
A novel meta-analytic approach: Mining frequent co-activation 
patterns in neuroimaging databases

Julian Caspersa,b,*, Karl Zillesa,c,d, Christoph Beierlee, Claudia Rottschya,d, and Simon B. 
Eickhoffa,f

aInstitute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany

bDepartment of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, 
D-40225 Dusseldorf, Germany

cJARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany

dDepartment of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 
52074 Aachen, Germany

eDepartment of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany

fInstitute of Clinical Neuroscience and Medical Psychology, University Hospital Düsseldorf, 
Düsseldorf, Germany

Abstract

In recent years, coordinate-based meta-analyses have become a powerful and widely used tool to 

study coactivity across neuroimaging experiments, a development that was supported by the 

emergence of large-scale neuroimaging databases like BrainMap. However, the evaluation of co-

activation patterns is constrained by the fact that previous coordinate-based meta-analysis 

techniques like Activation Likelihood Estimation (ALE) and Multilevel Kernel Density Analysis 

(MKDA) reveal all brain regions that show convergent activity within a dataset without taking into 

account actual within-experiment co-occurrence patterns. To overcome this issue we here propose 

a novel meta-analytic approach named PaMiNI that utilizes a combination of two well-established 

data-mining techniques, Gaussian mixture modeling and the Apriori algorithm. By this, PaMiNI 

enables a data-driven detection of frequent co-activation patterns within neuroimaging datasets. 

The feasibility of the method is demonstrated by means of several analyses on simulated data as 

well as a real application. The analyses of the simulated data show that PaMiNI identifies the brain 

regions underlying the simulated activation foci and perfectly separates the co-activation patterns 

of the experiments in the simulations. Furthermore, PaMiNI still yields good results when 

activation foci of distinct brain regions become closer together or if they are non-Gaussian 

distributed. For the further evaluation, a real dataset on working memory experiments is used, 

which was previously examined in an ALE meta-analysis and hence allows a cross-validation of 

both methods. In this latter analysis, PaMiNI revealed a fronto-parietal “core” network of working 

memory and furthermore indicates a left-lateralization in this network. Finally, to encourage a 
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widespread usage of this new method, the PaMiNI approach was implemented into a publicly 

available software system.
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meta-analysis

Introduction

Over the last decades, functional neuroimaging has been evolved to the most prevalent tool 

in cognitive neuroscience and the key method for investigations into the functional 

organization of the human brain. As a consequence, the neuroimaging community has 

generated a tremendous amount of studies concerning the localization of almost all cognitive 

domains. This growing number of published neuroimaging literature has prompted the 

development of meta-analysis techniques, which exploit the substantial amount of 

neuroimaging data in order to draw robust and more general inferences. Particularly 

coordinate-based meta-analyses (CBMA) provide powerful and easily accessible techniques, 

which operate on the three-dimensional coordinates of peak activation foci reported by these 

studies in standard reference space, i.e. the MNI (Evans et al., 1992) or Talairach (Talairach 

and Tournoux, 1988) spaces. CBMA allow a straightforward analysis of (the entire) previous 

literature, as it only relies on the published peak coordinates and hence may be employed 

without the need for obtaining additional data from the respective authors, e.g. image files. 

The latter aspect usually limits the capability of image-based methods to cover a broad range 

of (in particular older) studies. Furthermore, the work on those sparse representations of the 

image data is also profitable from a computational perspective. CBMA are particularly 

facilitated by large scale databases like BrainMap (www.brainmap.org) (Fox and Lancaster, 

2002; Laird et al., 2005) or NeuroSynth (www.neurosynth.org) (Yarkoni et al., 2011) that 

collect the information and peak coordinates of neuroimaging studies and make them 

accessible.

The most common previous CBMA techniques are Activation Likelihood Estimation (ALE: 

Eickhoff et al., 2009, 2012; Turkeltaub et al., 2002) and (Multilevel) Kernel Density 

Analysis (KDA and MKDA: Wager et al., 2004; Wager et al., 2007). In principle, both 

methods rely on similar concepts: first, they model each focus of a dataset; in ALE the 

activation foci are modeled as Gaussian distributions, in MKDA as spheres. Then, these 

representations are combined across experiments; in ALE via the union of the modeled 

activation (Turkeltaub et al., 2012), in MKDA via weighted averages of the modeled maps 

representing the studies (Wager et al., 2007). Finally, the resulting activation maps are tested 

for significance, i.e. above-chance convergence, using permutation tests. The results of both 

techniques, ALE and MKDA, are maps that indicate those locations in the brain, where the 

reported activations of all experiments in the underlying dataset significantly converge. The 

brain regions featuring this convergence of activity can then be interpreted as being robustly 

involved in the cognitive processes addressed by the experiments of the set. The co-

activation patterns shown by the resulting maps can generally be regarded as functionally 
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connected (Caspers et al., 2013; Eickhoff et al., 2010; Jakobs et al., 2012). That is, they 

fulfill the criteria of functional connectivity by representing temporal coincident and 

spatially distant neural activity (Friston, 1994). However, both described CBMA approaches 

have some disadvantages, when trying to evaluate connectivity, i.e. within experiment co-

activity. That is, the resulting maps of ALE and MKDA indicate all brain regions 

consistently active within a specific dataset, without taking into account, if those brain 

regions are really co-active within single experiments. Hence, there is no information on the 

distributions of specific co-activation patterns across experiments. In order to demonstrate 

this aspect, we simulated a dataset containing two divergent subsets of experiments and 

subjected it to a standard ALE analysis (Fig. 1): While set A featured experiments with 

activation in the inferior frontal cortex and on the middle temporal gyrus, the experiments of 

set B provided activation foci in the intraparietal sulcus and on the middle occipital gyrus 

(Fig. 1, left). To simulate noise, all experiments had additional activation foci randomly 

distributed over the whole brain. The simulated dataset was analyzed with the latest version 

of the ALE algorithm (Eickhoff et al., 2012). The resulting ALE map revealed convergent 

activity in all four input regions (Fig. 1, right). However, the segregation into two underlying 

subsets cannot be recognized anymore in the ALE map as all four regions likewise show 

significant convergence. This leads to possible misinterpretations regarding co-activity 

within the ALE map. All four regions are represented in the same map, although there was 

for example no experiment within the simulation dataset in which the inferior frontal cortex 

was co-active with the intraparietal sulcus.

To address this issue and provide a method for a more specific identification of co-activation 

patterns across experiments, we developed a novel meta-analytic approach based on well-

established data-mining techniques. The proposed method identifies frequent co-activation 

patterns in coordinate-based neuroimaging datasets and reveals how often a specific brain 

region is co-active with other brain regions within the dataset. Here we present the novel 

method, named PaMiNI (Pattern Mining in NeuroImaging), and its implementation into a 

software tool. Some aspects of the PaMiNI method have already been described in (Caspers 

et al., 2012a, 2012b). The method is evaluated by means of five simulations and cross-

validated with ALE using a real dataset on working memory.

Material and methods

The aim of the proposed method is to find frequent co-activation patterns, i.e. combinations 

of brain regions that frequently show co-occurrent activation in a dataset of neuroimaging 

experiments. It is based on the concepts of CBMA, that is, all information is provided as 

three-dimensional coordinates of activation maxima in the individual experiments. The 

method itself is then composed of two steps: first, the brain regions consistently activated in 

a specific dataset (set of experiments, each providing at least one focus of activation) are 

modeled using Gaussian mixture modeling on the three-dimensional coordinates making up 

this dataset, and the activation foci are assigned to the identified brain regions. In the second 

step, frequent co-activations patterns across experiments are identified using association 

analysis.
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The method as well as the implemented software system will be referred to as PaMiNI, 
which stands for Pattern Mining in NeuroImaging.

Modeling of brain regions underlying a dataset

Let D = {E1,…,En} be a dataset of experiments where every experiment Ei is a set of three-

dimensional peak coordinates  with mi ≥ 1 representing the number of 

peak coordinates of experiment Ei. The coordinates are triplets  where 

and  are the coordinate components for the three spatial dimensions in MNI reference 

space (Evans et al., 1992). If coordinates are given in Talairach space (Talairach and 

Tournoux, 1988), they are converted to the MNI reference space using the Lancaster 

transform (Laird et al., 2010; Lancaster et al., 2007). Hence, the set of coordinates in a 

dataset is given in a discrete metric space.

To reveal convergent activity within the coordinate data of the entire dataset D, common 

subsets of coordinates based on their spatial location are identified by applying Gaussian 

mixture modeling on the pooled coordinates  of all 

experiments in the dataset. That is, considering the coordinates as instances randomly drawn 

from a mixture of Kopt three-dimensional Gaussian distributions and thus fitting the 

Gaussians to optimally represent the coordinate data. Kopt indicates the optimal number of 

Gaussian distributions, which still has to be specified. The probability density function with 

which a coordinate  is drawn from the mixture can be formalized as

where pk specifies the proportion of distribution k in the mixture of distributions with 0 < pk 

< 1 and  denotes the value of the Gaussian density function with 

the three-dimensional mean vector µk and the 3 × 3 full covariance-matrix Σk at . Thus, in 

order to model the Kopt Gaussian distributions to the given coordinates the parameters for 

the proportion of each of the Kopt Gaussians in the mixture, their mean (location) and co-

variance Θ = θ1, …, θKopt = p1, …, pKopt, μ1,…,μKopt, Σ1, … ΣKopt have to be estimated, 

which is done by maximum-likelihood estimation. At this, the log-likelihood function

is optimized applying the expectation-maximization (EM) algorithm (Dempster et al., 1977). 

The EM algorithm repeatedly performs alternating steps of expectation, where the log-

likelihood function is calculated based on the current estimate for the parameters, and steps 

of maximization, where the parameters are optimized given the current LL function. The 
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procedure stops, when the optimization of the LL function converges, i.e. when the 

improvement for the estimation is smaller than a given threshold value. To reduce the risk of 

detecting local maxima in the LL function, the EM algorithm is replicated several times (in 

our case 1000 times) for different randomly chosen initializations of parameters, and the 

estimate yielding the largest log-likelihood value is used.

For the Gaussian mixture modeling the parameter Kopt specifying the number of 

components of the mixture has to be set. Obviously, however, it is usually not known a priori 

how many brain regions are underlying a given dataset, i.e. how many Gaussians are needed 

to represent the entire set of coordinates. Therefore, the optimal number of components 

should be determined by the method itself. This is done using the Bayesian Information 

Criterion (BIC), which is a statistical index for the estimation of the dimensionality of a 

model (Schwarz, 1978). For this, Gaussian mixture modeling is performed for ascending 

numbers of components between 1 and Kmax. Then the model with dimension Kopt ∈ {1,

…,Kmax} is chosen, where the BIC is minimal, meaning that this model most appropriately 

fits to the given data. The choice of the parameter Kmax influences the time of computation, 

as high values of Kmax lead to more numerous and more complex calculations of Gaussian 

mixture models. On the other hand, Kmax should be chosen large enough to surely contain 

the optimal dimensionality of the model, Kopt, which in turn strongly depends on the 

composition of the dataset. While testing the method, values for Kmax between 15 and 30 

have shown to be sufficient in most applications.

The described procedure yields a mixture with Kopt Gaussian distributions within the space 

of the reference brain with the estimates of their parameters θk for 1 ≤ k ≤ Kopt. These 

Gaussians can be interpreted as spatial estimates of the brain regions, which were commonly 

found in the experiments of the underlying dataset D. For each of these, μk ∈ θk indicates 

the center of a brain region and the parameter Σk ∈ θk its spatial spread.

It is important to notice, that a Gaussian mixture model will consider every coordinate of the 

set, including “noise” activations, i.e. foci that are none consistently (and hence effectively at 

random) activated in single experiments. However, from a neurophysiological perspective 

these “noise” activations are not fully at random, but can correspond to false positives or to 

idiosyncrasies of the experimental design or the examined population in a single experiment. 

Nevertheless, as these activations usually do not converge in specific brain regions, but are 

more or less randomly distributed over the brain, they are often “collected” by the mixture 

modeling in a few components with large spatial spreads. Since these “noise clusters” carry 

no neurophysiological information on the convergent activity of the set and are thus 

redundant for the pattern search, they should be eliminated prior to the mapping of 

coordinates. This is done by setting a threshold for the standard deviation of the Gaussian 

components in a mixture in order to restrict their sizes. That is, excluding Gaussians for the 

further analysis, whose standard deviations exceed a specific boundary value. Based on 

considerations regarding previous anatomical and functional neuroimaging parcellations of 

brain regions as well as first experiences with the PaMiNI method, threshold values between 

20 and 25 mm have proven to yield quite reasonable results in most applications. That is, 

when using those threshold values in sample analyses, the pattern search usually included all 

brain regions that were covered by the studies of the investigated datasets, while the size of 
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an included Gaussian did not exceed a range to still consider it as a single “brain region”. 

Furthermore, these threshold values correspond to approximately three to five times the 

expected standard deviation of a single activation focus regarding inter-subject and inter-

template variability, which is empirically estimated to be 

based on the number of subjects Nsubj of an experiment (Eickhoff et al., 2009).

In order to assess the brain regions activated in each individual experiment of the entire 

group of experiments, i.e. to represent each experiment as a set of the modeled brain regions, 

the coordinates have to be assigned to the Gaussian distributions of the resulting mixture. 

For this, every coordinate  is assigned to the Gaussian with index k* ∈ {1,…,Kopt}, 

where its posterior probability  is maximal. To eliminate outliers, i.e. coordinates 

that are not located near the center of a Gaussian or that are located between two modeled 

regions, coordinates that show a maximal posterior probability below a specific threshold 

(e.g. P ≤ 0.50) are mapped to the value 0. Then, an experiment Eiactivates a modeled brain 

region with index k* ∈ {1,…,Kopt}, if at least one of its coordinates  for 1 ≤ j ≤ mi is 

mapped to region k* using the posterior probability, i.e. if at least one coordinate shows its 

maximal posterior probability in Gaussian k* and this probability is larger than the lower 

threshold. As a consequence of this mapping, each experiment can be regarded as a subset of 

the Kopt modeled brain regions.

At the end of this step the procedure yields a mixture of Gaussian distributions representing 

the underlying brain regions of a dataset and a direct mapping of the input coordinates of the 

individual experiments to those modeled brain regions.

Finding common co-activation patterns

The second step of the PaMiNI workflow aims at identifying frequent co-activation patterns 

across the experiments based on the set of modeled brain regions as identified above. For 

this, terms and methods from association analysis, which is primarily known from market-

basket analyses in economy (Agrawal et al., 1993), are adapted.

A co-activation pattern, i.e. a (frequent) combination of co-occurrent activations, can be 

expressed as a subset of the Kopt modeled brain regions. Hence, to find frequent co-

activation patterns means to identify the frequent subsets within the set representations of the 

experiments as combinations of modeled brain regions. For this, we introduce the following 

definitions: A co-activation pattern is supported by an experiment, if and only if the co-

activation pattern is a subset of the components of the experiment, i.e. if all brain regions of 

the pattern showed activation within the particular experiment. The support of a co-

activation pattern is then defined as the number of experiments in the dataset which support 

this pattern, that is, the number of experiments that feature activation in that set of brain 

regions. A co-activation pattern is frequent, if its support is equal to or greater than a lower 

limit value, the minimum support or minsup.
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Having set these conventions, the identification of common co-activation patterns can be 

reduced to a typical problem of association analysis (see Agrawal et al., 1993), where the 

Kopt Gaussian distributions resemble the “items”, the experiments of the dataset resemble 

the “transactions” and the frequent co-activation patterns correspond to the “frequent 

itemsets”. To efficiently identify the frequent co-activation patterns, the Apriori algorithm 

(Agrawal and Srikant, 1994) is adapted. The Apriori algorithm utilizes a monotonicity 

property of frequent itemsets: any subset of a frequent itemset is frequent, or the other way 

around, an itemset can only be frequent, if all of its subsets are frequent. Hence, the Apriori 

algorithm first identifies the frequent single items (“1-itemsets”). Then, the algorithm 

inductively calculates the frequent k-itemsets from the frequent (k − 1)-itemsets by merging 

(k − 1)-itemsets that differ only in two items and testing, if their support in the dataset is 

larger than or equal to the given minsup (Agrawal and Srikant, 1994). Transferred to the 

problem of finding frequent co-activation patterns of modeled brain regions, the algorithm 

first identifies those brain regions that show activation in at least a specific number (minsup) 

of experiments, i.e. those regions whose frequency within the dataset (support) is larger or 

equal than the minsup. It then inductively generates the frequent k-patterns from the frequent 

(k − 1)-patterns for increasing values of k. The algorithm terminates, if at the respective 

level k no frequent pattern is found in the dataset. At the end of this step the procedure 

yields all co-activation patterns, which are frequently, i.e. at least as often as the given 

minsup, found within the dataset. A pseudocode representation of the adopted Apriori 

algorithm is given in Fig. 2.

To visualize the distribution of frequent co-activation patterns, the identified patterns are 

recorded in a scatter plot, where the number of components, i.e. brain regions, of a pattern 

(abscissa) is plotted against the support of the respective pattern (ordinate).

In order to identify potentially interesting patterns within the distribution of frequent co-

activation patterns, in particular the number of components of a pattern and its closedness 

are considered. In data-mining, closedness is a measure of the interestingness of patterns, 

which is defined as the difference between the support of a pattern and the support of its 

most supported direct super-pattern (Boley et al., 2009). Hence, closedness indicates the 

number of experiments that activate a specific pattern, but do not show any further activated 

brain regions. A strong closedness of a specific pattern thus means that adding a component 

to this pattern dramatically decreases its support, which indicates that this pattern is 

particularly stable and hence probably interesting.

Integration into a graphical user interface

The PaMiNI method was integrated into a MATLAB implementation providing a graphical 

user interface (Fig. 3). This system facilitates the calculation steps introduced in the former 

two sections and further provides integrative visualization and analysis tools for the 

examination of frequent co-activation patterns. The system operates on datasets of 

neuroimaging experiments, which can be either obtained by extraction from the BrainMap 

database using the Sleuth software (Fox and Lancaster, 2002; Laird et al., 2005), or provided 

manually via Microsoft Excel spreadsheets. Input values, such as the number of repetitions 

or maximal number of components Kmax for the Gaussian mixture modeling, as well as the 
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threshold for the posterior probability and the minsup can be set by the user. The optimal 

number of clusters Kopt can be chosen by the user based on a BIC graph. For the further 

analysis of the co-activation patterns, the PaMiNI system provides a graph that illustrates the 

pattern distribution and enables the selection of single patterns. Furthermore, there is a 

cross-section viewer that facilitates the interactive inspection of specific patterns projected 

onto the MNI reference brain. In order to support the sharing of analysis data among 

different users, PaMiNI offers functions for saving and loading analyses and allows the 

extraction of three-dimensional image files of co-activation patterns in the NIfTI format 

(Neuroimaging Informatics Technology Initiative, http://nifti.nimh.nih.gov/). The PaMiNI 

software will be publicly available under http://www.fz-juelich.de/inm/inm-1/DE/Service/

Download/download_node.html.

Evaluation of the PaMiNI method

For the evaluation of the introduced method, several simulated datasets as well as a set from 

a real application were analyzed with the PaMiNI system outlined above.

The performance of the PaMiNI method regarding some specific features was studied by 

means of five simulations, which were generally based on the same dataset. For this, a set of 

55 experiments was generated, each of which “reported” at least two activation foci that 

were randomly drawn from a Gaussian distribution centered in one of four specific brain 

region. Furthermore, each experiment comprised five activation foci, which were randomly 

placed within the gray matter to simulate noise, or more specifically foci that do not 

contribute to converging activation. The centers of the four brain regions were set at the 

inferior frontal gyrus (MNI: −54, 17, 28), the middle temporal gyrus (MNI: −60, −7, −15), 

the intraparietal sulcus (MNI: −40, −35, 50) and the middle occipital gyrus (MNI: −43, −83, 

1). If not otherwise specified, datasets were analyzed in PaMiNI using 100 repetitions for the 

Gaussian mixture modeling and a Kmax of 12. Gaussians of the resulting mixture were 

excluded, if their standard deviation was larger than 20 mm. For the mapping of the 

coordinates a lower threshold for the posterior probability of 0.5 was used and the minsup 
for the Apriori algorithm was set to 5. Simulation 1 investigated the general ability of 

PaMiNI to detect the four input regions and hence consisted of a dataset, where all 55 

experiments showed activation foci in each of the four regions. In simulation 2 the set of 

experiments was split into two dichotomous subgroups in order to test PaMiNI's capacity to 

identify distinctive co-activation patterns. Here, 30 experiments (set A) had foci centered at 

the inferior frontal gyrus and the middle temporal gyrus, the other 25 experiments (set B) 

had foci centered at the intraparietal sulcus and the middle occipital gyrus (cf. the 

introduction). Simulation 3 provided a more complex distribution of co-activation patterns 

within the simulated set of experiments. For this, the dataset contained 20 experiments 

showing activation foci at the inferior frontal gyrus and the middle temporal gyrus (2-

pattern), 15 experiments with foci at the intraparietal sulcus and the middle occipital gyrus 

(2-pattern), 10 experiments yielding activations at the inferior frontal gyrus, the middle 

temporal gyrus and the intraparietal sulcus (3-pattern), 7 experiments having foci at the 

middle temporal gyrus, the intraparietal sulcus and the middle occipital gyrus (3-pattern) and 

3 experiments showing activation within all four brain regions (4-pattern). In order to be able 

to detect all input patterns including the 4-pattern, the minsup was set to 3 for this analysis. 
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Simulation 4 investigated PaMiNI's ability to detect separate brain regions dependent on the 

distance between their centers. For this, the centers of the two regions of set B in simulation 
2 were brought stepwise closer to the centers of the two regions of set A in three steps. More 

precisely, the brain region initially centered at the intraparietal sulcus was shifted towards 

the region in the inferior frontal gyrus on a straight line between the centers of both regions, 

while the region initially centered at the middle occipital gyrus was shifted towards the 

middle temporal gyrus, so that the distances between the respective two regions were 

decreased by a quarter of the initial distances (58 mm between the intraparietal sulcus and 

the inferior frontal gyrus; 80 mm between middle occipital gyrus and middle temporal 

gyrus) in each step. In the first of the resulting datasets, the centers of the posterior two 

regions were placed at MNI: −44, −22, 45 (distance 44 mm) and MNI: −47, −64, −3 

(distance 60 mm), in the second dataset at MNI: −47, −9, 39 (distance 29 mm) and MNI: 

−52, −45, −7 (distance 40 mm) and in the third simulated set at MNI: −50, 4, 34 (distance 15 

mm) and MNI: −56, −26, −11 (distance 20 mm). The centers of set A were kept unchanged 

at MNI: −54, 17, 28 and MNI: −60, −7, −15 in all three datasets. All three datasets were 

simulated with 30 experiments for set A and 25 experiments for set B. As the analysis of the 

third dataset (distances 15 mm/20 mm) yielded no separation between the anterior and 

posterior simulated regions, the analysis was repeated on a dataset with the same centers as 

in the third set but with an increased number of experiments, i.e. with 300 experiments for 

set A and 250 experiments for set B. Finally, to investigate how PaMiNI performs if the 

assumption of foci being normally distributed in a brain region is left, simulation 5 provided 

a dataset with the same settings as in simulation 2 but with foci randomly drawn from 

Laplace distributions centered at the respective brain regions instead of Gaussian 

distributions.

The set of real application data was provided by a recent meta-analysis on the neural 

correlates of working memory (Rottschy et al., 2012). This dataset comprised 189 fMRI 

experiments on a diverse range of working memory tasks, which were obtained from the 

BrainMap database and a PubMed literature search as well as reference tracing of retrieved 

studies (see Rottschy et al., 2012 for details and list of experiments). For the analysis of the 

working memory dataset in PaMiNI 1000 repetitions of Gaussian mixture modeling were 

computed for model dimensions up to a Kmax of 30. Again, Gaussians with a standard 

deviation larger than 20 mm were excluded from the mixture, and coordinates were assigned 

to the Gaussian clusters using the maximum posterior probability with a lower threshold of 

0.5. For the pattern search with the Apriori algorithm a minsup of 10 was chosen.

Results

Simulation datasets

Simulation 1 provided a dataset for the analysis in PaMiNI, where all 55 experiments 

showed activation in each of the four simulated input regions. After Gaussian mixture 

modeling, the analysis in PaMiNI yielded a BIC graph with a minimum at five components, 

indicating that the model with five components most appropriately fitted the given data. 

Accordingly, this model was chosen for further analysis. Due to the given lower threshold 

for the Gaussian standard deviation of 20 mm, one of those five Gaussians was excluded 
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from the mixture for the following pattern search. The remaining four Gaussian distributions 

were located on the right inferior frontal cortex (MNI: −54, 17, 29), the middle temporal 

gyrus (MNI: −59,−7,−15), the intraparietal sulcus (MNI: −40, −36, 50) and the middle 

occipital gyrus (MNI: −43, −83, 1) (see Fig. 4B). Hence, the centers of those Gaussians 

almost perfectly matched the MNI center foci used as input for the simulation data (inferior 

frontal gyrus: −54, 17, 28, distance: 0, 0, 1; middle temporal gyrus: −60, −7, −15, distance: 

1, 0, 0; intraparietal sulcus: −40, −35, 50, distance: 0, 1, 0; middle occipital gyrus: −43, −83, 

1, distance: 0, 0, 0). Each input focus of the set was then mapped to the Gaussian 

component, whose posterior probability given this specific focus was maximal across the 

four components. If this maximum posterior probability was less than the lower threshold of 

0.5, the focus was not assigned to any brain region. Based on this mapping, one co-

activation pattern was found by the adapted Apriori algorithm, which included all four 

components and was found in all 55 input experiments. Thus, the PaMiNI analysis was able 

to reproduce the ALE map resulting from the analysis of the same dataset (Fig. 4A) and to 

identify the 4-pattern build by the four input regions in every experiment of the input set.

In Simulation 2 the simulated dataset was divided into two dichotomous groups of 

experiments, i.e. 30 experiments showing activation in the anterior two regions (set A) and 

25 experiments showing activation in the posterior two regions (set B). The Gaussian 

mixture modeling in PaMiNI again found four Gaussians having a standard deviation larger 

than 20 mm. Likewise to simulation 1, these four Gaussians matched the centers of the input 

regions very well (Fig. 4C left). After allocating the foci to the modeled brain regions, the 

pattern search using the adapted Apriori algorithm yielded two co-activation patterns in the 

dataset with two involved brain regions each (Fig. 4C right). The first pattern was composed 

of the inferior frontal and the middle temporal clusters and was supported by 30 

experiments. The analysis showed that all 30 experiments derived from set A of the input 

set. Accordingly, the second co-activation pattern consisted of the intraparietal and the 

middle occipital clusters and was supported by 25 experiments, which originated from set B 

without exception. Hence, the PaMiNI analysis yielded an exact separation of the data into 

the two subsets created for the simulation.

In simulation 3 the input dataset provided a more complex distribution of co-activation 

patterns but with the same input regions and the same total number of experiments as in 

simulation 1 and simulation 2. Likewise to these first two simulations, the Gaussian mixture 

modeling and thresholding of the Gaussian's standard deviation in PaMiNI yielded four 

Gaussians, which adequately represented the four input regions. The graph resulting from 

the pattern search in the second step of PaMiNI, which indicates the distribution of the 

identified co-activation patterns, is shown in Fig. 5. Here, the 4-pattern covering all four 

brain regions was found in 3 experiments. The 2-patterns and 3-patterns identified by 

PaMiNI showed a larger support than the number of experiments that were simulated for the 

respective pattern, when the pattern was a sub-pattern that was fully included in a supported 

pattern with more components (e.g. the 4-pattern). Hence, the 3-pattern with the inferior 

frontal gyrus, the middle temporal gyrus and the intraparietal sulcus was found in 13 

experiments, i.e. 10 experiments that were simulated for this 3-pattern plus 3 experiments of 

the 4-pattern. The 3-pattern involving the middle temporal gyrus, the intraparietal sulcus and 

the middle occipital gyrus was supported by 10 experiments, i.e. 7 experiments that were 
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simulated for this 3-pattern and the 3 experiments of the 4-pattern. When regarding the 2-

patterns, the combination of the inferior frontal gyrus and the middle temporal gyrus was 

found in 33 experiments, i.e. the 20 experiments simulated for this 2-pattern plus the 10 

experiments of the first 3-pattern and the 3 experiments of the 4-pattern, which also included 

these two regions. The combination of the intraparietal sulcus and the middle occipital gyrus 

was found in 25 experiments (15 experiments simulated for this combination plus 7 

experiments of the second 3-pattern plus 3 experiments of the 4-pattern). Hence, the pattern 

search in PaMiNI perfectly resolved the distribution of co-activation patterns that was taken 

as the basis for this simulation. The remaining 2-patterns in the pattern-graph correspond to 

sub-patterns of the two 3-patterns and the 4-pattern where no further experiments were 

simulated for. Thus, their support corresponds to the sum of the support for the patterns that 

include these 2-patterns, i.e. the combination of the middle temporal gyrus and the 

intraparietal sulcus was supported by 20 experiments (both 3-patterns and the 4-pattern), the 

combination of the inferior frontal gyrus and the intraparietal sulcus by 13 experiments (the 

first 3-pattern and the 4-pattern) and the two co-activations of the middle temporal gyrus 

with the middle occipital gyrus and the intraparietal sulcus with the middle occipital gyrus 

were both supported by 10 experiments (the second 3-pattern and the 4-pattern). Finally, the 

co-activation of the inferior frontal gyrus and the middle occipital gyrus, as well as the 

remaining two possible 3-patterns (inferior frontal gyrus, middle temporal gyrus, middle 

occipital gyrus / inferior frontal gyrus, intraparietal sulcus, middle occipital gyrus) were only 

included in the 4-pattern and hence supported by 3 experiments.

In simulation 4 the centers of the two brain regions of set B from simulation 2 were shifted 

towards the centers of the two regions of set A by reducing the distance between the anterior 

and posterior regions in three steps. The results of these analyses are shown in Fig. 6. When 

the distance between set A and set B was reduced to three quarter (60 mm/44 mm) or half 

(40 mm/29 mm) of the initial distance between both sets (Fig. 6A and B), PaMiNI was able 

to identify four separate Gaussians adequately representing the four input regions. In both 

cases, the co-activation of the anterior two regions were found in all 30 experiments 

simulated for set A, while each of the 25 experiments simulated for set B could be assigned 

to the co-activation of the posterior two regions by the pattern search in PaMiNI. When the 

distance between set A and set B was reduced to a quarter of the initial distance (20 mm/15 

mm), only two Gaussian distributions were found by the mixture modeling in PaMiNI, 

which represented the superior two regions and the inferior two regions by a common 

Gaussian each (Fig. 6C). The centers of those Gaussians were located in the middle of the 

center coordinates of the respective two input regions. The pattern search in PaMiNI yielded 

only one co-activation pattern, which was composed of the two identified Gaussians and 

which was supported by all 55 input experiments. However, when the number of simulated 

experiments was increased to 300 for set A and 250 for set B at the same distance stage 

(quarter of initial distance: 20 mm/15 mm), PaMiNI was again able to separate the four input 

regions as single Gaussians representations (Fig. 6D). Here, 291 of the 300 input 

experiments could be correctly assigned to set A and 224 of the 250 experiments simulated 

for set B were assigned to the co-activation of the posterior two regions.

Simulation 5 investigated the performance of PaMiNI, when activation foci are not assumed 

to be Gaussian distributed in a brain region. Thus, a dataset was analyzed with the same 
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constellation as in simulation 2, but with activation foci randomly drawn from a Laplace 

distribution centered in the respective brain regions instead of a Gaussian distribution. The 

Gaussian mixture modeling identified four Gaussian distributions, which adequately 

represented the four input regions and were comparable to those identified in simulation 2 
(Supplement 1). The pattern search using the adapted Apriori algorithm yielded two co-

activation patterns, which comprised the co-activation of the anterior two regions (set A) and 

the co-activation pattern including the posterior two regions (set B). 29 of the 30 

experiments simulated for set A could be assigned to the co-activation of the anterior two 

regions, while the posterior co-activation pattern was found in 24 of the 25 experiments 

simulated for set B.

Working memory dataset

The analysis of the working memory dataset in PaMiNI yielded the BIC graph for the 

calculated Gaussian mixture models shown in Fig. 7. According to this graph, the model 

with the lowest BIC had 16 components and was considered the most appropriate model of 

our data. Four Gaussians had a standard deviation of more than 20 mm and were hence 

excluded from further analysis. The remaining 12 components were located on the bilateral 

posterior dorsolateral prefrontal cortex (DLPFC; left MNI: −44, 20, 27; right MNI: 46, 27, 

25), the bilateral dorsal premotor cortex (dPMC; left MNI: −29, −1, 54; right MNI: 32, 2, 

54), the supplementary/pre-supplementary motor area ((pre-)SMA; MNI: 0, 17, 47), the 

bilateral anterior insula (aIns; left MNI: −32, 23, −3; right MNI: 36, 24, −4), the bilateral 

intraparietal sulcus (IPS, left MNI: −34, −51, 47; right MNI: 37, −50, 47), the bilateral 

ventral occipitotemporal cortex (VOT; left MNI: −37, −65, −16; right MNI: 33, −64, −16) 

and the left basal ganglia (BG; MNI: −15, −2, 7). These brain regions largely correspond to 

those regions identified in the main effect of the previous ALE meta-analysis (Rottschy et 

al., 2012; see Fig. 8). Particularly, the location and extent of the SMA, the dPMC, the IPS 

and the left basal ganglia matched very well in both approaches. Compared to the respective 

Gaussian representations in PaMiNI, the DLPFC cluster in the ALE main effect extended 

more anteriorly and covered parts of the rostral lateral prefrontal cortex, especially on the 

left hemisphere. However, the position and expanse of the cluster centers of the DLPFC 

were again quite similar in both approaches. The anterior insula and the ventral 

occipitotemporal cortex also showed corresponding center locations. However, their 

expansions differed in both approaches. While the anterior insula showed quite large clusters 

in the ALE main effect that were partially confluent with the DLPFC clusters, the Gaussian 

representations of the anterior insula in PaMiNI had more narrow spatial extends. Opposed 

to this, the VOT was represented by rather small clusters in the ALE main effect, while its 

respective Gaussian representations in PaMiNI showed a much larger spread. The 

distribution of co-activation patterns found by the adapted Apriori algorithm is shown in Fig. 

9. Here, the most frequent 5-pattern, that is the pattern consisting of 5 brain regions and 

showing the highest support in the set, was of special interest, as it showed a strong 

closedness and was considerably more frequently found than any other 5-pattern (58 

experiments compared to 44 experiments for the second-most frequent 5-pattern). 

Furthermore, all most frequent patterns with 6 or more components fully included this 5-

pattern but had a much lower support, highlighting its relevance. The 5-pattern consisted of 

the bilateral DLPFC, the bilateral IPS and the (pre)SMA (see Fig. 10). The previous ALE 
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meta-analysis identified the same set of regions as the “core” network of working memory 

(Rottschy et al., 2012). This ALE “core” network additionally included the bilateral anterior 

insula. However, the corresponding pattern in PaMiNI consisting of the bilateral DLPFC, 

bilateral IPS, SMA and the bilateral anterior insula was found in 24 experiments and was not 

the most frequent 7-pattern. The two most frequent 7-patterns were the combination of the 

PaMiNI “core” 5-pattern with the bilateral dPMC and the combination of the “core” 5-

pattern with the left dPMC and the left VOT, each found in 25 experiments. The bilateral 

activation of the anterior insula was found in 49 experiments, which was at an intermediate 

level within the 2-patterns.

When investigating the sub-patterns of the PaMiNI “core” 5-pattern it became obvious that 

the left hemispheric regions were more often found than the right sided ones (Fig. 10). In 

particular, the left DLPFC co-active with the (pre-)SMA was found in 120 experiments, 

which was the most frequent 2-pattern, while the right DLPFC with the (pre-) SMA was 

only found in 103 experiments. Likewise, the combination of the left IPS and the (pre-)SMA 

was found in 104 experiments, while the (pre-)SMA together with right IPS was supported 

by 87 experiments, and left sided DLPFC combined with left sided IPS was revealed in 112 

experiments, while the respective right sided pattern was found in 88 experiments. The same 

ratio between left- and right-hemispheric parts of the “core” 5-pattern was also found for the 

3-patterns, as the combination of the left DLPFC, the left IPS and the (pre-)SMA was the 

most frequent 3-pattern found in 97 experiments, while the respective right-hemispheric 3-

pattern was only found in 79 experiments. In a similar manner, the analysis revealed a 

predominance of the frontal parts of the “core” 5-pattern. The bilateral DLPFC was found in 

102 experiments and the combination of the bilateral DLPFC with the (pre-)SMA in 93 

experiments. In contrast, the co-activation of the bilateral IPS was only revealed in 89 

experiments and the combination of the bilateral IPS and the (pre-)SMA in 75 experiments. 

Notably, the (pre-)SMA was involved in the majority of the frequent patterns.

Discussion

In the current work, we introduced a novel meta-analytic approach for the identification of 

frequent co-activation patterns, named PaMiNI. The developed method bases on two 

established data mining techniques, Gaussian mixture modeling that derives from 

probabilistic cluster analysis and the Apriori algorithm from association analysis. The 

method is fully data-driven. It does not draw on any a priori assumptions regarding the 

specific dataset or a presupposed anatomic segregation of the human brain, but rather only 

uses the reported activation foci of the neuroimaging experiments.

Gaussian mixture modeling has been successfully used in several classification applications 

(e.g. Ashburner and Friston, 2005; Greenspan et al., 2006; Huang et al., 2005; Reynolds et 

al., 2000). In PaMiNI, a mixture of Gaussian distributions is fitted to the three-dimensional 

coordinates of a dataset, in order to separate spatially distinctive groups of activation foci 

from each other. The resulting Gaussians represent the spatial distribution of the input 

coordinates and can be interpreted as probabilistic estimators for the spatial location of the 

brain regions involved in the experiments of the dataset. For this purpose, Gaussian 

distributions are adequate representations, since the uncertainty of the spatial location of 
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regions due to inter-subject variability and inter-template variability between experiments 

can be supposed to be normally distributed (Eickhoff et al., 2009). The results of simulation 
5 furthermore show that PaMiNI still yields robust results when the distribution of activation 

foci in a brain region deviates from a Gaussian. Unlike other clustering techniques, Gaussian 

mixture modeling allows a non-deterministic a posteriori allocation of a set of activation foci 

to the brain regions based on probabilistic values.

The Apriori algorithm and association analysis per se originate from market-basket analyses 

(Agrawal et al., 1993). At that, department store chains or web-stores analyze the buying 

transactions of their customers to identify sets of frequently bought commodities for 

marketing purposes. We here adapted the Apriori algorithm in order to efficiently find the 

frequent co-activation patterns in a set of experiments based on the modeled brain regions. 

This is done by handling the modeled brain regions as the “items”, the frequent co-activation 

patterns as the “frequent itemsets” and the neuroimaging experiments analogous to the 

“transactions” from association analysis. Generally, the search for frequent co-activation 

patterns could also be solved by brute force, i.e. looking up the frequency of every possible 

combination of brain regions in the set of experiments. However, the number of possible 

combinations exponentially increases with the number of underlying brain regions. E.g., for 

a mixture of 20 brain regions, the number of possible co-activation patterns and hence 

necessary comparisons would be larger than one million (220 = 1,048,576). The Apriori 

algorithm significantly decreases the necessary computations by limiting the examination of 

the frequency of patterns to those sets, which can be combined from the patterns that have 

already been proven to be frequent. This makes the PaMiNI approach computationally 

applicable even for large and complex datasets.

The analyses of the test datasets demonstrate the feasibility of PaMiNI. In the simulated 

datasets, PaMiNI revealed an adequate representation of the input regions and a perfect 

segregation of the underlying co-activation patterns even for complex datasets. In contrast, 

the ALE analysis of the set from simulation 2 indicated all four regions within one map, 

which makes the distinction between the two underlying patterns impossible. This 

representational problem is a general issue of recent coordinate-based meta-analyses 

resulting in uncertainties and possible misinterpretation. The PaMiNI approach addresses 

this shortcoming by identifying the actual (within-experiment) co-activation patterns and 

analyzing their frequency across the dataset. Even though the simulated data in simulation 2 
is an extreme example based on disjoint subsets in a dataset, the analysis clearly highlights 

the advantages of PaMiNI for the distinction of co-activation patterns.

The resolution capacity of PaMiNI for the identification of single brain regions was 

investigated in simulation 4. Here, PaMiNI still yielded a perfect segregation of the four 

simulated regions when the distance between the region centers was lowered to the half of 

the initial distance, i.e. 29 mm for the superior two regions. Only after reducing the distance 

to a quarter of the initial distance, i.e. 20 mm and 15 mm, PaMiNI was not able to find 

separate representations for the adjacent regions. In this latter case, the distance between the 

region centers was below 2 FWHM of the distributions used for the simulation of the 

activation foci. Thus, the 1-FWHM ranges of both adjoining regions already intersected. 

However, when the number of simulated experiments was increased by the factor 10, i.e. 550 
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instead of 55 experiments, PaMiNI again yielded a perfect segregation of the four underlying 

brain regions even for this setting of narrow region centers. This circumstance can be 

explained by an increase of the local signal-to-noise ratio when more simulated experiments 

are used. That is, there were more activation foci representing and hence converging in a 

brain region, while the noise foci were equally (at random) distributed throughout the brain. 

This observation demonstrates that, naturally, the accuracy for the identification of single 

brain regions in PaMiNI strongly depends on the number of experiments in the dataset under 

investigation, i.e. that fewer input foci yield a coarser segregation of brain regions, while an 

increasing number of activation foci improves the granularity for the detection of regions.

The analysis of the working memory dataset demonstrates the applicability of PaMiNI to 

real world data. Here, the brain regions found by the Gaussian mixture modeling in PaMiNI 

broadly correspond to those identified in the previous ALE meta-analysis (Rottschy et al., 

2012). However, it should be noted that the ALE maps and the modeled brain regions in 

PaMiNI (like in Fig. 8) are not directly comparable, since the ALE maps indicate the 

quantity of convergent activation in a specific voxel, while the Gaussian distributions in 

PaMiNI are probabilistic spatial estimators for the activation foci of a dataset. Thus, specific 

constellations of the activations arrangement can cause discrepancies between the maps of 

both approaches. For example a group of activation foci showing a broad spatial spread 

around a specific region will be represented by a large Gaussian in PaMiNI, while the 

resulting convergent activity in ALE can be rather low, dependent on the number of 

activation foci in this region. The reason for this initially counter-intuitive behavior is as 

follows: In ALE each activation focus is modeled as a Gaussian with a spread depending on 

the number of subjects of the experiment. In a case where activation foci lie close together, 

the overlap of the Gaussians of the modeled activation foci is very high, resulting in a high 

convergence of activity throughout a wider region. When performing significance testing, 

most of these voxels will survive thresholding. That is, if many foci are close together, even 

the more peripheral voxels of this region of convergence may become statistically 

significant. In turn, if activation foci are more spread out over a brain region, the Gaussians 

of the modeled activation foci in ALE show low overlap, i.e. convergence of the modeled 

Gaussians. Convergence is thus lower than the threshold for most of the voxels in the region. 

Consequently, usually only a rather limited number of voxels in the center of the region are 

declared significant. These considerations may possibly explain the observed differences 

between the ALE and PaMiNI representations of the anterior insula and the ventral 

occipitotemporal cortex in the working memory dataset. Nevertheless, both types of maps 

indicate the spatial location of convergent activity within the input set, which allows general 

comparisons between both approaches. In this context, the examination of the working 

memory dataset can be regarded as a cross-validation for both methods, as it shows that the 

PaMiNI analysis largely reproduces the results of the ALE meta-analysis.

In addition to it, PaMiNI revealed several further aspects regarding co-activation patterns in 

the working memory dataset. The most frequent 5-pattern in PaMiNI, consisting of the 

bilateral dorsolateral prefrontal cortex, the bilateral intraparietal sulcus and the 

supplementary motor area, was shown to play a central role in this dataset. This 5-pattern 

directly matches the major parts of the “core-network” from the previous ALE analysis. 

There, the “core-network” was identified by subdividing the experiments of the set into 
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topical groups and calculating a conjunction on the ALE maps of each group (Rottschy et 

al., 2012). The PaMiNI “core” 5-pattern is furthermore well in line with other meta-analyses 

on working memory (Owen et al., 2005; Wager and Smith, 2003). The salience of this 5-

pattern for working memory might be explained by an integrative function of this network 

for fronto-parietal synchronization, which is essential for working memory tasks (Naghavi 

and Nyberg, 2005; Salazar et al., 2012; Wendelken et al., 2008). Albeit particularly relevant, 

this network is not specific for working memory, as it is also involved in other cognitive 

processes like attention (Langner and Eickhoff, 2013; Shulman et al., 2009) or motor tasks 

requiring orientation and movement integration (Marangon et al., 2011). Thus, this “core” 

network might act as a more general fronto-parietal integrator in different attention-

demanding cognitive functions (Curtis and Lee, 2010).

Compared to the “core” network of the ALE meta-analysis (Rottschy et al., 2012), the 

PaMiNI “core” pattern did not include the bilateral anterior insula. Indeed, the respective 7-

pattern, consisting of the “core” 5-pattern and the bilateral anterior insula, was significantly 

less often found within the dataset. This discrepancy might be explained by the circumstance 

that the anterior insula is particularly involved in saliency detection (Cauda et al., 2012; 

Menon and Uddin, 2010) and the implementation of task sets in general (Dosenbach et al., 

2006; Kurth et al., 2010). Thus, the anterior insula might be activated in only some of the 

used tasks in its function for task set initiation and maintenance and with a less marked 

relation to the regions of the working memory “core” network.

The pattern analysis in PaMiNI revealed another aspect of the working memory “core” 

network, which is hemispheric lateralization. The pattern distribution indicated that all sub-

sets of the “core” 5-pattern are considerably more often found on the left side, compared to 

the corresponding patterns of the right hemisphere. This might partially be explained by the 

obvious hemispheric asymmetry between verbal working memory, which is lateralized to the 

left hemisphere, and spatial working memory, which shows stronger activity on the right 

side (Nagel et al., 2013; Smith and Jonides, 1997; Thomason et al., 2009). The asymmetry in 

the PaMiNI analysis favoring the left hemisphere is probably indicative for an 

overrepresentation of verbal working memory tasks in the composition of experiments in the 

set. Indeed, 54 of the 97 experiments activating the 3-pattern consisting of the left DLPFC, 

the left IPS and the SMA had words or letters as stimuli, while only 38 of 75 experiments 

activating the respective right hemispheric 3-pattern used these verbal stimuli. The 

lateralization towards the left hemisphere in the working memory dataset could already be 

conjectured from the main effect of the ALE meta-analysis, as the convergent activity of the 

frontal regions is stronger on the left than on the right side. This notion is now quantitatively 

confirmed by the distribution of co-activation patterns in the PaMiNI analysis.

Another important finding of the PaMiNI analysis is that the (pre-) SMA is part of nearly all 

highly supported patterns in the working memory set. The (pre-)SMA is known to play a 

major role in cognitive control (Hoffstaedter et al., 2013; Lau et al., 2006; Mostofsky and 

Simmonds, 2008; Obeso et al., 2013). That is, the (pre-)SMA is accounted to be responsible 

for the initiation, switching and termination of tasks, which usually involves an alignment 

with working memory. In this context, the DLPFC is attributed a proactive function for the 

action inhibition of the (pre-)SMA in situations with high working memory load (Criaud and 
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Boulinguez, 2013; Jahfari et al., 2010; Mostofsky et al., 2003). The PaMiNI analysis indeed 

showed that the co-activation pattern consisting of the (pre-)SMA and the bilateral DLPFC 

was the second most supported 3-pattern within the set, which highlights its role for working 

memory tasks.

The examination of the sample datasets shows that PaMiNI produces meaningful 

segregations of brain regions, which are comparable to the results yielded by a well-

established previous approach, i.e. ALE. Beside this compatibility between both approaches, 

it was furthermore demonstrated that PaMiNI yields additional insight compared to previous 

approaches regarding the examination of co-activation patterns, as it separates the sets of co-

occurrent activity and reveals their frequency in a set of neuroimaging experiments. Hence, 

PaMiNI complements the scope of present meta-analyses by using a yet different and novel 

approach. The integration of the PaMiNI method into a publicly available software system 

makes the analysis of datasets easily accessible and allows the efficient application to a wide 

range of examinations. The coordinate-based pattern mining with PaMiNI can now be used 

for any possible arrangement from the rich amount of neuroimaging data unraveling their 

underlying co-activation patterns and helping to answer yet unresolved questions concerning 

the functional organization of the human brain.

Conclusions

We here demonstrated a novel meta-analytic approach that extends the capabilities of 

previous coordinate-based meta-analytic techniques, i.e. ALE or MKDA, regarding the 

identification of co-activation patterns. This new method, named PaMiNI, combines two 

established pattern mining techniques, i.e. Gaussian mixture modeling and the Apriori 

algorithm from association analysis, in order to reveal the distribution of frequent co-

activation patterns within sets of neuroimaging experiments represented by their coordinate 

data of peak activations. The applicability of the PaMiNI approach was evaluated using 

simulated datasets as well as a dataset on working memory findings. These evaluation 

analyses demonstrated the ability of PaMiNI to detect convergent activation foci within a 

dataset and to distinguish distinct co-activation patterns between experiments, as well as its 

feasibility for real applications. Furthermore, the analysis of the working memory data 

yielded a fronto-parietal “core” network of working memory similar to that of the ALE 

analysis but with additional insight regarding the distribution of sub-networks, i.e. a left-

lateralization and a dominant role of the (pre-)SMA. By the integration into a publicly 

available software system PaMiNI can now be applied to any possible set of neuroimaging 

experiments to facilitate the validation of functional organization principles of the human 

brain and the generation of new hypotheses for future research.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Left: Simulated dataset of two sets of experiments (simulation 2). Activation foci of all 

experiments are projected onto the MNI single subject brain. Set A (green) contained foci 

centered around the inferior frontal gyrus and the middle temporal gyrus, set B (red) 

contained foci centered around the intraparietal sulcus and the middle occipital gyrus. For 

both sets noise foci were generated. Right: ALE meta-analysis of the simulated dataset. The 

resulting ALE map is projected onto the MNI single subject brain.
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Fig. 2. 
Pseudocode representation of the adapted Apriori algorithm. Frequent co-activation patterns 

P are identified based on the Gaussian mixture components GC in a dataset D with a given 

minimum support minsup.
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Fig. 3. 
Screenshot of the PaMiNI graphical user interface.
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Fig. 4. 
ALE and PaMiNI results of the simulated data. A ALE map of the simulated data projected 

onto the MNI single subject brain. B Result of the PaMiNI analysis of simulation 1. The 

Gaussian clusters (restricted to 1 FWHM) of the 4-pattern identified in all 55 experiments 

are projected onto the MNI single subject brain. C Results of the PaMiNI analysis of 

simulation 2. Left: Gaussian clusters (restricted to 1 FWHM) of the two identified 2-patterns 

projected onto the MNI single subject brain. Right: Scatter plot representing the pattern 
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distribution of simulation 2. Patterns are color-coded: Anterior 2-pattern (set A) green, 

posterior 2-pattern (set B) red.
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Fig. 5. 
Results of simulation 3. Scatter plot of the pattern distribution identified by PaMiNI is 

shown. Each scatter represents a single co-activation pattern and the number of supporting 

experiments (ordinate) is plotted against the number of included brain regions (abscissa). 

Images along both sides of the plot show the Gaussian representations (restricted to 1 

FWHM) of the patterns they are linked to projected onto the MNI single subject brain. 

Composition of the unlabeled patterns can be deduced from the labeled patterns.
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Fig. 6. 
Results of simulation 4. Centers of the two posterior simulated regions (set B, red) are 

shifted stepwise closer to the two anterior simulated regions (set A, green). Gaussian clusters 

(restricted to 1 FWHM)of the PaMiNI analysis are projected onto the MNI single subject 

brain. Colored numbers indicate the number of experiments identified for the respective 

pattern in PaMiNI. A Distance between centers: 60mm (superior two regions), 44 mm 

(inferior two regions). Simulated experiments: 30 (set A), 25 (set B). B Distance between 

centers: 40 mm (superior two regions), 29 mm (inferior two regions). Simulated 
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experiments: 30 (set A), 25 (set B). C Distance between centers: 20 mm (superior two 

regions), 15 mm (inferior two regions). Simulated experiments: 30 (set A), 25 (set B). The 

superior two regions were represented by a common Gaussian distribution in PaMiNI and 

the inferior two regions by another common Gaussian. D Distance between centers: 20 mm 

(superior two regions), 15 mm (inferior two regions). Simulated experiments: 300 (set A), 

250 (set B). All four input regions could be identified by as single Gaussians by PaMiNI.

Caspers et al. Page 28

Neuroimage. Author manuscript; available in PMC 2016 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
BIC graph for the Gaussian mixture models of the working memory dataset. The Bayesian 

Information Criterion (BIC) of a model is plotted against its number of components. A red 

circle indicates the model with the lowest BIC, meaning that this model most appropriately 

fits to the given data.
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Fig. 8. 
Comparison of the identified brain regions in the working memory dataset between PaMiNI 

and ALE. Top: Gaussian distributions (restricted to 1 FWHM) representing the identified 

brain regions from the Gaussian mixture modeling in PaMiNI projected onto three views of 

the MNI single subject brain. Bottom: Map of the ALE meta-analysis of the same dataset 

(Rottschy et al., 2012) projected onto three views of the MNI single subject brain.
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Fig. 9. 
Pattern distribution of the working memory dataset. Each scatter represents a single co-

activation pattern. The number of supporting experiments (ordinate) of a pattern is plotted 

against its number of included brain regions (abscissa).
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Fig. 10. 
The “core” 5-pattern of working memory and the lateralization of its sub-patterns. The 

scatter-plot representing the pattern distribution from Fig. 9 is shown. The “core” 5-pattern 

(top, orange) was identified as the most frequent pattern with five components. The sub-

patterns of this “core” 5-pattern from the left hemisphere (left, blue) are noticeably more 

frequently found within the dataset than the right hemispheric ones (right, red).
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