algorithm, and the changes made to refactor it for 

efficient parallel processing on GPUs.

Refactoring CPHMD

The original CPHMD model was built with mathematical precision and function portability 

in mind. It is a stand-alone module that can be applied to both implicit and explicit solvent 

systems, and except for atom coordinate and Born radii updates, it receives no input from 

other functions during a simulation. During the course of a timestep, each titrating 

coordinate λi is scanned to identify the residue type (such as whether the residue has one or 

two titrating hydrogens), and then an appropriate functional is applied to calculate its pH 

(Eqn 6 and 15), model (Eqn 7 and 16), and barrier (Eqn 8 and 17) potentials. Next, 

neighboring atom-atom interactions are scanned for whether one or both atoms reside in 

titrating groups. If a titrating atom-atom pair is found, then contributions to the electrostatic 

(Eqn 9 and 18) and GB (Eqn 12 and 19) potentials are integrated. Neighboring atom-atom 

pairs are then scanned again to calculate the VDW potential (ignored in this new iteration of 

CPHMD). Finally, the force on θ is calculated, and λ via θ is advanced a timestep using 

Langevin dynamics.39 In this setup there are several opportunities presented to us for 

improving the algorithm both in the efficiency of its execution in parallel, and by weaving 

portions of the calculation into existent functions elsewhere in the simulation.

We first note that the majority of clock cycles used for calculating λ dynamics are spent on 

neighboring atom-atom interactions when accumulating the electrostatic and GB potentials. 

While the calculations required for each atom pair are computationally cheap, the large 

number of interatomic interactions in a protein containing thousands of atoms can make this 

multitude of cheap calculations altogether expensive. As show in Figure 2a, about 12% of a 

2000-atom simulation is spent only on this calculation.

Both CPHMD and the GBSW solvent model require calculating the Still equation (Eqn 12 

and 13) to address part of the neighboring atom potential, so a significant speed 

improvement can be made by placing all of CPHMD’s atom-atom processes inside the 

neighboring atom process of the GBSW solvent model. This way, as GBSW produces the 

solute molecule’s electrostatic solvation free energy and its derivative force on atoms, 

CPHMD processes neighboring atom potentials on λ simultaneously. Thus the large number 

of redundant atom-atom distance calculations can be reduced significantly during a 

simulation. This setup gains additional speedup through GBSW by using OpenMM’s 

efficient parallel possessing of neighboring-atom interactions. As shown in Figure 2, by 

combining the CPHMD and GBSW algorithms we see that pH modeling with CPHMD 

accounts for a much smaller fraction of the overall simulation time.

Due to the nature of parallel processing, bottlenecks are often created from the longest 

portions of non-parallel code. While a single-core process can be sped up dramatically by 

creating a case-by-case set of calculations, navigating through the additional overhead to 
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make the situation-specific decision can slow parallel processes down. Regarding the 

equations described earlier, a titrating residue with one tautomer requires fewer calculations 

than a titrating residue with two. As we place each residue’s force calculations in parallel 

processes, however, the speed of the code is improved by regarding all titrating residues as 

possessing two tautomeric states. In this new implementation of CPHMD, single-titration 

residues, such as lysine, are given extraneous x coordinates. Lysine then uses the barrier 

potential from Eqn 16, where the x-coupled coefficients a0, a1, a2, a3, and a5 are set to a 

value of 0.0. Without the overhead for residue identification, the longest calculation 

required, that is calculating the force on θ for a residue with two tautomeric states, is 

shortened. What results is a speed improvement when calculating all components of the total 

potential on λ coordinates. As shown in Figure 2b, using the parallel CUDA-CPHMD 

algorithm for a small system impacts the processing time by approximately 6%, as opposed 

to 15% for the original algorithm.

Benchmarking CUDA-CPHMD

We finally reach an efficient setup where using the CPHMD model results in little slowdown 

of the overall simulation time. We chose several systems to benchmark the new algorithm, 

and explore the speed benefits it offers. We chose the naja atra snake cardiotoxin (PDB: 

1CVO),40 the Δ+PHS hyperstable variant of staphylococcal nuclease (PDB: 3BDC),41 and 

the asymmetric subunit of the bacteriophage HK97 head capsid (PDB: 2FT1).42 This trio 

provided a range of system sizes and residue configurations. To add additional statistics, the 

7 proteins of the HK97 capsid were assembled into 6 additional subsystems, all of which 

appear in Figure 3 to show for a range of system sizes the speed dependence on system size. 

All simulations were using the CHARMM22 force field43,44 using the Langevin integrator45 

with a timestep of 2 femtoseconds. These were NT (constant particle number and 

temperature) simulations at 298K in unbounded volumes using the CUDA-GBSW solvent 

model, and CUDA-CPHMD to model titration states and advance λ coordinates. Atomic 

radii for the GBSW solvent model were provided through work by Chen et al.46 The 

hardware specifications of the computer used appear in Table SI1 of the Supporting 

Information. We found speed improvements of between 1 and 3 orders of magnitude in the 

CUDA-CPHMD algorithm over its CPU counterpart.

As we combine the improved efficiency and parallel execution of both GBSW and CPHMD 

(shown in Figure 3a to 3d), substantial speed gains are found in this new version of pH 

modeling over its predecessor. For smaller 1,000-atom systems, we see a speed improvement 

of over 20-fold when comparing a 12-threaded CPHMD simulation to the new CUDA-

CPHMD, and an improvement of over 150-fold when compared to the single-core algorithm 

(shown in Figure 3a). For larger 29,000 atom systems, we see a speed improvement of over 

1,000-fold (shown in Figure 3c). Since the neighboring-atom component does not scale 

linearly with system size, larger systems experience a greater calculation time penalty than 

smaller ones. Fortunately, simple changes, such as using non-bonded cutoffs, can mitigate 

such problems. For instance, a non-bonded cutoff of 14 Å sped up the large viral capsid 

simulation to 6.7 ns/day (a 270% speed increase versus the no cutoff case).
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Accuracy of the new CUDA-CPHMD algorithm

Single-residue Systems—Speed gains in implementing CPHMD are an important goal 

both for increasing the algorithm’s applicability to a wider range of system sizes, and for its 

ability to converge on useful results more rapidly. Its accuracy, however, must not be 

compromised as we reconfigure the execution of the algorithm. In Figure 3e we show that 

there is little difference between the original CPHMD and CUDA-CPHMD algorithms when 

calculating the force on λ. We maintain an average unsigned error (AUE) of less than 

0.00017 kcal / mol in this force. We also note that 99.9% of the AUE between the two 

CPHMD methods is from the slight differences in Born radii calculated from the original 

and CUDA implementations of GBSW. Thus, we conclude that CUDA-CPHMD accurately 

reproduces the original algorithm’s force on λ.

While CUDA-CPHMD may be able to produce the force on λ coordinates, we ran 

additional tests to see whether or not residue protonation states are also reproduced. Due to 

each residue’s pH-dependent biasing potential, a single residue alone in solution presumably 

should find an optimal protonation state depending on the environmental pH. At pH 

environments below a residue’s pKa the residue should favor a protonated state (λi ≤ 0.1), 

and conversely a residue exposed to a pH above its pKa should favor an unprotonated state 

(λi ≥ 0.9). By calculating the fraction of protonated to unprotonated states of residues at 

various pH values and fitting the results to the Henderson-Hasselbalch equation of states, we 

expect the point of inflection to reproduce the pKa of that residue.

We ran simulations of aspartic acid, glutamic acid, histidine, and lysine to calculate their 

protonation states, as shown in Figure 4. These residues were simulated using the same setup 

from the benchmarking section as NT simulations in an unbound volume, and CUDA-

CPHMD was used both to model titration states and advance λ coordinates. The backbone 

atom ends were capped with the ACE and CT2 patches in CHARMM. Each dot in Figure 4 

represents the average residue titration state from 200 ps of simulation time, and the residues 

ran at an average speed of 690 ns/day.

We find that without optimizing the simulations for speed, accuracy, or convergence of 

protonation states, that the pKa values could be captured to within 0.5 pK units. 

Interestingly, all states reported a small, systematic overestimation of the pKa, and the exact 

source of this discrepancy remains unclear. The CUDA-GBSW solvent model overestimates 

solvation energy by an average of approximately 0.16 kcal/mol. However, this 

overestimation of energy should bias deprotonation events to occur slightly more often, and 

thus lower the calculated pKa. What is clear from these data, though, is that like its 

predecessor, the CUDA-CPHMD algorithm models the pH dependence of titration well for 

single residue systems. Next we explore multi-residue titration and the influence of protein 

conformation on pKa values.

Multiple-residue Systems—The end purpose for CPHMD is to enable the study of 

complex pH-coupled phenomena of biological systems, such as pH-dependent protein 

conformation and cooperative titration effects among neighboring residues. As such, we test 

the accuracy of the CUDA-CPHMD algorithm by its ability to recapitulate residue pKa 

values from both experiments and previous replica exchange studies, as shown in Figure 5. 
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We study 9 model protein systems here: barnase2,47,48 (PDB code 1A2P); the serine protease 

inhibitor CI-2 from barley seeds47,49 (PDB code 2CI2); the hyperstable variant of 

staphylococcal nuclease, Δ+PHS3,16 (PDB code 3BDC); hen egg white lysozyme47,50,51 

(PDB code 1LSA); the N-terminal domain of ribosomal protein L947,52 (PDB code 1CQU); 

turkey ovomucoid47,53,54 (PDB code 1OMU); ribonuclease A47,55 (PDB code 7RSA); 

ribonuclease H from Escherichia coli47,56,57 (PDB code 2RN2); and Bacillus circulans 
xylanase47,58,59 (PDB code 1BCX). Each protein was simulated in 11 pH windows from the 

pH −1 to the pH 9. Within each window, the proteins were simulated for 80 ps in 10 

independent trajectories, which resulted in a total of 4.4 ns of simulation time per structure. 

All titrating residues were allowed to change protonation state using the new CUDA-

CPHMD algorithm (Figure 5a, 5d, and 5e) and the original CPHMD algorithm (Figure 5b 

and 5d); and salt concentrations were added using concentrations that corresponded to the 

experiments.16,47 The simulations were run using the CHARMM22 force field 43,44 with the 

Langevin integrator45 with an integration timestep of 2 fs. These were NT (constant particle 

number and temperature) simulations each in an unbounded volume at a temperature of 

298K using a Langevin heat bath. Atomic radii were optimized through work by Chen et 

al.46 Similarly to the single-residue simulations, pKa values were calculated by fitting the 

Henderson-Hasselbalch equation of states to the average protonation state λ of each titrating 

residue. Again, the point of inflection of the fit corresponds to the pKa value of that residue. 

We report these values in Figure 5.

The AUE for all residues using CUDA-CPHMD was 0.79 pK units, which compares 

favorably to the AUE of 0.97 pK units using the null approximation (all pKa values 

correspond to their reference values). This was the same 0.79 pK units of AUE that the 

original algorithm achieved, which further supports CUDA-CPHMD’s accurately 

representing its CPU counterpart. Interestingly, while the average accuracy of CUDA-

CPHMD and CPHMD were less than the 0.75 pK units of AUE achieved using the replica 

exchange methods from earlier studies, the non-replica-exchange pKa calculations had a 

smaller standard deviation of error and fewer outlying predictions.16,47 Additional accuracy 

should be possible by coupling CUDA-CPHMD with the enhanced sampling of replica 

exchange in temperature or pH.16,47 This result holds great promise in establishing dynamic 

titration as a common feature of protein simulations.

Conclusions

In this study we present a significantly faster version of the CPHMD algorithm adapted for 

parallel processing in the CHARMM-OpenMM interface. While algorithmically the new 

CUDA-CPHMD algorithm represents little change over its predecessor, the speed 

improvements are so great that previously-unreasonable simulations are now straightforward 

to perform. For instance, what may have been a year-long simulation of the HK97 head 

capsule can now be performed in about 160 minutes. With this newfound speed is an 

opportunity to fine-tune the CPHMD titration model for a variety of protein systems, and to 

explore the impact of pH environments on side-chain dynamics both at the microsecond 

timescale and with all-atom detail.
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Similarly to GBSW, the CPHMD model carries with it over a decade of research and 

parameterization.26,47,52 One model of particular interest is pH replica exchange (REX),60 

which has been shown to predict pKa values of protein structures within single nanoseconds 

of simulation time.60,61 Coupled with the improved speed of CPHMD, adapting REX will 

enable a useful and rapid method for characterizing the chemical environment of protein 

interiors.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Shown are Cartoons of the protonated and unprotonated states of A) histidine and B) lysine. 

Also noted are the reference pKa values of each transition when occurring in an isolated 

residue, as well as the λ values at each state.
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Figure 2. 
The approximate distributions of CPU time spent on running simulation components of Δ

+PHS staphylococcal nuclease molecule. This protein contains 2132 atoms and 37 titrating 

residues. A) run using the original algorithm on a single processing core in CHARMM. B) 

run using the newly refactored CUDA-CPHMD algorithm.
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Figure 3. 
The benchmarks for the new CUDA-CPHMD algorithm. The individual systems tested were 

A) the naja atra snake cardiotoxin (PDB: 1CVO); B) the Δ+PHS hyperstable variant of 

staphylococcal nuclease (PDB: 3BDC); and C) the asymmetric subunit of the bacteriophage 

HK97 head capsule (PDB: 2FT1). As shown, the new algorithm is substantially faster than 

the original CPU algorithm by up to 3 orders of magnitude. In D) the same benchmarks from 

earlier are shown (squares) alongside subsystems from the 7 proteins of the bacteriophage 

subunit (circles). Notice that the CUDA algorithm scales more linearly with system size than 

its CPU-based counterpart. E) compares the force on λ as calculated on all 595 λ 
coordinates from both CPHMD algorithms. There is less than a 0.00017 (kcal/mol) AUE 

(average unsigned error) between the two algorithms.
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Figure 4. 
The pKa calculations for 4 single residues: aspartic acid, glutamic acid, histidine, and lysine. 

The protonation state (dots) was calculated from the fraction of λ values in pure 

unprotonated and protonated states. The point of inflection (boxes) of Henderson 

Hasselbalch equation fits (lines) indicates the calculated pKa values. Even without 

optimizing for efficiency, convergence of data, or simulation parameters, we find the 

calculated pKa values match those from the force field to within 0.5 pK units.

Arthur and Brooks Page 19

J Comput Chem. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The pKa calculations for all histidine (blue), glutamic acid (red), aspartic acid (green), and 

titrating C-terminus (orange) residues in all 9 of the test proteins. Each dot corresponds to a 

pKa value resulting from fitting the Henderson Hasselbalch equation to the fraction of λ 
values in pure unprotonated states. We present comparisons between pKa values from A) 

CUDA-CPHMD and experiment; B) CPHMD and experiment; C) CPHMD with replica 

exchange (REX-CPHMD) and experiment; D) CUDA-CPHMD and CPHMD; and E) 

CUDA-CPHMD and REX-CPHMD. Even without optimizing the simulations to 

accommodate various titration equilibria for each protein, the CUDA-CPHMD algorithm 

successfully recapitulates experimental pKa values to within 0.79 pK units of AUE. The 

experimental and REX-CPHMD results are from reference47 and papers cited therein.
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