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Abstract

Background—Intensive bimanual therapy can improve hand function in children with unilateral 

spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. 

unstructured bimanual practice on motor outcomes and motor map plasticity in children with 

USCP.
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Objective—We hypothesized that structured skill training would produce greater motor map 

plasticity than unstructured practice.

Methods—Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-

camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children 

performed progressively more difficult movements and practiced functional goals. In unstructured 

practice (n=10), children engaged in bimanual activities but did not practice skillful movements or 

functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand 

Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand 

function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation 

of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally.

Results—Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) 

and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases 

in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). 

Most children who showed the most functional improvements (COPM) had the largest changes in 

map size.

Conclusions—These findings uncover a dichotomy of plasticity: the unstructured practice group 

improved hand function but did not show changes in motor maps. Skill training is important for 

driving motor cortex plasticity in children with USCP.
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Introduction

Unilateral spastic cerebral palsy (USCP) is caused by damage to the developing brain within 

the first two years of life. USCP results in weakness and motor deficits on one side of the 

body. Improving hand function is a main goal for most children with USCP1. Intensive 

bimanual therapy improves hand function in children with USCP2-6. In our intensive 

bimanual training model (Hand-Arm Bimanual Intensive Therapy: HABIT), children spend 

three weeks using both upper extremities in play-based activities, six hours/day4. Task 

difficulty systematically increases as motor proficiency progresses, further enhancing 

improvement7. We recently showed that HABIT improves unimanual skill, bimanual hand 

use, and functional hand use8. Given the functional impact of training, it is important to 

determine how training affects the brain.

Skill training drives plasticity of the motor system9-12. Skill training involves progressively 

greater task difficulty, whereas unskilled use of the hand involves repeating a movement that 

can be done without learning and does not increase in difficulty7. Animal models of USCP2 

and stroke13-15 have demonstrated the importance of skill training in rehabilitation. Skill 

training improves motor outcomes and expands the motor map of the affected extremity, 

while repetitive unskilled use of the affected extremity does not produce map changes or 

motor recovery11,16. The brain circuits that underlie motor control in USCP have been well-

characterized in an animal model17. Specifically, work in the USCP model demonstrated that 

skill training, but not unskilled motor use, drives plasticity of cortical motor maps and 
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corticospinal connections16. This study leverages our understanding of critical ingredients in 

USCP rehabilitation in the animal model to test whether skill training changes motor maps 

and hand function in children with USCP. Several studies have shown that constraint-

induced movement therapy produces changes in motor cortex physiology in children with 

CP18-20 and stroke patients21-23. Although several studies have examined the effects of 

constraint and bimanual therapies in children with USCP6,24-27, to our knowledge, this study 

is the first to specifically examine the critical ingredients that drive motor cortex plasticity 

associated with bimanual training in children with USCP.

We compared the effects of bimanual therapy that incorporates structured skill training 

versus unstructured play-like hand use on manual skill in children with USCP. Each group 

received 90 hours of therapy, six hours/day, three weeks. During training, children actively 

used both hands in play-based activities. Structured skill training incorporated three key 

components: 1) progression of task difficulty; 2) repeated practice of isolated movements 

that are components of a more complex task; and 3) repetition of functional goals, such as 

tying shoes. Children in the unstructured practice group performed bimanual movements 

during play, but did not progress skill of activities, nor practice isolated movements or 

functional goals. In the structured skill training group, task difficulty was increased by 

imposing greater spatial or temporal constraints, or by providing tasks that required 

increased skilled use and problem solving7,8. An example is placing a game board farther 

away from the child, to encourage a farther reach as a child’s arm extension increased. In the 

unstructured practice group, no constraints were placed on how a child completed an activity 

(e.g., game board kept in close position).

We used single-pulse transcranial magnetic stimulation (TMS) to assess topography and 

excitability of the motor cortex map of the affected hand before, immediately after, and six 

months after training. We hypothesized that structured skill training, but not unstructured 

practice, would drive changes in size and excitability of the motor map.

Methods

Participants

We recruited participants from regional clinics, our website (http://www.tc.edu/centers/cit/), 

ClinicalTrials.gov (NCT00305006), and online communities. Inclusion criteria: 1) 

congenital USCP, 2) ability to lift arms 15cm above table surface and grasp light objects, 

and 3) cognition similar to their age-specific peers in school. Exclusion criteria: 1) health 

problems that would interfere with participation, 2) history of seizures after 2 years of age 

with active use of anti-seizure medications, 3) uncorrected visual problems, 4) severe 

spasticity (Ashworth ≥3), 5) surgery on more-affected hand within one year, 6) botulinum 

toxin in upper extremity within six months, 7) non-removable metallic objects in body. 

Informed assent was obtained from participants and consent from caregivers. Procedures 

were approved by the Institutional Review Boards of Teachers College, Columbia 

University, where hand training was performed, and the New York State Psychiatric 

Institute, where brain imaging and motor mapping were acquired.

Friel et al. Page 3

Neurorehabil Neural Repair. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.tc.edu/centers/cit/
http://www.ClinicalTrials.gov


Interventions

Day camps were conducted at Teachers College, Columbia University during summers 2010 

to 2012. Eighteen children were randomized to either structured HABIT (n=8, structured 

skill group) or unstructured bimanual play (n=10, unstructured practice group), performed in 

separate rooms. Motor outcomes from these children have been published in a larger 

randomized clinical trial that included twenty-two children8. Eighteen of the children in the 

RCT also participated in this TMS mapping study. Two teenagers (ages 15, 17) were 

assigned to the structured skill group because they were self-motivated to maximize skill 

demand of activities. This balanced group size at 10 each. Clinical characteristics did not 

differ between groups (Table 1, Chi-square p>0.05). Details of materials, methods, 

randomization, location, and adherence are presented in Supplementary Materials.

Intervention description

Procedures: All interventionists, parents, children, and motor skill assessors were blinded to 

therapy group and study hypotheses. Children were randomized to receive structured or 

unstructured HABIT. Participants engaged in age-appropriate bimanual training 6 hours/day 

for 15 days (90 hours). In both groups, activities were chosen that required use of both 

hands. If a child stopped using one hand during therapy, interventionists immediately 

reminded the child to use both hands.

Structured HABIT: (n=10) Structured HABIT4,28,29 differed from unstructured bimanual 

training in three ways (Table 2): 1) progression of task difficulty; 2) repeated practice of 

isolated movements; and 3) practice of functional goals. Progression of task difficulty: Task 

difficulty was graded by either increasing the temporal and spatial complexity of the 

movements or by increasing the complexity of how the affected hand was used. Repeated 
practice of isolated movements: Part-task practice (shaping) emphasized practice of a single 

movement component. Task performance, time on task, and number of repetitions were 

logged. Practice of functional goals: Play goals, such as dribbling a basketball, and activity 

of daily living goals, such as tying shoes, were determined by the participant and their 

family before training. Goals were practiced during training.

Unstructured Bimanual Training: Children (n=10) were engaged in intensive use of both 

hands, without focus on skill. Bimanual activities were selected according to the child’s 

interest. Interventionists were trained only to provide activities that required use of both 

hands in a playful context. They were told that the emphasis was on having fun rather than 

rehabilitation. The supervisor ensured interventionists provided no increase in task 

complexity, no guidance on how to use the affected hand, and no gradation of task demands. 

The participants did not practice functional goals or part-task practice of movement 

components.

Behavioral Measures

Participants were evaluated prior to treatment, within two days after treatment, and six 

months later by a physical therapist blinded to group allocation. Three outcome measures 

were used to quantify unimanual capacity, bimanual performance, and functional goals, 

based on the International Classification of Functioning, Disability, and Health.
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We quantified unilateral dexterity using the Jebsen-Taylor Test of Hand Function (JTTHF)30. 

Participants use one hand to perform functional movements, including flipping cards, 

manipulating/placing small objects, simulated eating, checker stacking, and manipulating 

cans. The outcome is the time (seconds) to perform movements.

To quantify how the hands function together, we employed the Assisting Hand Assessment 

(AHA)31,32. The AHA quantifies the effectiveness of assisting hand use in performing 

bimanual activities in children with unilateral upper limb disabilities. The AHA has 

excellent validity, reliability (0.97-0.99) and responsiveness to change8,31. The test was 

videotaped and scored off-site by an experienced blinded evaluator. Scores were computed 

as transformed logits (AHA units).

To measure performance and satisfaction levels in functional goals, we employed the 

Canadian Occupational Performance Measure (COPM)33. The COPM is a standardized 

measure that identifies goals and detects changes in self-care, productivity and leisure 

performance areas. Through interview, the caregiver identified the child’s functional goals 

and ranked their importance. They rated satisfaction and performance of each goal 

(maximum 5). Mean performance and satisfaction scores were analyzed. Both groups of 

children set goals, but only the structured group practiced goals during the intervention.

TMS Motor Mapping

We used single pulse TMS to evoke movements of selected digit and wrist muscles of the 

affected hand to address whether training changed the motor map. We measured motor 

responses with surface electromyography (EMG) of the first dorsal interosseous (FDI) and 

flexor carpi radialis (FCR) muscles bilaterally. TMS details are presented in Supplementary 

Materials.

Each child’s TMS map was colocalized to their structural MRI, to allow motor mapping that 

was consistent between each time point. Details are presented in Supplementary Materials.

TMS-evoked motor responses were recorded with surface EMG electrodes. Electrodes were 

connected to a Brainvision ExG amplifier (NeuroConn, Germany). TMS pulses were first 

delivered to the affected hemisphere to search for an EMG response (motor evoked 

potential; MEP) of the affected FDI. If an MEP of the affected FDI could not be elicited in 

the affected hemisphere, the uninjured hemisphere was probed for MEPs of the affected 

FDI. In all cases, if an MEP of the affected FDI or FCR was not found in the injured 

hemisphere, it was found in the uninjured hemisphere.

We determined the threshold for provoking an MEP. The TMS coil was held at the location 

that provoked the largest FDI response (“hotspot”). MEPs were evoked beginning at a 

suprathreshold stimulus intensity. Stimulator output was lowered at 2% increments. The 

lowest stimulator output at which MEP responses of the affected FDI could be elicited from 

five of ten pulses was defined as the motor threshold (MT). An MEP was categorized as a 

response if the latency between the TMS pulse and MEP onset was less than 40ms, and if 

the amplitude of the MEP was at least 50μV.
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After the MT was determined, a circular grid was superimposed onto the child’s MRI using 

Brainsight. The grid was centered at the affected FDI hotspot. Grid spacing was 1 cm. The 

grid consisted of five concentric rings, resulting in a grid with a 5 cm radius (81 grid points). 

Single TMS pulses (3-6 per site when an MEP was found, 1-2 per site when no MEP was 

found) were delivered to each grid point, starting at the hotspot and moving concentrically 

along the grid, ending at the outermost ring. Stimuli were delivered at an intensity of 110% 

affected FDI MT, frequency <0.1Hz. This intensity has been used previously to map stroke 

patients after constraint therapy34. Average MEPs per site were calculated using peak-to-

peak amplitude.

TMS maps were done before training, within two days of the end of training, and six months 

after training. For each child, the same intensity of stimulation (110% pre-training resting 

MT) was used in all TMS sessions. TMS data analyses methods are presented in 

Supplementary Materials.

Statistics

Statistics were performed using SPSS (IBM, V.21). Intention-to-treat analyses were 

conducted. Missing data (one six-month follow-up, unstructured group) were interpolated 

based on the group average for the six-month time point. A 2 (group) × 3 (time) ANOVA 

with repeated measures was performed on all measures. We performed post-hoc analyses 

when a main ANOVA effect was found, correcting for multiple comparisons (Bonferroni). 

The group × test session interaction effect tested if improvements along test sessions differed 

between groups. Linear regression examined associations between behavior and TMS 

measures.

Results

Changes in Hand Function after Bimanual Training

Hand function data from the 18 children randomized to group are published as part of a 

randomized clinical trial8. Changes in bimanual hand use were measured with the AHA 

(Fig. 1A). AHA improved after training (F(2,17)=4.03, p=0.037, 1.9-unit improvement pre-

post training, retained at six months), though not a clinically meaningful difference. There 

was no interaction between training type and AHA improvement (F(2,17)=0.57, p=0.57). 

Both groups improved equally well in bimanual use of the affected hand.

Changes in unimanual dexterity were assessed with the JTTHF. There was an overall 

improvement in the JTTHF in the affected hand after training across all subjects a clinically 

meaningful amount (Fig. 1B, F(2,17)=8.74, p<0.001, 17% improvement pre-post training, 

retained at six months). There was no interaction between training type and JTTHF 

improvement (F(2,17)=0.08, p=0.92). Both groups improved equally well in unimanual 

performance with the affected hand.

Improvements on functional goals were measured with the COPM. There was an overall 

improvement in COPM-Performance (Fig. 1C, F(2,17)=42.19, p<0.001). There was a trend 

toward a significant interaction between COPM-Performance and training type (F(2,17)=3.2, 

p=0.068). The structured skill group trended toward greater improvement than the 

Friel et al. Page 6

Neurorehabil Neural Repair. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unstructured group in functional use of the affected hand. There was also an overall 

improvement in COPM-Satisfaction (Fig. 1D, F(2,17)=15.77, p<0.001) but no interaction 

between COPM-Satisfaction and training type (F(2,17)=1.76, p=0.20). Both groups 

improved a clinically meaningful amount in COPM-Performance and Satisfaction.

Improvements in all measures were maintained six months after therapy, as there were no 

statistically significant changes between the immediate post-training and six months post-

training measures for either group.

Laterality of Motor Map Controlling the Impaired Hand

We determined the location of the motor map of the affected hand (Table 1, Figure 2). 

Children were categorized as contralateral if 100% of TMS responses in the affected hand 

resided in the same hemisphere as the lesion. Children were categorized as ipsilateral if 

100% of TMS responses in the affected hand resided in the opposite hemisphere as the 

lesion. There was no difference in the distribution of hand map laterality (contralateral or 

ipsilateral to affected hand) between the two groups (Table 1, Fisher’s Exact, p=0.85). 

Latency of MEP response was not different for contralateral or ipsilateral responses across 

all subjects (p>0.3).

Six children (5 structured, one unstructured) had motor maps of the affected hand in both 

hemispheres – that is, bilateral motor maps. There was a strong asymmetry in map size of 

the two sides. In five of the six cases (4 structured, 1 unstructured), the map in the injured 

hemisphere was approximately double the size of the map in the other hemisphere (ratio, 

injured:uninjured hemispheres=1.95, SD=0.11). For these cases, we used the map in the 

injured hemisphere for analysis. In the remaining child with bilateral maps (structured 

group), the map of the affected FDI and FCR was 4.75x larger in the uninjured hemisphere 

than the injured hemisphere, and the map in the uninjured hemisphere was used for analyses.

Changes in Motor Maps after Bimanual Training

We examined changes in motor maps after structured skill training or unstructured practice. 

Fig. 3 shows representative motor maps from one child per group. Map size increased in the 

structured (1A-1C), but not the unstructured group (2A-C).

After training, there was a significant interaction between map size (FDI+FCR) of the 

affected hand and training type (F(2,17)=4.7, p=0.036). There was a significant increase in 

map size of the affected hand in the structured skill group (pre-post-training p=0.009, 23.3% 

increase, pre-training to six months post-training p=0.047, 34.9% increase) but not in the 

unstructured practice group (p>0.3; <10% increase) (Fig. 3D-E). Map size of the affected 

FDI increased significantly in the structured skill group (pre-post-training p=0.046, 27.4% 

increase, pre-training to six months post-training p=0.05, 34.2% increase), but not in the 

unstructured group (p>0.2). The map size for the affected FCR did not change significantly 

in the structured skill group immediately after training (p=0.85, 6.1% increase) but was 

significantly greater than baseline six months after training (p=0.049, 42.2% increase). In 

the unstructured group, FCR map size did not change after training (p>0.3).
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Amplitude of motor responses to TMS increased significantly (Fig. 4) after structured skill 

training but not unstructured practice (Fig. 4D-E). There was a significant interaction 

between average MEP of the affected FDI and treatment group (F(2,17)=4.21, p=0.033). The 

structured skill group showed a significant increase in FDI MEP size from pre-training to six 

months post-training (p<0.0001, 19% increase), though not from pre-training to immediately 

following or immediately following to six months later. There was no significant change in 

FDI MEP size in the unstructured practice group (p>0.8). There was a significant interaction 

between average MEP of the affected FCR and group (F(2,17)=4.96, p=0.019). The 

structured skill group showed a significant increase in FCR MEP size from pre-training to 

six months post-training (p<0.0001, 78.1% increase) but not pre-training to immediate post-

training. There was no significant change in FCR MEP size in the unstructured practice 

group (p>0.9).

Plasticity of Ipsilateral versus Contralateral Maps

We determined the location of the motor map of the affected hand (Table 1). There was no 

difference in the distribution of hand map laterality (contralateral or ipsilateral to affected 

hand) between groups (Fisher’s, p=0.85). Representative maps are shown in Fig. 2 

(contralateral) and Fig. 3 (ipsilateral). Both ipsilateral and contralateral maps expanded after 

structured skill HABIT (F(2,8)=4.6, p=0.048). The magnitude of map changes were not 

different in children with an ipsilateral versus contralateral CST (F(2,7)=0.32, p=0.74).

Associations Between Map Changes and Hand Function Changes

Children in the structured skill group who showed the most improvement in COPM-

Performance also had the largest changes in hand map size (Supplemental Fig. 1, 

F(1,8)=7.5, p=0.013, r=0.54, r2=0.30). Children with larger improvements in JTTHF showed 

larger expansions of the hand motor map (F(1,8)=5.6, p=0.045, r=0.64, r2=0.41). There was 

not a significant association between hand map change and improvement in the AHA 

(p=0.95, r=0.02). In the unstructured group, there were no significant associations between 

map changes and JTTHF, AHA, or COPM changes (p>0.3, r<0.35).

Importantly, baseline hand function and amount of recovery was not related to whether the 

child’s map of the impaired hand was located in the injured or uninjured hemisphere 

(JTTHF F(1,18)=4.82, p=0.10; AHA, F(1,18)=1.4, p=0.24; COPM performance 

F(1,18)=0.42, p=0.48, no interactions).

Stability of Motor Maps in the Absence of Intervention

We show the stability of motor maps in the absence of intervention (Supplementary 

Materials).

TMS Safety Outcomes

Of the 70 TMS sessions conducted in this study, two participants reported mild headache 

after four (5.7%) of the sessions, three participants reported discomfort in the headband used 

for neuronavigation after five (7.1%) of the sessions, and two participants reported 

discomfort with sitting for an extended period of time after three (4.3%) sessions. All side 
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effects resolved without treatment within one hour after TMS. No serious adverse events 

occurred.

Discussion

This is the first study, to our knowledge, to examine the critical ingredients of bimanual 

training that drive changes in motor cortex physiology in children with USCP. We compared 

bimanual structured skill training and unstructured practice. The study uncovered three main 

findings: 1) Skill training increased the size and strength of the motor map of the affected 

hand; 2) Unimanual skill of the affected hand and performance of functional goals were 

correlated with increased map size; 3) Motor maps were plastic whether they resided in the 

hemisphere contralateral or ipsilateral to the affected hand.

Our findings are consistent with studies showing that repetitive practice of a specific motor 

skill drives map plasticity2,11,12,35-37. In animal models of stroke and USCP, and in human 

stroke patients, constraint of the unaffected forelimb, plus skill training of the affected 

forelimb, can improve motor skill and expand the motor map of the affected limb22,23,38-42. 

In human stroke patients, the magnitude of map expansion was correlated with 

improvements in skill43. Training has also been shown to increase fMRI activations in 

secondary motor and cerebellar regions44. Importantly, constraint alone, without skill 

training, does not change motor maps11,16.

Though further work is needed to uncover the mechanisms of cortical plasticity associated 

with skill-based neurorehabilitation, work in animal models has determined that skill 

training, but not unskilled motor activity, increases densities of synapses, dendritic arbors, 

and spines in the motor networks45. These changes are associated with increases in 

neurotrophin expression46, and increased density of spinal interneurons16.

We found that structured and unstructured therapy both resulted in equal improvements in 

unimanual movement speed and bimanual use. It is possible that the two groups had 

differences in movement kinematics or other more detailed measures of movement quality, 

since the clinical outcome measures we used do not quantify the quality of movements. 

Further studies should examine kinematics of motor recovery in children with USCP.

We found that functional gains and changes in cortical plasticity were independent of 

hemisphere of control, i.e. ipsilateral or contralateral to the affected hand. CIMT studies in 

children with USCP suggested that in children with ipsilateral control of the affected hand, 

improvements in movement speed47 and changes in M1 excitability18 were less robust than 

for children with a contralateral CST. However, we found that ipsilateral control of the 

affected limb showed similar amounts of plasticity as contralateral control. Ipsilateral 

pathways have the capacity to be adaptive, functional, and plastic48-50, though a larger study 

is needed to better understand differences in plasticity of different hemispheres of control.

This study uncovers a dichotomy of neuroplasticity. The unstructured practice group, which 

improved hand function, did not show motor cortex plasticity in TMS maps. The high dose 

(90 hours) may have washed out group differences. Lower dosages could result in 

differences between groups. While we did find a positive association between functional 
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gains and cortical plasticity, it is possible that with lower doses, associations between motor 

outcomes and plasticity would be more apparent in the structured skill group than the 

unstructured group.

Changes in motor function can occur without causing changes in motor maps2,9. Some 

improvements in motor skill can be driven by existing motor networks, while more robust 

changes in motor skill are associated with rewiring of motor pathways51. It is also likely that 

plasticity occurred in brain regions other than M1, such as secondary motor areas, sensory 

networks52-54, subcortical brain structures55, and spinal interneuronal systems2,37,56. It is 

likely that plasticity in these systems underlies the motor improvements seen in the 

unstructured practice group. Further studies, specifically those that can measure plasticity in 

different brain regions, are needed to examine plasticity in other systems during 

rehabilitation.

The relative timing of motor map changes and improvements in motor skill has been studied 

in animal models of stroke and USCP. Behavioral improvements after infarct plateaued 

before changes in motor maps could be detected57,58. In contrast, in USCP, map changes 

were found after pharmacotherapy59 or CIMT2 that preceded motor recovery. It is possible 

that intensity of the structured skill group was sufficient to drive motor map plasticity, but 

that a longer duration of unstructured practice may have been needed to change motor maps.

The current findings show that skill training is a critical ingredient for driving motor cortical 

plasticity in children with USCP. While both groups improved in clinical outcomes, the 

structured skill training group showed the most improvement in functional gains. This work 

and other evidence60 indicate that skill training is an important ingredient in 

neurorehabilitation strategies.

Limitations

This study has several limitations. The relatively low number of participants limits 

generalizability. While we did match groups on baseline JTTHF and age, there were 

differences between groups in the distribution of CST projection patterns. Second, this study 

only measured M1 plasticity. Methods that examine cortical plasticity throughout the brain, 

such as functional MRI and electroencephalography, can determine other locations of 

plasticity associated with hand rehabilitation. We discuss challenges of applying our 

methods to children with USCP in Supplemental Materials. Finally, clinical outcomes 

reported here measure indirect aspect of movement quality. Further study of movement 

quality is needed to explore the relationship between cortical plasticity and rehabilitation 

outcomes.

Conclusions

Structured and unstructured bimanual training improved hand function in children with 

USCP. Skill training produced stronger improvements in functional goals. There was a 

dichotomy between these improvements and cortical plasticity. Only skilled training induced 

motor map plasticity. Further work is needed to examine the interplay between cortical 

physiology and motor skill improvements.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Changes in skill of the affected hand after intensive bimanual training. Structured and 

unstructured groups improved equally well in bimanual use of the affected hand (A), 

movement speed of the affected hand (B), performance of functional goals (C), and 

satisfaction of performance of functional goals (D). Asterisks indicate within-group 

differences from baseline to post-intervention time points. * p<0.05, ** p<0.01.
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Figure 2. 
Coronal MRI slices showing a cross-section of each child’s lesion. The color of the frame 

surrounding the MRI indicates the CST laterality of the child (red = contralateral, blue = 

bilateral, yellow = ipsilateral). The yellow asterisk indicates the side of injury.
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Figure 3. 
Changes in motor maps after training. Colored dots represent movement evoked by TMS at 

that site.A1-C1. Structured skill training, representative maps of the affected hand from one 

child. A2-C2. Unstructured practice, representative maps of the affected hand from one 

child. D. Quantification of map changes. The size of the motor map of the affected hand 

increased significantly only in the structured training group (* p<0.05).
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Figure 4. 
Changes in magnitude of motor evoked potentials in TMS maps after structured skill 

training. A1-C1. Maps of the affected hand located contralateral to the affected hemisphere 

in a representative case. Red color indicates stronger MEP response. A2-C2. Representative 

maps of the affected hand in a representative case from the unstructured practice group. D-E. 

MEP amplitude of the representation of the affected FDI increased significantly after 

structured but not unstructured training (* p<0.05).
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Table 1

Baseline Participant Characteristics

Characteristics Structured (n=10) Unstructured (n=10)

Mean age in years, months (SD) 9,11 (3,5) 8,11 (2,5)

Gender

 Male 6 (60%) 6 (60%)

 Female 4 (40%) 4 (40%)

Paretic Upper Extremity

 Right 6 (60%) 6 (60%)

 Left 4 (40%) 4 (40%)

Lesion Location

 Right 4 4

 Left 6 6

Laterality of Motor Map by TMS

 Contralateral 1 (10%) 3 (30%)

 Bilateral 5 (50%) 1 (10%)

 Ipsilateral 4 (40%) 6 (60%)

Race

 Asian 0 1 (10%)

 Caucasian 9 (90%) 7 (70%)

 Hispanic 1 (10%) 1 (10%)

 Mixed 0 1 (10%)

Manual Ability Classification System

 I 2 (20%) 2 (20%)

 II 5 (50%) 6 (60%)

 III 3 (30%) 2 (20%)

Baseline AHA, mean (SD), logits 58.5 (8.3) 63.3 (11.5)

Baseline JTTHF, mean (SD), sec 286.7 (239) 225.2 (166)

Baseline COPM Performance, mean (SD) 3.6 (1.8) 3.1 (0.9)

Baseline COPM Satisfaction, mean (SD) 3.2 (2.2) 3.6 (1.5)

Abbreviations: SD, standard deviation; AHA, Assisting Hand Assessment; JTTHF, Jebsen-Taylor Test of Hand Function; COPM, Canadian 
Occupational Performance Measure
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Table 2

Similarities and Differences Between Treatment Groups

Treatment Characteristic Structured Unstructured

Treatment Duration 90 hrs 90 hrs

Ratio interventionist to child At least 1:1 At least 1:1

Homework (1 hr/day) during training and for 6m after training Yes Yes

Focus on bimanual practice Yes Yes

Skill progression during therapy Yes No

Practiced shaping of movements Yes No

Practiced functional goals Yes No
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