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Abstract

High grade prostatic intraepithelial neoplasia (HGPIN) is widely believed to represent a precursor 

to invasive prostatic adenocarcinoma. However, recent molecular studies have suggested that 

retrograde spread of invasive adenocarcinoma into pre-existing prostatic ducts can 

morphologically mimic HGPIN. Thus, previous molecular studies characterizing morphologically-

identified HGPIN occurring in radical prostatectomies or needle biopsies with concurrent invasive 

carcinoma may be partially confounded by intraductal spread of invasive tumor. To assess ERG 

and PTEN status in HGPIN foci likely to represent true precursor lesions in the prostate, we 

studied isolated HGPIN occurring without associated invasive adenocarcinoma in 

cystoprostatectomies performed at Johns Hopkins between 2009 and 2014. Of 344 

cystoprostatectomies, 33% (115/344) contained invasive prostatic adenocarcinoma in the partially 

submitted prostate (10 blocks/case on average) and were excluded from the study. Of the 

remaining cases without sampled cancer, 32% (73/229) showed 133 separate foci of HGPIN and 

were immunostained for ERG and PTEN using genetically validated protocols. Of foci of HGPIN 

with evaluable staining, 7% (8/107) were positive for ERG. PTEN loss was not seen in any 

HGPIN lesion (0/88). Because these isolated HGPIN foci at cystoprostatectomy are unlikely to 

represent retrograde spread of invasive tumor, our study suggests that ERG rearrangement, but not 

PTEN loss, is present in a minority of potential neoplastic precursor lesions in the prostate.
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Introduction

High-grade prostatic intraepithelial neoplasia (HGPIN) is widely considered the main 

precursor lesion to invasive prostatic adenocarcinoma [1-4]. HGPIN is characterized by a 

proliferation of atypical luminal cells with nuclear and nucleolar enlargement within ducts 

and acini with an intact basal cell layer [3, 4]. Architecturally, HGPIN may show a tufted, 

micropapillary or flat growth pattern. Though HGPIN is more commonly seen in prostates 

with invasive prostatic adenocarcinoma than those without invasive tumors, meta-analyses 

have found that the short-term risk of subsequent diagnosis of invasive carcinoma after an 

initial diagnosis of HGPIN on needle biopsy is not markedly elevated over baseline unless 

HGPIN is multifocal [5]. Historically, the evidence supporting HGPIN as a precursor lesion 

for invasive adenocarcinoma has largely been based on its cytologic resemblance to, and 

frequent association with, invasive tumors [1, 2]. In addition, common molecular features 

have been reported for invasive adenocarcinoma and HGPIN. Of these, the presence of ERG 
gene rearrangement in HGPIN has been one of the most compelling findings. ERG or other 

ETS gene family members are rearranged in approximately 50% of invasive prostatic 

adenocarcinoma cases from patients of European descent, resulting in over-expression of 

ERG protein [6, 7]. In more than 20 prior studies, ERG gene rearrangement has been 

reported to occur in HGPIN associated with invasive cancers, and ERG status of the invasive 

tumor and the adjacent HGPIN are frequently concordant, suggesting a likely clonal 

relationship between the two lesions [8-28]. Though these data do not prove that HGPIN is a 

precursor lesion to invasive adenocarcinoma, they are consistent with this hypothesis.

Recently, however, there is increasing recognition that HGPIN may have considerable 

morphologic overlap with another intraductal lesion in the prostate that has a markedly 

different natural history. Intraductal carcinoma of the prostate (IDC-P) is widely regarded to 

commonly result from retrograde intraductal spread of a pre-existing high grade invasive 

adenocarcinoma [29, 30]. Though the current strict morphologic definition of IDC-P is 

designed to preclude over-diagnosis of HGPIN as IDC-P, an unavoidable consequence of 

this specificity is that some true cases of IDC-P are likely underdiagnosed as HGPIN [29, 

30]. Two recent studies have highlighted this pitfall. Patients with atypical intraductal lesions 

that fail to meet morphologic criteria for diagnosis of IDC-P (and thus may currently be 

diagnosed as HGPIN) have a substantially increased risk of subsequent diagnosis with high 

grade invasive carcinoma [28]. These data suggest that a wider morphologic spectrum of 

intraductal proliferations than are currently included in the definition of IDC-P may, in fact, 

represent retrograde spread of invasive carcinoma rather than true precursor lesions [14, 21, 

28]. In addition, a recent study of ERG-positive intraductal lesions (some resembling 

HGPIN and some more recognizable as intraductal carcinoma) that were associated with 

nearby invasive carcinoma demonstrated identical ERG rearrangement breakpoints in the 

HGPIN-like and intraductal lesions and the concurrent invasive adenocarcinomas [31]. 
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Further, the presence of heterogeneous PTEN loss in the invasive tumor with homogeneous 

PTEN loss in the intraductal and HGPIN-like lesions in these cases strongly suggests that 

the HGPIN-like and intraductal carcinoma lesions actually represent late stage ductal 

colonization by the invasive tumor in at least some cases.

If morphologically-identified HGPIN may not always be a precursor lesion in prostate 

cancer, but may in some cases represent later stage retrograde spread of adjacent invasive 

carcinoma, then many prior studies of molecular changes in HGPIN are likely confounded 

[32]. Because the prevalence of ERG gene rearrangement and PTEN loss in HGPIN have 

only been studied in radical prostatectomies (which invariably harbor concurrent invasive 

tumor) or in biopsies (where the presence of concurrent invasive tumor is uncertain) may 

have inadvertently included cases of intraductal spread of invasive carcinoma masquerading 

as HGPIN [8-28, 32]. Thus, the prevalence of these genetic alterations in true precursor 

lesions to invasive prostate carcinoma remains unclear. To address this, we studied a series 

of cystoprostatectomy specimens with isolated HGPIN in the absence of concurrent sampled 

invasive adenocarcinoma that are likely to represent true precursor lesions. Using genetically 

validated immunohistochemistry assays, we demonstrate that ERG expression occurs in a 

minority of isolated HGPIN lesions, while PTEN loss is extremely uncommon at this early 

stage in tumorigenesis.

Methods

Patient and Tissue Selection

This study, including tissue collection and immunohistochemistry (IHC) staining, was 

approved by Johns Hopkins Institutional Review Board. A search of the Johns Hopkins 

Pathology database between 2009 and 2014 for cystoprostatectomy specimens performed for 

urothelial carcinoma without concurrent reported prostate cancer was made. At Hopkins, 

gross sectioning of the prostate in cystoprostatectomy cases is geared towards detecting 

significant prostate carcinomas and urothelial carcinoma involving the prostate and prostatic 

urethra. In general, 10 blocks of prostate are submitted, focusing on the posterior peripheral 

zone, with 1-2 separate blocks submitted to examine the prostatic urethra and transition 

zone. Submitted sections comprise around 30% of the total prostate volume in most cases, 

unless a gross lesion is detected, in which case the prostate is entirely submitted.

A total of 229 cystoprostatectomy specimens were retrieved from the surgical pathology 

archives and all of the prostate slides were reviewed by one pathologist (CLM) to select 

cases with HGPIN. HGPIN was defined as a proliferation of atypical luminal cells with 

crowding, stratification and/or irregular spacing, involving ducts and acini. These lesions, 

generally visible at low power, showed one of the following architectural patterns: tuffing, 

micropapillary cribriform or flat [3, 4]. Enlargement of the nuclei and nucleoli, with nucleoli 

visible at 20× magnification was required. One to three separate blocks containing HGPIN 

were selected for each case. Some cases had multiple foci of HGPIN identified within each 

block (range: 1-3), with a minimal distance of 4 mm between individual foci required to 

consider the foci separate. Atypical intraductal lesions as described previously were not 

observed in any cystoprostatectomy specimen [28].
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Immunohistochemistry

One hematoxylin and eosin (H&E) stained section to verify presence of HGPIN on deeper 

sections of the block and two 4 μm sections were prepared for immunostaining. ERG 

immunostaining was performed by using a mouse monoclonal antibody (clone 9FY, Biocare 

Medical). In brief, following deparaffinization and rehydration, antigen unmasking was done 

by EDTA buffer (pH 8.0) for 45 minutes. Endogenous peroxidase activity was blocked by 

incubation in dual endogenous hydrogen peroxidase and alkaline phosphatase enzyme 

blocker solution for 5 min at room temperature. After washing with PBS with Tween 20, 

non-serum protein block was applied for 5 min (ULTRA V Block, Thermo Scientific). Then 

the primary antibody was allowed to react in dilution of 1:50 for 45min at room temperature. 

After washing in phosphatase-buffer saline, a horseradish peroxidase-labeled polymer 

(UltraVision Quanto Detection System HRP DAB, Thermo Scientific) was then applied for 

10 min at room temperature. Peroxidase was visualized by DAB (3,3’-diaminobenzidine 

tetrahydrochloride) chromogen. Slides were counterstanined with hematoxylin, dehydrated, 

and mounted.

PTEN IHC was performed as previously described on the Ventana Discovery Ultra 

automated staining platform utilizing CC1 antigen retrieval buffer (Roche-Ventana Medical 

Systems, Tucson, AZ) for 32 minutes at 100°C, followed by incubation with a rabbit anti-

human PTEN antibody (Clone D4.3 XP; Cell Signaling, Danvers, MA; 1:75 dilution) at 

36°C for 32 minutes, followed by the Optiview HRP multimer secondary detection system 

[33, 34].

PIN4 immunostaining in a subset of cases was performed using a prediluted antibody 

cocktail for p63, cytokeratin 903 and AMACR (Zeta Corporation, Sierra Madre, CA) on the 

Ventana Benchmark Ultra (Ventana-Roche) automated immunostainer.

Immunohistochemistry Scoring

Nuclear ERG protein was visually scored using a previously validated dichotomous scoring 

system by two pathologists (CLM and TLL) [35]. All glands on the standard slide were 

scored once they met morphologic criteria for HGPIN, based on side-by-side comparisons 

with a hematoxylin- and eosin-stained section. Staining for nuclear ERG was assessed in 

comparison with stromal endothelial cell staining, which provided an internal positive 

control for ERG in each section. Staining for ERG was considered positive if any lesional 

cells showed nuclear positivity, even those with somewhat weaker staining when compared 

with endothelial cells, and negative if no lesional cells were positive.

PTEN immunohistochemistry was blindly scored using a previously genetically validated 

dichotomous scoring system [33, 34, 36] by two pathologists (LG and TLL). A tissue core 

was considered to have PTEN protein loss if the intensity of cytoplasmic and nuclear 

staining was markedly decreased or entirely negative across >10% of tumor cells compared 

to surrounding benign glands and/or stroma, which provide internal positive controls for 

PTEN protein expression. This simple dichotomous scoring system has been shown to be 

highly correlated with underlying homozygous genetic deletion of PTEN [36].
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Results

A search of the Johns Hopkins Pathology database revealed that a total of 344 

cystoprostatectomies were performed at the Johns Hopkins Hospital from January of 2009 to 

December of 2014. Of these, 114 specimens had an incidental diagnosis of prostate 

carcinoma and one cystoprostatectomy was performed for a prostatic stromal sarcoma and 

all of these were excluded from the study. Among the 229 cystoprostatectomy specimens 

where the prostate was reported as free of cancer, 32% (73/229) had identifiable high grade 

prostatic intraepithelial neoplasia (HGPIN) and comprised the study cohort. The age of the 

73 patients ranged from 46 to 81 years with a median of 66 years. Between 1 and 3 tissue 

blocks containing HGPIN were sampled for each case, resulting in the inclusion of 133 

separate HGPIN foci, varying from 1 to 3 foci for each case.

From 133 HGPIN foci in 73 cystoprostatectomy specimens, 110 HGPIN foci (110/133; 

83%) in 61 cystoprostatectomy specimens (84%) met inclusion criteria for the study after 

performing deeper levels for IHC. The 23 excluded HGPIN foci included 22 foci where the 

HGPIN focus was no longer present on deeper recuts performed for IHC and 1 case where a 

small focus of atypical glands, suspicious for carcinoma, appeared on deeper levels. Of the 

61 cystoprostatectomy specimens included in the study, 24 (39%) had multifocal HGPIN 

defined as presence of HGPIN on multiple slides.

Overall, ERG IHC was positive in 7% (8/107) of individual HGPIN foci (Figures 1, 2, 3). 

Three HGPIN foci (3% or 3/110) were uninterpretable due to weak staining of internal 

control endothelial nuclei. Interestingly, no specimen had more than one focus of ERG-

positive HGPIN, thus a total of 13% (8/61) of individual cystoprostatectomy specimens 

contained an ERG-positive HGPIN focus (Figure 3). The rate of ERG positivity was not 

significantly different among cases with HGPIN present on only one slide (5/37 or 13.5%) 

versus cases with multifocal HGPIN present on multiple slides (3/24 or 12.5%). In order to 

confirm that the ERG-positive foci did not represent occult infiltrating cancer with a 

HGPIN-like morphology, 4 of the positive foci with smaller HGPIN glands were assessed 

for presence of basal cells using PIN4 immunostaining cocktail. All evaluated foci (4/4; 

100%) were positive for basal cell markers, p63 and high molecular weight cytokeratin 

(Figures 2, 3).

PTEN immunohistochemistry was interpretable on 80% (88/110) of the HGPIN foci 

remaining on unstained deeper levels on 60 individual cystoprostatectomy specimens. None 

of the HGPIN foci (0/88) showed PTEN loss (Figure 1).

Discussion

While a number of histological lesions referred to by various names have been described 

previously as potential prostate cancer precursor lesions [1], intraductal dysplasia (later 

referred to as high grade prostatic intraepithelial neoplasia) was first described with detailed 

morphological criteria as a potential pre-malignant lesion by McNeal and Bostwick in 1986 

[2]. Over the years, a combination of morphological, epidemiological and molecular 

evidence has been used to support the hypothesis that HGPIN is a precursor to invasive 
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carcinoma [4]. The cytologic similarity between the atypical luminal epithelial cells in 

HGPIN and invasive carcinoma and the frequent presence of HGPIN adjacent to micro-

invasive foci of carcinoma (“PINATYP”) have long been used to link the two lesions [37, 

38]. In prior cystoprostatectomy series, men with incidental invasive carcinomas are more 

likely to have HGPIN compared to those without carcinoma (100% vs 63%) [39, 40] and the 

vast majority of tumors occur in a background of multi-focal HGPIN (91%) [41]. Further, in 

autopsy series, the prevalence of HGPIN increases dramatically with age just as prostate 

cancer does, and a higher age-related prevalence of HGPIN is seen in ethnic groups with a 

higher prevalence of prostate cancer [42]. Finally, as an isolated finding in needle biopsy 

specimens, multifocal HGPIN is associated with an increased risk of cancer in subsequent 

biopsies [5].

The molecular evidence that HGPIN is a precursor lesion to prostate cancer has consisted 

mainly of molecular alterations in common between invasive adenocarcinoma and HGPIN. 

Discrete molecular lesions, such as GSTP1 methylation [43, 44] and telomere shortening 

[45, 46] are seen in HGPIN as well as in the majority of adenocarcinomas. Similarly, 

chromosomal copy number alterations involving chromosome 8p [47, 48] and 8q24 [49-51] 

have been reported in both HGPIN as well as invasive adenocarcinomas. However, perhaps 

the most convincing alteration reported in both HGPIN and invasive adenocarcinoma 

involves TMPRSS2-ERG gene fusions. Present in nearly half of prostate carcinomas and 

extremely specific to this tumor type, the prevalence of ERG fusions has been repeatedly 

documented in HGPIN over the past decade. Altogether, our literature review retrieved at 

least 21 independent studies of ERG fusion rates in HGPIN, with over 1100 separate HGPIN 

lesions queried for ERG fusion by FISH, RT-PCR or IHC (Table 1) [8-28]. Examining either 

radical prostatectomy specimens or needle biopsies with HGPIN sampled with or without 

concurrent invasive adenocarcinoma, these studies have found evidence of ERG 
rearrangement in a median of 17% of HGPIN lesions (range: 0-36%). Because 20/21 of 

these prior studies utilized radical prostatectomy specimens or needle biopsies with HGPIN 

and concurrent or subsequent invasive carcinoma, many examined the concordance between 

the two lesions and this concordance has generally been high, especially whether the HGPIN 

and invasive carcinoma are located in close proximity to one another (Table 1). These data 

have been used to support the argument that HGPIN is a precursor to invasive prostate 

cancers.

Although the morphologic, epidemiologic and molecular data presented above support a 

close or even clonal relationship between HGPIN and invasive carcinoma, these data do not 

help us to discern the temporal or evolutionary relationship between these two lesions. 

HGPIN could evolve into invasive adenocarcinoma in some cases, however the possibility 

that HGPIN could represent late stage retrograde spread of invasive adenocarcinoma into 

pre-existing benign ducts would be equally consistent with all of the data summarized above 

[32]. Ultimately, multiple molecular alterations must be simultaneously examined in HGPIN 

and adjacent carcinoma to determine whether there is a clonal relationship between the two, 

and if so, whether one lesion likely gave rise to the other. In a recent study that used ERG 
breakpoint analysis and PTEN gene deletion to begin to address this question, it appears that 
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at least a subset of lesions meeting morphologic criteria for HGPIN may have evolved from 

(rather than into) adjacent invasive carcinoma [31].

Thus, it is likely the case that morphologically identified HGPIN may actually represent a 

spectrum of intraductal lesions in the natural history of prostate cancer. While some HGPIN 

lesions may precede carcinoma and have the capacity to evolve into invasive tumors, others 

may represent intraductal spread of previously invasive tumor. Because of this, many 

previous molecular studies of HGPIN are likely confounded since nearly all studies of 

HGPIN have been performed using radical prostatectomy specimens (which all contain 

invasive tumor) or needle biopsies (where the existence of concurrent invasive tumor is 

unknown) [32]. Indeed, because many of the morphologically-identified HGPIN lesions in 

these previous studies are adjacent to invasive tumors, it is likely that at least some of the 

lesions studied represent retrograde spread of invasive tumors. Thus, inclusion of these cases 

may make the prevalence of cancer-related molecular alterations in HGPIN look artificially 

high.

This confounding issue could also potentially explain the results of the few studies that 

found that the presence of cancer-associated molecular alterations in HGPIN on needle 

biopsy, such as presence of ERG gene rearrangement, is associated with a higher risk of 

developing subsequent invasive cancer [17, 25, 32]. Indeed, if the rate of ERG positivity in 

true precursor HGPIN is low, it is possible that the group of ERG-expressing HGPIN lesions 

was relatively enriched for retrograde intraductal spread of concurrent unsampled invasive 

tumors compared to the ERG-negative HGPIN group. This scenario would also explain a 

higher rate of subsequent invasive cancer in these ERG-positive HGPIN cases when the 

prostates were resampled by needle biopsy.

To begin to understand the true prevalence of molecular alterations in HGPIN, it is necessary 

to study HGPIN occurring in the absence of invasive carcinoma, as these are likely to 

represent true precursor lesions. Though autopsy specimens would be ideal for these studies, 

poor tissue preservation in autopsies makes identification of the characteristic cytologic 

features of HGPIN difficult. Here, we studied prostate tissue from cystoprostatectomies 

performed for urothelial carcinoma where the submitted prostate tissue did not contain 

prostatic adenocarcinoma. Though one important weakness of our study is that the prostate 

in cystoprostatectomy specimens is not submitted in totality for histologic examination at 

our institution, our prostate sampling procedure in these specimens is likely adequate to 

detect most significant prostate tumors (with at least 30% of total prostate volume submitted 

in most cases). In addition, we could clearly exclude the presence of invasive tumor within 3 

millimeters of the HGPIN lesion examined. Ultimately, this study will need to be confirmed 

in a series of cystoprostatectomy specimens containing HGPIN where the prostate is entirely 

submitted for histologic examination to exclude the possibility of occult invasive cancer in 

some cases. However, overall, it is highly likely that the HGPIN lesions identified in our 

cystoprostatectomy study did not result from retrograde spread of invasive tumor (which 

typically happen in the context of clinically significant, high stage tumors [29]), but are 

instead representative of a spectrum of true precursor lesions in the prostate.
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In the current study, we found that 7% of these precursor HGPIN lesions express ERG 

protein by immunohistochemistry, a proven surrogate for the presence of ERG gene 

rearrangement. This prevalence of ERG expression in HGPIN is at the low end of the range 

reported in previous large studies of radical prostatectomy and needle biopsy specimens. In 

one of the largest studies utilizing 143 radical prostatectomies and biopsies, ERG 
rearrangement (measured by FISH) was found in 16% of lesions [11]. In the largest study of 

biopsies alone (from a prostate cancer prevention trial, GTx Protocol G300104), ERG 

expression (by IHC) was seen in 11% (51/461) cases overall [25]. Interestingly, most of the 

tumors found subsequent to HGPIN in this study were low grade (Gleason score 6) tumors 

that may not have had the capacity for retrograde intraductal spread. Thus the rate of ERG 

positivity in this study is not significantly different from what we observed in the current 

study using cystoprostatectomies. However, another large study of prostate biopsies using 

FISH found that 36% (59/162) of HGPIN lesions showed ERG rearrangement [17]. Thus it 

is possible that the inadvertent inclusion of some cases of intraductal retrograde spread of 

tumor may have artificially inflated the prevalence of ERG expression reported in some prior 

HGPIN studies.

Given that ERG rearrangement can occur in a minority of isolated HGPIN lesions, it is 

unlikely that the presence of ERG-positive PIN will be useful to distinguish true HGPIN 

from retrograde intraductal spread of cancer. However, PTEN may be useful in this context. 

We have previously reported that PTEN loss occurs at a high frequency in IDC-P, and can be 

seen in a majority of IDC-P lesions occurring with concurrent invasive adenocarcinoma [21, 

28]. In contrast, we found that PTEN loss rarely occurs in HGPIN lesions, either occurring 

in radical prostatectomies (adjacent or distant from invasive adenocarcinoma) or in needle 

biopsies where HGPIN was an isolated finding. Here, we add to these data by showing that 

PTEN loss does not occur at a detectable frequency in isolated HGPIN occurring in 

cystoprostatectomy specimens. These data add additional support to the concept that PTEN 

loss in HGPIN or other atypical intraductal lesions may have a high positive predictive value 

for the presence of concurrent invasive adenocarcinoma, suggesting that these cases should 

get additional and very close follow-up to exclude this possibility.
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Figure 1. 
A Representative HGPIN lesion (P) from radical cystoprostatectomy with adjacent benign 

glandular epithelium (B) (200× magnification). B: prominent nucleoli are apparent in 

HGPIN cells (P) compared to adjacent benign luminal cells (B) (630× magnification). C: 

Immunostaining for ERG is negative in HGPIN (P) and benign (B) glands, with positive 

staining in adjacent endothelial nuclei as an internal positive control (200× magnification). 

D: PTEN immunostaining is intact in HGPIN (P) lesion and adjacent benign (B) glands 

(200× magnification).
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Figure 2. 
A: Representative HGPIN lesion (P) from radical cystoprostatectomy with adjacent benign 

glandular epithelium (B) (200× magnification). B: prominent nucleoli are apparent in 

HGPIN cells (P) compared to adjacent benign luminal cells (B) (630× magnification). C: 

Immunostaining with PIN4 cocktail for high molecular weight keratin and p63 demonstrates 

positively staining basal cells (brown) in both benign (B) and HGPIN (P) glands (200× 

magnification). Racemase positivity (red) is seen in HGPIN lesion. D: ERG is expressed in 

nuclei of HGPIN (P) lesion but is negative in adjacent benign (B) glands (200× 

magnification).
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Figure 3. 
A: Representative HGPIN lesions (P) from radical cystoprostatectomy with adjacent benign 

glandular epithelium (B) within the same gland. B: High power image of boxed region from 

upper left demonstrates prominent nucleoli in HGPIN cells compared to adjacent benign 

luminal cells (200× magnification) (630× magnification). C: Immunostaining with PIN4 

cocktail for high molecular weight keratin and p63 demonstrates positively staining basal 

cells (brown) in both benign (B) and HGPIN (P) glands. Racemase positivity (red) is absent 

in this HGPIN lesion (200× magnification). D: Immunostaining for ERG is positive in 

luminal cells from one of two HGPIN (P) glands and negative and negative in adjacent 

benign (B) luminal cells within the same gland. An adjacent HGPIN lesion (P) is negative 

for ERG in the same field (200× magnification).
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Table 1

Summary of studies on ERG status in HGPIN.

Reference % ERG+ HGPIN Method Tissue % with 
concurrent 

invasive cancer

Geographic 
relationship 

between HGPIN 
and invasive 

cancer

Concordance 
between HGPIN 

and invasive 
cancer for ERG 

status

Cerveira, 2006 (8) 21% (4/19) RT-PCR RP 100% (19/19) NS NS

Perner, 2007 (9) 19% (5/26) FISH RP (TMA) 100% (26/26) 100% of ERG+ 
HGPIN in “tight 

proximity” to 
cancer

80% (4/5) for ERG
+ HGPIN

Furusato, 2008 (10) 14% (2/14) RT-PCR RP 100% (14/14) 36% (5/14) 
adjacent; 64% 
(9/14) distant

NS

Mosquera, 2008 (11) 16% (23/143) FISH RP, Bx 87% (124/143) NS 73% (91/124)

Carver et al, 2009 (12) 10% (4/10) FISH RP (TMA) 100% (10/10) adjacent 100% (10/10)

Han, 2009 (13) 15% (5/33) FISH RP (TMA) 100% (33/33) Adjacent = <3 mm; 
away = >3 mm

75% (15/20) for 
HGPIN adjacent to 
ERG+ cancer; 0% 
(0/10) for HGPIN 
away from ERG+ 

cancer

Han, 2010 (14) 0% (0/16) FISH RP 100% (16/16) >3 mm NS

van Leenders, 2011 
(15)

52% (11/21) IHC Bx 90% (19/21) Same slide 95% (18/19)

Yaskiv, 2011 (16) 29% (5/17) IHC Bx 100% (17/17) 71% (12/17) 
immediately 

adjacent to invasive 
carcinoma

100% (5/5) for ERG
+ HGPIN

Gao, 2012 (17) 36% (59/162) FISH Bx 37% (61/162) with 
subsequent 

invasive carcinoma

NS NS

He, 2012 (18) 5% (5/94) IHC Bx 38% (36/94) with 
subsequent 

invasive carcinoma

NS NS

Tomlins, 2012 (19) 18% (12/68) IHC Bx 22% (15/68) Separate core 40% (6/15)

Liu, 2013 (20) 22% (4/18) IHC Bx 72% (13/18) Separate core NS

Lotan, 2013 (21) 13% (5/39) IHC RP 100% (39/39) 23 PIN <3mm from 
PCa and 16 PIN 
>3mm from Pca

57% (17/30)

Teng, 2013 (22) 7% (2/29) IHC RP (TMA) 100% (29/29) NS 100% (2/2) for ERG
+ HGPIN

Teng, 2013 (23) 6% (4/69) IHC RP (TMA) 100% (69/69) NS NS

Verdu, 2013 (24) 0% (0/10) IHC RP (TMA) 100% (10/10) “Distant” 80% (8/10)

Park, 2014 (25) 11% (51/461) IHC Bx 37% (170/461) 
with subsequent 

invasive carcinoma

NS NS

Taris, 2014 (26) 18% (10/57) IHC RP (TMA) 100% (57/57) NS NS

Lee, 2015 (27) 27% (12/45) IHC Bx 20% (9/45) Same core 100% (9/9)

Morais, 2015 (28) 0% (0/19) IHC Bx 0% (0/19) NA NA
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