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SUMMARY

The HIV genome encodes a small number of viral proteins (i.e.,
16), invariably establishing cooperative associations among HIV
proteins and between HIV and host proteins, to invade host cells
and hijack their internal machineries. As a known example, the
HIV envelope glycoprotein GP120 is closely associated with GP41
for viral entry. From a genome-wide perspective, a hypothesis can
be worked out to determine whether 16 HIV proteins could de-
velop 120 possible pairwise associations either by physical inter-
actions or by functional associations mediated via HIV or host
molecules. Here, we present the first systematic review of experi-
mental evidence on HIV genome-wide protein associations using
a large body of publications accumulated over the past 3 decades.
Of 120 possible pairwise associations between 16 HIV proteins,
at least 34 physical interactions and 17 functional associations
have been identified. To achieve efficient viral replication and
infection, HIV protein associations play essential roles (e.g.,
cleavage, inhibition, and activation) during the HIV life cycle.
In either a dispensable or an indispensable manner, each HIV
protein collaborates with another viral protein to accomplish
specific activities that precisely take place at the proper stages of

the HIV life cycle. In addition, HIV genome-wide protein as-
sociations have an impact on anti-HIV inhibitors due to the
extensive cross talk between drug-inhibited proteins and other
HIV proteins. Overall, this study presents for the first time a
comprehensive overview of HIV genome-wide protein associ-
ations, highlighting meticulous collaborations between all viral
proteins during the HIV life cycle.

INTRODUCTION

The genome of human immunodeficiency virus (HIV) encodes
16 viral proteins playing essential roles during the HIV life

cycle (Fig. 1). Three major genes, gag, pol, and env, code for struc-
tural proteins (matrix, capsid, nucleocapsid, and p6), viral en-
zymes (protease, reverse transcriptase [RT], and integrase), and
envelope proteins (GP120 and GP41) (1, 2) (see Text S1 in the
supplemental material). The remaining genes code for regulatory
proteins (Tat and Rev) and accessory proteins (Vif, Vpu/Vpx,
Vpr, and Nef) (3). Vpu is found exclusively in HIV type 1 (HIV-1),
whereas Vpx is carried by HIV-2.

Although HIV genomes code for only 16 viral proteins (Fig. 2),
a great number of physical interactions between pairs of HIV pro-
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FIG 1 Gene maps and protein structures of HIV-1 and HIV-2. (A) Schematic model of the HIV-1 full-length genome (reference strain HXB2). HIV protein
names and amino acid lengths are shown beneath the colored protein regions in three open reading frames (ORFs). Eleven multimeric proteins have underlined
names. In the gene map, red rings mark the locations where viral protease cleaves during viral maturation. In the env gene, a yellow ring shows the cleavage
position of human proteases (e.g., furin) (594). The 5= and 3= long terminal regions (LTRs) are also indicated in the full-length genome. (Adapted from reference
44.) (B) Schematic model of the HIV-2 full-length genome (reference strain SIVmac239). (Adapted from reference 44.) (C) Surface representations of HIV-1
protein structures and schematic view of the HIV-1 particle. Surface representations of 15 HIV-1 protein structures are clustered according to their functional
roles. HIV-1 monomeric proteins are shown in pink, and different subunits of multimeric proteins are distinguished with different colors (green, yellow, and
red). HIV-1 protein structures are scaled precisely for a direct and intuitive comparison. At the bottom right, a schematic model of a mature viral particle is
displayed, and the key shows protein annotations. Proteins in the schematic view are shown for illustration purposes; their structures and sizes here are not
necessarily identical to the real protein structures and sizes. Additional information about HIV genomic reference sequences and natural polymorphisms is
available online (see http://www.virusface.com/). (Adapted from reference 44.)
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teins, so-called HIV pairwise protein interactions, provide essen-
tial mechanisms for HIV to achieve efficient viral replication at
different stages of the HIV life cycle (4). For instance, the HIV-1
envelope glycoprotein GP120 physically interacts with GP41 dur-
ing viral entry (5). In addition to HIV pairwise protein interac-
tions, HIV-host protein interactions are known to play essential
roles for HIV to hijack human cellular systems (6–11). Because of
this, functional associations between HIV proteins can be medi-
ated via host molecules (e.g., CD4). Taking the functional associ-
ation of Vpu-CD4-Env as an example, the binding of Vpu to CD4
facilitates the proper assembly of Env into HIV-1 particles, be-
cause Vpu interacts with CD4 to trigger the rapid degradation of
newly synthesized CD4, thereby preventing the aggregation of
CD4-Env structural complexes in the endoplasmic reticulum
(ER) (12–19). Overall, physical interactions and functional asso-
ciations between 16 HIV proteins delineate a global perspective of
HIV genome-wide associations that play essential roles during the
HIV life cycle.

To our knowledge, a systematic review that provides a ge-
nome-wide perspective on HIV pairwise protein associations is
still lacking in spite of many studies focusing on individual protein
associations. In theory, 16 HIV proteins would generate 120 pair-
wise protein associations, but some associations might be absent
during the HIV life cycle. To disclose the mystery of HIV protein
associations from a genome-wide perspective, we thus performed
the first systematic review to establish experimental evidence for
HIV pairwise protein associations and their functional activities at
major stages of the HIV life cycle: viral entry (20–22), reverse
transcription (23), viral integration (24–26), viral transcription
and translation (27–29), viral assembly and budding (2, 30), and
viral maturation (2, 30, 31) (Fig. 3).

Based on a large body of publications accumulated from 1985
to 2015, our review is focused on the following three aspects. (i)
What molecular experiments were used to report HIV protein
associations? (ii) Where and when do HIV protein associations
achieve their functional activities during the HIV life cycle? (iii)
Which viral protein domains are responsible for protein interac-
tions at the molecular level? Clinical relevance and therapeutic
implications of HIV genome-wide protein associations are dis-
cussed from two aspects: novel mechanisms of HIV drug resis-
tance and HIV-derived peptide inhibitors. The former provides
new insights into why HIV-infected patients could fail highly ac-
tive antiretroviral therapies (HAARTs) in the absence of drug-
resistant mutations. The latter may shed light on the development
of anti-HIV agents.

Our review begins with the procedure for literature selection.
Thereafter, physical interactions and functional associations be-
tween HIV proteins are described, depending on their activities at
major stages of the HIV life cycle. For each physical interaction or
functional association, its biological activities and interaction do-
mains are summarized. For a better understanding of HIV protein
associations, we visualize protein interactions during the HIV life
cycle, discuss their clinical relevance and therapeutic implications,
and establish an online platform to update the information on
HIV genome-wide protein associations (http://www.virusface
.com/). Newly created structural movies have been shared online
to highlight protein interaction domains. Challenges and future
perspectives are discussed at the end of this review.

LITERATURE SELECTION

This section describes the procedure for our literature selection
(Fig. 4). We performed an electronic literature search by querying
English articles from three sources (PubMed, Google Scholar, and
Cochrane Library) plus reference lists of retrieved articles pub-
lished from January 1985 until December 2015. Moreover, we
extracted literature from the HIV-1 Human Interaction Database
(HHID) to collect information about HIV-host protein interac-
tions (32). This extraction allows the identification of any cellular
protein that physically interacts with two HIV proteins. For in-
stance, the Vif-APOBEC3G-integrase association exists because
the cellular protein APOBEC3G physically interacts with viral Vif
and integrase during the HIV life cycle (33–43). In summary, three
major steps were carried out by selecting studies that reported
protein associations involving 16 HIV proteins (matrix, capsid,
nucleocapsid, p6, protease, RT, integrase, Vif, Vpr, Vpu, Vpx, Tat,
Rev, GP120, GP41, and Nef) and/or 2 precursor proteins (Gag and
Env).

Step 1 was an electronic search. We searched English articles
through four sources (PubMed, Google Scholar, the Cochrane
Library, and the HHID), given the publication period from Janu-
ary 1985 until December 2015. Search terms covered all pairwise
associations between 18 HIV (precursor) proteins, resulting in
153 keyword patterns (e.g., “HIV matrix capsid,” “HIV matrix
nucleocapsid,” and “HIV matrix p6”). Article titles and abstracts
from these databases were scrutinized, except for Google Scholar,
by which we examined only the top 100 publications for each
keyword pattern due to a great mass of results found. We also
queried review articles about the functions and interactions of
individual HIV proteins. Thereafter, we gathered publications
that met three selection criteria (see below).

Step 2 included manual reference checks of extracted publica-
tions. To search the literature on HIV pairwise protein associa-
tions, we manually checked the reference list of each publication
extracted by using step 1. Publications that met the selection cri-
teria (see below) were selected.

Step 3 included citation tracking in Google Scholar. Using
Google Scholar, we manually checked publications that cited
those articles retrieved by using step 2. Thereafter, newly identi-
fied publications were collected for the next search round through
step 2. The search process was terminated if new publications
could not be found.

Articles were selected for our review if they met any of the
following selection criteria:

1. Protein-protein interaction (PPI) experiments. We re-
trieved English articles that demonstrated HIV PPIs or their
biological functions using in vitro or in vivo experiments
(e.g., coimmunoprecipitation assays, glutathione S-trans-
ferase [GST] pulldown assays, two-hybrid assays, enzyme-
linked immunosorbent assays [ELISAs], Western blot as-
says, dot blot assays, electron microscopy analysis, X-ray
crystallography, nuclear magnetic resonance [NMR] spec-
troscopy, and surface plasmon resonance analysis). Articles
that reported the absence of a physical interaction between
two HIV proteins were also selected. However, we discarded
prediction-based studies that only hypothesized PPIs with-
out any experimental proof of physical interactions.

2. Statement of PPI functions. We retrieved articles that
clearly expressed the functional relationship between two
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FIG 2 Functional domains of 16 HIV proteins. Cartoon representations of 16 HIV proteins (matrix, capsid, nucleocapsid, p6, protease, RT, integrase, Vif, Vpu,
Vpx, Tat, Vpr, Rev, GP120, GP41, and Nef) are visualized. For each panel, protein domains involved with HIV pairwise protein interactions are marked
accordingly. Surface representations indicate protein interaction interfaces. Distinct functional domains are annotated in different colors, such as the N-terminal
heptad repeat (NHR) and the C-terminal heptad repeat (CHR) of GP41 in panel O. The V1 to V4 flexible loop regions of GP120 (see details in reference 50) are

HIV Genome-Wide Protein Associations
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HIV proteins with terms such as “interact,” “bind,” “asso-
ciate,” “packaging,” “incorporate,” “inhibit,” “activate,”
“promote,” “cleave,” “enhance,” “degradation,” “up-
regulate,” and/or “downregulate.”

3. Protein interaction domains. We retrieved articles that re-
ported interaction domains of HIV pairwise protein inter-
actions. Amino acid positions were indexed by using HIV
reference strains (HIV-1 reference strain HXB2 and HIV-2
reference strain BEN) (44).

As for HIV-host protein interactions, we also performed a sim-
ilar literature search. If different studies suggested incomparable
results on HIV protein interactions, they were presented for dis-
cussion. Different results for interaction positions are listed sepa-
rately based on the original publications (Table 1). Biological ex-
periments used for the identification of HIV protein interactions
are summarized in Table 2. HIV functional associations mediated
by a host protein or a viral factor are summarized in Table 3.

VIRAL ENTRY

During viral entry, HIV particles penetrate host cells and initiate
cell infection (Fig. 3). Host cells (e.g., T-helper cells, monocytes,
macrophages, and dendritic cells), which express the CD4 (cluster
of differentiation 4) glycoprotein on the cell surface, are the pri-
mary targets of HIV Env spikes, structural complexes formed by
HIV GP120 and GP41 (Fig. 5). HIV entry pathways, entry inhib-
itors, and HIV-associated human proteins have been reviewed
elsewhere (20, 21, 45–47). Here, we focus on HIV pairwise protein
interactions during viral entry.

GP120-GP41 Interaction

On the surface of HIV particles, GP120 physically interacts with
GP41 to construct trimeric Env spikes via noncovalent interac-
tions (48–58). During viral entry, HIV Env spikes undergo dy-
namic structural rearrangements to invade host cells (51, 52, 59)
(Fig. 5). When GP120 binds to the cellular receptor CD4 on the
host cell, this binding induces an outward domain shift of GP120
subunits to disrupt noncovalent interactions between GP120 and
GP41 and to expose coreceptor-binding sites (60). Thereafter,
GP41 helices at the core of Env spikes serve as anchors by which
the rest of Env can be reorganized into open structural conforma-
tions for viral entry (48). Specifically, prefusion GP41 wraps its
hydrophobic core around the extended N-terminal domain
(NTD) and the C-terminal domain (CTD) of GP120 to construct
a GP41-tryptophan clasp (50, 56). In comparisons of the prefu-
sion and postfusion conformations of GP41 (Fig. 2), it has been
shown that the spike rearrangements open the GP41-tryptophan
clasp to expel GP120 termini, thereby constructing a fusion pore
for viral entry (50, 61). Although it remains debated (22), the
construction of a fusion pore may require 1 to 7 Env spikes for

entry stoichiometry, with most HIV strains depending on 2 to 3
Env spikes (62).

Extensive studies have elaborated interaction domains of the
GP120-GP41 interaction (48–58). It is generally agreed that the
inner domain and the N- and C-terminal domains of GP120
maintain noncovalent interactions with the heptad repeat 1 and
disulfide-bonded domains of GP41 (Fig. 2). Particularly, the
GP120 inner domain can modulate the GP120-GP41 interaction
and CD4 binding (51), while GP120 terminal regions mainly in-
teract with the disulfide-bonded region of GP41 (55, 63–65).
Amino acid substitutions (e.g., W596A and W610A) within the
GP41 disulfide-bonded region disrupt the GP120-GP41 interac-
tion (66). In addition, broadly neutralizing antibodies (e.g.,
3BC315) have been identified to interrupt the GP120-GP41 inter-
action, but the dynamic nature of the Env trimers may influence
the exposure of antibody epitopes (67, 68). Table 1 summarizes
findings from a recent X-ray crystallographic study that unveils
the interaction positions of GP120 and GP41 in the atomic struc-
ture of HIV-1 Env (50). Last but not least, the GP120-GP41 inter-
action exerts an impact on drug resistance to HIV entry inhibitors,
a novel mechanism of HIV drug resistance which is described in
detail below.

GP41Env-MatrixGag Interaction

GP41Env has been detected to physically interact with HIV-1 ma-
trix in Gag precursors (matrixGag) (69–76) (Table 2). The cyto-
plasmic tail of GP41 (GP41CT) not only enhances Env packaging
during viral budding (77, 78) but also drives the rearrangements
of Env prebundle structures during viral entry (79). The GP41Env-
matrixGag interaction undertakes multiple activities. (i) HIV-1 en-
try is suppressed by the interaction between the GP41CT and un-
processed Gag in immature HIV-1 particles (80). However, this
suppression is dismissed when HIV-1 protease cleaves Gag and
GagPol precursors, a maturation process that transforms imma-
ture HIV-1 particles into mature HIV-1 particles (80). (ii) Differ-
ential localization of Env trimers on the viral surface depends on
the GP41Env-matrixGag interaction, because the proteolysis of Gag
rearranges the inner protein lattice to alter the clustering of Env
for viral entry (81). (iii) MatrixGag prevents access of the GP41CT
to biotinylation (82).

Regarding the interaction domains, the basic and C-terminal
domains of HIV-1 matrixGag physically interact with the GP41CT
(72, 75, 83). Mutagenesis analyses suggest that the matrix substi-
tution L49D destabilizes the GP120-GP41 interaction, but this
impairment can be rescued by a Y710S substitution at the
GP41CT (84). The last 13 to 43 amino acid positions in the
GP41CT are critical for the GP41Env-matrixGag interaction (73). In
addition, GP41CT mutations may confer resistance to HIV pro-
tease inhibitors (PIs) (85), a mechanism which is described in
detail below.

mapped in panel N. Five small molecules shown in green elucidate protein inhibitors such as the capsid inhibitor PF-3450074 (503) (B), the protease inhibitor
darunavir (E), the nucleoside analogue reverse transcriptase inhibitor zidovudine (AZT) (F), the nonnucleoside analogue reverse transcriptase inhibitor
nevirapine (NVP) (F), and the integrase inhibitor raltegravir (G). HIV-1 protein domains that interact with cellular proteins are mapped, such as AIP1 (376) (C);
LEDGF/p75 (168) (G); and APOBEC3G, EloB, and EloC (595) (H). For some HIV-1 multimeric proteins (matrix, capsid, integrase, Rev, GP120, and GP41), only
a subunit is demonstrated, and their multimeric structures are shown in Fig. 1. Text S1 in the supplemental material describes major functions of 16 HIV proteins.
Except for HIV-2 Vpx, PDB data for the other 15 proteins were obtained for HIV-1. A list of PDB accession numbers used for our structural visualization is
available in Table S1 in the supplemental material. The integrase structure of prototype foamy virus is used for visualization purposes, because the full-length
structure of HIV integrase is lacking. HIV structural movies and teaching slides are available at our online platform (see http://www.virusface.com/).
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FIG 3 Overview of the HIV-1 life cycle. Nine stages are described. (i) Viral entry (viral fusion). Mature HIV virions target host cells through direct binding
to the cellular receptor CD4 and chemokine coreceptors (e.g., CCR5 and CXCR4) (20, 21). (ii) Reverse transcription. HIV reverse transcriptase in the
reverse transcriptase complex (RTC) produces double-stranded DNA (dsDNA) from single-stranded RNA (23). (iii) Viral integration. The HIV prein-
tegration complex (PIC) transports viral dsDNA into the nucleus by entering the nuclear pore complex (NPC). During preintegration transcription, three
viral proteins (Rev, Tat, and Nef) are synthesized from unintegrated dsDNA (25). In the presence of cellular cofactors (e.g., LEDGF/p75), the PIC targets
host chromosomal regions with high transcriptional activity, where viral dsDNA is integrated into host chromosomes (24). (iv) Viral transcription. Viral
proteins (Tat and Nef) hijack cellular transcription machineries to activate viral mRNA synthesis from integrated viral dsDNA (29). HIV Rev recruits
CRM1, RanGTP, and other host proteins to export viral mRNAs into the cytoplasm (213). (v) Viral translation. Viral mRNAs are translated into
(precursor) proteins in the cellular compartments. Viral mRNAs of Gag, GagPol, and most accessory proteins are translated in cytosolic polysomes, except
for Env and Vpu (30). In the cytoplasm, mature Vpr interacts with host proteins (DCAF1 and SLX4) to induce G2/M cell cycle arrest (236, 596), Vif
activates the degradation of APOBEC3 proteins (34, 233), and Nef plays multiple roles in different cellular compartments based on HIV-host protein
interactions (597). In the ER, HIV-1 Vpu mRNA is translated, and mature Vpu retains newly synthesized CD4 (19). The dislocated CD4 thereafter
undergoes lysosomal and/or proteasomal degradation (19, 451). Tetherin is also targeted by Vpu in the ER, and it is subsequently delivered to the
lysosomal and/or proteasomal degradation pathways (459, 461). In the ER, modifications of Env such as signal peptide cleavage, folding, trimerization,
and glycosylation occur (598). In the Golgi apparatus, cellular proteases (e.g., furin) cleave Env glycoproteins into GP120 and GP41, which are
subsequently assembled into Env spikes via noncovalent interactions (599). Most Env proteins retained in the ER or Golgi apparatus are degraded, and
only a small proportion reaches the cell membrane (600). Env, Vpr, Tat, and Nef travel to the cell membrane via secretory pathways (30, 601–603). (vi)
Viral assembly and budding. Nascent HIV virions are assembled with two genomic mRNAs, viral proteins (Gag, GagPol, Env, Vif, Vpr, and Nef), and
cellular cofactors (e.g., actin, tRNALys3, and TIP47) (2, 30, 277). Nascent HIV particles pinch off from the cellular membrane to infect other host cells (30).
HIV-1 Nef induces CD4 degradation to prevent the Env-CD4 interaction on the extracellular membrane (597, 604). (vii) Virus maturation. HIV protease
cleaves Gag and GagPol precursors into structural proteins (matrix, capsid, nucleocapsid, and p6) and viral enzymes (protease, RT, and integrase), thus
transforming immature virions into mature virions for new infections (2, 30, 31). (viii) Virus exocytosis. As an alternative route of viral budding, nascent
HIV virions are released by using exocytosis pathways (605). (ix) Virus endocytosis. As an alternative route of viral entry, mature HIV virions enter host
cells through endocytic pathways (46). Note that protein shapes do not represent the exact protein structures, nor are the protein sizes to scale. MHC-I,
major histocompatibility complex class I.
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GP120-Tat Interaction

HIV-1 Tat can physically interact with GP120, an interaction
detected by isothermal titration calorimetry, pulldown assays,
ELISAs, electron cryomicroscopy, and surface plasmon resonance
analyses (86–89). Although Tat is dispensable for viral entry, the
binding of Tat to GP120 contributes to efficient viral entry (86),
and Tat-mediated viral entry promotes the infection of monocyte-
derived dendritic cells (88). After HIV-infected cells release Tat to
the extracellular space (86, 90), the GP120-Tat interaction under-
takes multiple activities. (i) Extracellular Tat binds to Env spikes, a
process which blocks the recognition of anti-Env antibodies, al-
lowing HIV to escape from Env neutralization (88). Furthermore,
extracellular Tat interacts with chemokine receptors (e.g., CCR2
and CCR3) to recruit chemokine receptor-expressing monocytes
and macrophages toward HIV-infected cells (91). (ii) The released
Tat physically interacts with GP120 on the extracellular mem-
brane of uninfected cells (86). By doing so, Tat induces the aggre-
gation of Env trimers to adapt conformational changes for viral
entry (92). (iii) The GP120-Tat interaction might affect the switch
of viral coreceptor tropism, because after its interaction with Tat,
GP120 of an X4-tropic virus efficiently interacts with CXCR4 and
CCR5 (92). Although the GP120-Tat interaction has an impact on
viral entry, it does not affect Tat-mediated transactivation (86).

Regarding the GP120-Tat interaction domains, molecular
docking analyses suggest that the CD4-binding site and the V3
loop of GP120 may interact with the cysteine-rich domain of Tat
(87, 88). Other studies have also proposed the binding of the
V1/V2 loop of GP120 to the second exon of Tat (86, 89) (Fig. 2).
Further analyses are still needed to examine whether this disagree-
ment is due to dynamic protein interactions on the extracellular
membrane or due to different experimental settings.

REVERSE TRANSCRIPTION

During HIV reverse transcription, RT produces a double-stranded
DNA (dsDNA) genome from a single-stranded RNA genome (23)
(Fig. 3). After viral entry, a series of events take place in the viral
core for the establishment of the reverse transcriptase complex
(RTC) (Fig. 6). Although its exact composition is still a topic of
debate, the HIV-1 RTC may consist of RT, protease, integrase,
matrix, capsid, nucleocapsid, Vif, Tat, Nef, Vpr, and host proteins

FIG 4 Work flow for our literature selection. (A) HIV keyword patterns.
Sixteen HIV proteins and two precursor proteins (Gag and Env) are shown
surrounding a circle. Pairwise HIV proteins are annotated to exhibit keyword
patterns (e.g., matrix-capsid, matrix-nucleocapsid, and matrix-p6), exempli-
fied by green links bridging one protein to the other proteins. (B) Electronic
search. Given the 18 HIV (precursor) proteins, there are 153 pairwise keyword
patterns (i.e., combinations of two proteins). Each pairwise keyword pattern
was queried by using four sources (PubMed, Google Scholar, the Cochrane
Library, and the HIV-1 Human Interaction Database [HHID]). Publications
were thereafter retrieved based on three selection criteria: PPI experiments,
statement of PPI functions, and protein interaction domains (see Literature
Selection). (C) Reference search. We manually checked the reference lists of
articles retrieved as described above for panel B. These articles were also ex-
amined by the three selection criteria described above. (D) Citation search.
Google Scholar was used to retrieve publications that cited the articles re-
trieved as described above for panel C. If articles supporting HIV pairwise
protein associations were newly identified, we returned back to the step de-
scribed above for panel C to manually check their reference lists. The searching
procedure was terminated when new publications could not be identified. (E)
Summary of HIV protein associations. Literature information was summa-
rized, for instance, by networks of HIV pairwise protein associations.
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TABLE 1 Summary of HIV pairwise protein interactionsa

Protein 1-protein 2 Life stage(s) Major function(s)
Positions in protein 1
(reference[s])

Positions in protein 2
(reference[s]) Reference(s)

GP120-GP41 Entry, budding Promotes viral entry, promotes
viral budding, promotes Env
packaging

31–46, 50–54, 70–75, 84–89,
91, 103, 106, 107, 110,
111, 114, 215, 220–224,
226, 244, 246, 489–505
(50)

520–528, 530, 533, 534, 536,
537, 540, 541, 543–546,
569–572, 574, 575, 577–
579, 581, 582, 585, 586,
588–592, 593, 596–598,
601–610, 614, 617–619,
622, 623, 628, 629, 631–
633, 635, 636, 639, 642,
643, 646, 650, 651, 654,
658, 659, 661–663 (50)

48–58

GP41Env-matrix Entry, budding Promotes viral entry, promotes
Env packaging

712, 713–856 (70, 84); 764–
856 (591); 814–844 (73)

12, 30, 34 (76); 18, 20, 22,
32, 33 (83, 592); 6, 29, 31,
62 (74); 49 (84); 62 (72);
84, 99 (75)

69–76, 83, 84,
591, 592

GP120-Tat Entry Promotes viral entry 166–171 (89); 157–171 (86) 73–86 (86) 86, 89
RT-integrase Reverse transcription,

integration
Enhances RT activity, inhibits

integrase activity
1–242, 387–421 (108) 201–288 (108); 243, 250,

258, 220–270 (102); 213–
288 (106)

102, 106, 108

RT-nucleocapsid Reverse transcription Enhances RT activity 548–560, p51 domain (113) 13–30, 34–51 (110, 111) 110, 111, 113
RT-Vif Reverse transcription Enhances RT activity ? 161–164 131
RT-Tat Reverse transcription Enhances RT activity ? 49–57 139
RT-Nef Reverse transcription Enhances RT activity p51 domain 154–172 148
Protease-Tat Reverse transcription Protease cleaves Tat to enhance

reverse transcription
Protease catalytic site 49–57 152

Integrase-Rev Integration Inhibits integrase activity 66–80, 118–128 (173) 12–23, 53–67 (173) 173–175, 180
Integrase-matrix Integration Enhances nuclear import of

the PIC
50–212 132 181

Matrix-Vpr Integration Enhances nuclear import of
the PIC

88–132 ? 183

Integrase-Nef Integration ? ? 58–206 149
Tat-Vpr Transcription Enhances viral transcription 50–67 ? 220
Tat-Rev Transcription Proteasomal degradation

of Tat
? 35–50 216

Tat-Nef Transcription Enhanced viral transcription ? ? 223
Tat-nucleocapsid Transcription NC induces Tat degradation ? ? 228
Vif-Vpr Transcription Vif mediates Vpr degradation ? ? 232
NCGag-Vif Budding Vif packaging, viral core

stability, inhibits PR cleavage
44–55 (301) 75–114 (300) 300, 301, 303

NCGag-Vpr Budding Vpr packaging 13–30, 34–51 70–80 313
p6Gag-Vpr Budding Vpr packaging 15–18 (329); 32–46 (325);

34–36 (326); 35–47 (330);
41–46 (322)

18–34 (322); 1–71 (327) 322, 325–327,
329, 330

p6Gag-Vpx Budding Vpx packaging 15–40 (333) 73–89 (333) 314, 332, 333
GP41Env-Nef Budding Env packaging 712–715 181–210 336
Gag-RT Budding RT packaging 183–305 (347) ? 347, 348
Protease-Gag/GagPol Maturation Gag and GagPol cleavage Protease catalytic site Gag/GagPol cleavage sites 495–497
Protease-Vif Maturation Inhibits protease activity 1–9 (516, 517) 30–65 (519); 41–65 (520);

78–98 (516); 81–88, 88–
98 (521)

516, 517,
519–521

Protease-RT Maturation Protease cleaves RTGagPol, RT
promotes protease activity,
protease inhibits RT activity

Protease catalytic site 440 | 441 522, 593

Protease-Nef Maturation Protease cleaves Nef, Nef
inhibits protease activity

Protease catalytic site 57 | 58 528

Protease-GP41CT Maturation Protease cleaves GP41CT Protease catalytic site 714 | 715, 716 | 717 538
a A question mark indicates that the corresponding information is not available. A vertical line indicates a protease cleavage site (e.g., 57 | 58 suggests that HIV protease cleaves the
substrate protein between amino acid positions 57 and 58). Position indices of GP120 and GP41 are based on the Env protein sequence in the HIV-1 HXB2 reference strain. Except
for HIV-2 Vpx, interaction domains are reported for HIV-1.
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(93–95). Notably, HIV capsid and a small subset of phosphory-
lated matrix are weakly associated with viral DNA (95, 96). During
reverse transcription, the RTC produces viral dsDNA with a high
content of uracil that protects viral dsDNA from viral autointe-
gration (97). HIV autointegration is a suicidal process in which
viral dsDNA is integrated within itself by viral integrase (98).

As of today, it remains a topic of debate as to where and when
HIV reverse transcription occurs. Recent evidence favors the hy-
pothesis that reverse transcription takes place in the intact capsid
core (96) and is triggered by the presence of massive amounts of
deoxyribonucleotides in the cytoplasm (99). Thereafter, the intact
capsid core moves toward the nuclear pore, during which the RTC is
reconstructed into the preintegration complex (PIC) (Fig. 6). Differ-
ent aspects of HIV reverse transcription have been reviewed else-
where, for instance, enzymatic activities of HIV-1 RT (23), the mat-
uration of the RTC (93), strand transfer reactions, and recombinant
events (100). Here, we focus on HIV-1 pairwise protein interactions
and associations that take place during reverse transcription.

RT-Integrase Interaction

HIV-1 RT has been identified to physically interact with viral in-
tegrase by using GST pulldown assays, coimmunoprecipitation
assays, dot blot assays, NMR spectroscopy analyses, and surface
plasmon resonance analyses (101–108). The binding of integrase

to RT does not require multimeric integrase or an integrase with
complete enzymatic activity (108). Owing to the integrase-RT in-
teraction, HIV-1 integrase plays an important role in the initiation
of reverse transcription (104). Although viral integrase exerts no
influence on steps at or before template-primer annealing, it acts
at the early stages of reverse transcription by stimulating the ini-
tiation and elongation of viral DNA synthesis (109). Of interest,
the RT-integrase interaction exerts an impact on drug resistance
to HIV RT inhibitors (RTIs) and integrase inhibitors (INIs), a
novel drug resistance mechanism that is described below.

Regarding the interaction domains, the C-terminal domain of
integrase may interact with RT (102, 104, 106, 107). Mutagenesis
analyses also suggest that integrase mutations at the catalytic core
domain (e.g., C130S) and the C-terminal domain (e.g., W243E,
V250E, and K258A) could severely diminish the RT-integrase in-
teraction, thereby impairing reverse transcription (102, 106).
Moreover, the finger-palm domain (positions 1 to 242) and the C
terminus of the connection subdomain (positions 387 to 421) in
RT may interact with integrase (108). However, the exact interac-
tion positions remain unclear.

RT-Nucleocapsid Interaction

HIV-1 RT physically interacts with nucleocapsid according to far-
Western blot, chemical cross-linking, and coimmunoprecipita-

TABLE 2 Summary of experiments that confirm HIV pairwise protein interactionsa

Protein interaction

Confirmation of protein interaction by:

Reference(s)IP Pulldown
Two-hybrid
assay

Western/dot
blotting

X-ray/EM/
NMR/SPR Others

GP120-GP41 Yes Yes 48–58
GP41Env-matrix Yes Yes Yes 69–76
GP120-Tat Yes Yes Yes 86–89
RT-integrase Yes Yes Yes Yes 101–108
RT-nucleocapsid Yes Yes Yes 110–113
RT-Vif Yes 131
RT-Tat Yes Yes Yes 139
RT-Nef Yes Yes Yes 148, 149
Integrase-Rev Yes Yes 173–175
Integrase-matrix Yes 181
Matrix-Vpr Yes Yes 183
Integrase-Nef Yes Yes Yes 149
Tat-Vpr Yes Yes 220
Tat-Rev Yes Yes Yes 216
Tat-Nef Yes Yes Yes 223
Tat-nucleocapsid Yes Yes Yes Yes 228
Vif-Vpr Yes 232
NCGag-Vif Yes Yes Yes Yes 300–303
NCGag-Vpr Yes Yes Yes 312–314
p6Gag-Vpr Yes Yes Yes Yes 314, 315, 320–330
p6Gag-Vpx Yes Yes Yes Yes 314, 320, 332, 333
GP41Env-Nef Yes 336
Gag-RT Yes Yes 347, 348
Protease-Gag/GagPol Yes Yes 495–497
Protease-Vif Yes Yes 282, 516, 517
Protease-RT Yes Yes 522
Protease-Tat Yes 152
Protease-Nef Yes 528–532
Protease-GP41CT Yes 538, 539
a IP, co- or radioimmunoprecipitation assay; pulldown, GST pulldown assay; two-hybrid assay, yeast or mammalian two-hybrid assay; Western/dot blotting, (far-)Western blot or
dot blot assay; X-ray/EM/NMR/SPR, X-ray crystallography, electron microscopy analysis, NMR spectroscopy analysis, or surface plasmon resonance analysis; others, other cell
culture or cell-free experiments (e.g., mass spectrometry) used for the identification of HIV pairwise protein interactions.
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tion assays (110–113). The binding of HIV-1 nucleocapsid to RT
contributes to the increased production of long proviral DNA
transcripts (114, 115). At the early stage of reverse transcription,
HIV-1 nucleocapsid interacts with RT to facilitate the annealing of
primer tRNALys3 onto viral genomic RNA (110, 116). At the final
stage of reverse transcription, a 99-nucleotide DNA flap is estab-
lished in the center of the proviral DNA genome to mediate the
nuclear import of the HIV-1 genome (117, 118). The construction
of this central flap requires nucleocapsid chaperone activity, RT-
mediated DNA synthesis, and the critical interaction between nu-
cleocapsid and RT (117). Multiple activities of nucleocapsid take
place during reverse transcription. (i) The nucleic acid-binding
and chaperoning properties of nucleocapsid stabilize the RT-
DNA complex to promote reverse transcription (119–121). The
chaperoning activity of nucleocapsid also protects HIV-1 RNA
from degradation induced by the RNase H domain of RT (122).
Moreover, nucleocapsid improves the stability of RT-substrate
complexes by reducing dissociation rate constants (120). (ii)
Nucleocapsid not only promotes the RT strand transfer reac-
tion (112, 122–124) but also increases RT processivity and
primer extension at specific DNA template sites (125). The
binding of nucleocapsid to RT counteracts the decreased
strand transfer efficiency of RT mutants (113). (iii) At the early

stage of HIV-1 reverse transcription, nucleocapsid can desta-
bilize the stem-loop structure of the primer-binding site that
governs the initiation-to-elongation transition and causes the
major pauses during primer extension (126). Moreover, nu-
cleocapsid inhibits primer extension prior to the formation of
the RT-primer/template-deoxynucleoside triphosphate
(dNTP) structural complex (125). In line with this evidence,
mutations at the zinc finger domains of nucleocapsid cause
premature reverse transcription (127). (iv) The excision repair
activity of RT, a mechanism by which RT corrects mismatches
at the cDNA polymerization site, is stimulated by nucleocapsid
(119). The nucleocapsid-mediated annealing of the primer
template promotes RT activity by reducing the rate of incorrect
nucleotide incorporation (128).

Regarding the interaction domains, two zinc finger domains in
nucleocapsid may interact with RT (110), and they are crucial for
the efficient unfolding of highly structured RNA and DNA inter-
mediates during the RT strand transfer reactions (124). HIV-1
nucleocapsid improves the RNase activity of the RNase H domain
in HIV-1 RT (129), while RT regulates the nucleocapsid architec-
ture to coordinate HIV-1 preintegration processes (130). The ex-
act interaction domains in RT are yet to be discovered by future
studies.

TABLE 3 Summary of HIV pairwise protein associations

Protein associationa Life stage Major function(s) References

RT-tRNALys3-Vpr Reverse transcription Vpr interacts with tRNALys3 to inhibit initiation of reverse
transcription

155–159

Integrase-dsDNA-Vpr Integration Vpr promotes binding of integrase to dsDNA 24, 187, 189
Integrase-dsDNA-nucleocapsid Integration Nucleocapsid stabilizes integrase binding to DNA and

promotes the integrase strand transfer reaction
191–194

Integrase-TNPO3/CypA-Capsid Integration Integrase and capsid interact with TNPO3/CypA to facilitate
PIC nuclear import and viral integration

195–197, 203, 204

Rev-CRM1-matrixGag Translation Rev and matrixGag recruit CRM1 and cellular cofactors for
nuclear export of viral mRNA

239–242

Rev-CG1-Vpr Translation Rev and Vpr bind to CG1 for mRNA nuclear export 246–248
Tat-p300/SWI/SNF-integrase Transcription p300/SWI/SNF promotes Tat-mediated viral transcription

and integrase-mediated viral integration
251–256, 266–272

MatrixGag-RNA-NCGag Budding Viral genomic RNA binds to matrixGag and NCGag for viral
RNA incorporation

350–360

CapsidGag-LysRS-Vpr Budding LysRS binds to capsidGag for LysRS packaging, but Vpr
inhibits the enzymatic activity of LysRS

159, 367–369, 372, 373

Gag-AIP1-Nef Budding Gag and Nef recruit AIP1 to promote viral budding 375–378
NCGag-Tsg101/AIP1-p6Gag Budding NCGag and p6Gag recruit Tsg101 and AIP1 to promote viral

budding
378, 385–390

Vif-A3G-integrase Budding A3G binds to integrase for prohibiting proviral DNA
formation, but Vif induces A3G degradation

33–43, 395

Vif-MAPK/HCK-Nef Budding Nef activates the HCK pathway to downregulate cell surface
receptors, but Vif counteracts HCK-mediated inhibition
of viral release; MAPK phosphorylates Vif, but Nef
inhibits the kinase activity of MAPK

407, 408, 415–421

Vpu-CD4-GP120Env Budding CD4 prevents GP120 transport for viral budding, but HIV-1
Vpu induces CD4 degradation

14, 15, 427–432, 435,
436, 450

Vpu-tetherin/CD4-Nef Budding HIV-1 Vpu and Nef antagonize tetherin and CD4 to
promote viral budding

456–463, 465–468, 475

Vpu-CK2-Rev Budding Rev promotes CK2 activity, which phosphorylates HIV-1
Vpu for CD4 degradation

453, 482–484

Vpu-UBP-matrixGag Budding UBP mediates a functional association between HIV-1 Vpu
and matrixGag

486–490

a Protein association indicates that two HIV proteins either independently or dependently interact with a third molecule (e.g., CD4 or dsDNA). Note that two HIV proteins in a
protein association are not necessary to construct a structural complex or to undertake biological activities at the same time during the viral life cycle. A3G, APOBEC3G.
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RT-Vif Interaction

As a component of the RTC (94), Vif has been detected to interact
with RT by using GST pulldown assays (131). During the early
stage of reverse transcription, the RT-Vif interaction stimulates
primer annealing and increases the polymerization rate (132,
133). Multiple activities of Vif take place during reverse transcrip-
tion. (i) Vif can modulate nucleic acid components in the viral
genomic RNA and tRNALys3 to promote efficient reverse tran-
scription (134), although this process happens mainly as an early
event after viral entry (135). (ii) Vif not only stimulates the for-
mation of loose HIV-1 genomic RNA dimers but also collaborates
with nucleocapsid to enhance single-stranded DNA (ssDNA) syn-
thesis (133). At an early stage of reverse transcription, Vif inhibits
the hybridization of tRNALys3 and prevents the nucleotide-medi-
ated formation of RNA dimers (133). (iii) The stable accumula-
tion of HIV-1 reverse transcripts is mediated by Vif (136). Vif-
defective mutants cause impaired DNA synthesis as well as
reduced RT activity in nonpermissive cells (137, 138). However,
Vif neither exerts an impact on genomic RNA dimerization nor
affects the stability of the RNA dimer linkage (135).

Regarding the interaction domains, the C-terminal domain of
Vif (positions 161 to 164) physically interacts with RT to stimulate
reverse transcription (131). To our knowledge, RT functional do-
mains that interact with Vif remain unclear. Additional studies are
also required to verify the reproducibility of the RT-Vif interac-
tion.

RT-Tat Interaction

The direct interaction between RT and Tat has been detected by
GST pulldown assays, coimmunoprecipitation assays, and mam-
malian two-hybrid assays (139). An HIV-1 Tat mutant called null-
basic, whose entire arginine-rich domain is replaced by either gly-
cine or alanine, has also been proven to interact with RT by using
coimmunoprecipitation assays, pulldown assays, and biolayer in-
terferometry assays (140). As an antiviral protein, nullbasic re-
duces viral core stability to prevent HIV-1 reverse transcription
(140). Although Tat is dispensable for reverse transcription, Tat in
complex with RT stimulates viral DNA synthesis (139). In com-
parison with its activity in gene expression, Tat uses distinct mech-
anisms to regulate HIV-1 reverse transcription (141). First, the
nucleic acid chaperone activity of Tat not only promotes the
placement of tRNALys3 onto viral RNA but also suppresses non-
specific DNA polymerization (142). Second, HIV-1 Tat prevents
the synthesis of deleterious DNA products and interrupts DNA
polymerization during the late stages of reverse transcription
(143). Third, Tat acts cooperatively with nucleocapsid to promote
nucleic acid annealing for the RT strand transfer reaction (144).
Overall, Tat contributes to efficient reverse transcription, as
HIV-1 strains lacking Tat are defective in endogenous assays of
reverse transcription (145).

The RT-Tat interaction domains in the RT partner are mapped
to the p51 subunit by GST pulldown and immunoprecipitation
assays and to the p51 and p66 subunits by mammalian two-hybrid
assays (139). The basic region of Tat (positions 44 to 61) may
promote the RNA-annealing reaction by HIV-1 RT (144, 146).
Two cysteine-rich domains of Tat (positions 21 to 39 and 40 to 47)
suppress DNA elongation during reverse transcription (142). By
altering the positive-charge distribution, the acetylation of Tat
residues K28, K50, and K51 can regulate the activity of Tat in

reverse transcription and transcriptional activity (146, 147). Over-
all, the basic domain of Tat plays a role in efficient reverse tran-
scription, but the exact RT domains that interact with Tat remain
unclear. Additional studies are still required to verify the repro-
ducibility of the RT-Tat interaction.

RT-Nef Interaction

HIV-1 Nef can physically interact with RT according to GST pull-
down assays, coimmunoprecipitation assays, and in vitro binding
assays (148, 149). In fact, Nef can stimulates proviral DNA syn-
thesis during reverse transcription (150). Being independent of its
binding to viral RNA, Nef increases the binding affinity of HIV-1
RT for viral RNA (148). In the absence of Nef, RT generates 5- to
10-fold-fewer DNA products (151). Regarding protein interac-
tion domains, data from mutagenesis analyses suggest that the p51
unit of RT may interact with the disorder loop in the C-terminal
domain of Nef (positions 154 to 172) (148). Although HIV-1 Nef
may play a role during reverse transcription, future studies are still
needed to verify the reproducibility of the RT-Nef interaction.

Protease-Tat Interaction

Data from cell-free and cell culture assays suggest that HIV-1 pro-
tease cleaves Tat (152). This protease-mediated cleavage requires
the basic domain of Tat (positions 49 to 57) (152). The Tat motif
R49KKR52 plays a critical role in modulating HIV-1 reverse tran-
scription (152). Moreover, a Tat mutant harboring a single muta-
tion, Y47N, near the protease cleavage site can downregulate
Tat-stimulated reverse transcription, suggesting that the pro-
tease-mediated cleavage of Tat influences Tat-enhanced re-
verse transcription (152). Future studies are still required to
verify protease-mediated cleavage on HIV-1 Tat, as it has been
reported in only a single study.

RT-tRNALys3-Vpr Association

Although both RT and Vpr are colocalized in the RTC, the PIC,
and the viral core (153, 154), a direct interaction between RT and
Vpr has not been reported to our knowledge. Based on HIV-host
protein interactions, cellular primer tRNALys3 physically interacts
with RT (155–158) and Vpr (159). During reverse transcription,
RT initiates minus-strand DNA synthesis from the 3= end of
primer tRNALys3 (160). To influence the initiation of reverse tran-
scription, Vpr interacts with tRNALys3 and prohibits the LysRS-
mediated aminoacylation of tRNALys3 (159). Of interest, tRNALys3

is packaged into HIV-1 virions with �20 molecules per virion
(161).

For efficient DNA synthesis, the thumb subdomain in the p66
unit of RT may interact with the anticodon loop in tRNALys3

(155). The RT connection domain may take part in tRNALys3 an-
nealing but not in tRNALys3 packaging (156). The V241QPI244 pep-
tide in the cross-link between the thumb and the palm sub-
domains of RT (Fig. 6A) may interact with primer tRNALys3 (158).
Despite the fact that interaction domains in Vpr are yet to be
resolved, peptides derived from two Vpr regions (positions 57 to
71 and 61 to 75) can interact with RT to inhibit HIV-1 reverse
transcription (162).

VIRAL INTEGRATION

After HIV reverse transcription, the RTC reorganizes into the PIC
in the cytoplasm (Fig. 7). Although the exact composition of the
PIC remains debated (163), the PIC is likely comprised of cellular
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cofactors, dsDNA, integrase, RT, matrix, nucleocapsid, Vpr, and a
small amount of capsid (96, 164–166). During viral integration, a
series of actions take place (24–26, 167, 168). The first action is
3=-end processing. In the cytoplasm, the viral integrase tetramer
removes 2 nucleotides at each 3= end of dsDNA to generate a
reactive intermediate that contains a 3=-hydroxyl group (168).
The second action is nuclear import. The PIC-containing dsDNA
is imported from the cytoplasm to the nucleus through nucleus
pore complexes (168). The third step is nuclear localization. The
PIC is localized to host chromosomal domains with high tran-
scriptional activity (24). This process is assisted by cellular cofac-
tors such as lens epithelium-derived growth factor (LEDGF)/p75,
a cellular transcriptional coactivator serving as a tethering protein
between the PIC and host chromosomes (167). The fourth action
is the strand transfer reaction. Viral dsDNA is inserted into host
chromosomes through the integrase strand transfer reaction
(168). The final action is gap repair. Unpaired regions between
HIV and host dsDNA are repaired under the assistance of cellular
cofactors (24).

The mechanisms of PIC nuclear import, preintegration tran-
scription, and integration-associated host proteins (e.g., LEDGF/
p75) have been reviewed elsewhere (24–26, 167–170). Here, we
focus on physical interactions and functional associations be-
tween these HIV proteins that take place during viral integration.

Integrase-RT Interaction

HIV integrase has been determined to physically interact with RT
by using GST pulldown assays, coimmunoprecipitation assays,
dot blot assays, NMR spectroscopy, and surface plasmon reso-
nance analyses (101–107). Two functions of the integrase-RT in-
teraction have been proposed. First, RT in the PIC inhibits both
the 3=-end endonuclease and the strand transfer activity of inte-
grase (101, 103). Second, RT can inhibit the DNA disintegration
activity of integrase before viral integration, although HIV-1 inte-
grase may promote RT activity during reverse transcription (171).
Note that DNA disintegration is a reverse reaction of viral integra-
tion that releases viral dsDNA and repairs the continuity of host
chromosomes (172). Overall, RT can efficiently regulate the activ-
ity of integrase through the integrase-RT interaction.

Regarding the interaction domains, the CTD of integrase is nec-
essary and sufficient for the interaction with RT (102, 106). For
instance, amino acid substitutions (W243E, V250E, and K258A)
at the integrase CTD severely impair the integrase-RT interaction
(102). As for the interaction domains in HIV-1 RT, the finger-
palm domain and the C-terminal half of the connection domain
of the RT heterodimer may interact with the integrase CTD (108).

In terms of different interaction domains reported during viral
integration and reverse transcription, additional analyses are still
needed to verify whether these differences are detected in different
cell lines, HIV-1 strains, or conformation rearrangements adapted
for different activities of the RTC and the PIC.

Integrase-Rev Interaction

HIV-1 Rev has been found to physically interact with the integrase
dimer or tetramer by using GST pulldown assays and coimmuno-
precipitation assays (173–175). It is known that integrase interacts
with the cellular LEDGF/p75 protein (168, 176, 177). Experimen-
tal evidence suggests that Rev may disrupt the interaction between
integrase and LEDGF/p75, a mechanism that inhibits premature
viral integration before the nuclear localization of viral dsDNA
(173, 178). At the postintegration stage, Rev expressed at the pre-
transcription processing step can prevent the nuclear import of
integrase through the Rev-integrase interaction, thereby limiting
the massive number of copies of viral DNA integrated into host
chromosomes (175, 179). Since increased integration has been
postulated to cause excessive cell death, Rev thus protects HIV-1-
infected cells from premature cell death (175).

Regarding the interaction domains, two Rev domains (posi-
tions 13 to 23 and 53 to 67) may interact with the central regions of
integrase (positions 118 to 128 and 66 to 80) (173). Interestingly,
Rev-derived peptides (positions 13 to 23 and 53 to 67) inhibit the
activity of integrase, whereas integrase-derived peptides (posi-
tions 66 to 80 and 118 to 128) rescue the Rev-mediated inhibitory
effect (180).

Integrase-Matrix Interaction

HIV-1 integrase has been identified to interact with matrix by
using coimmunoprecipitation assays (181). The integrase-matrix
interaction promotes the nuclear import of the PIC in nondivid-
ing cells such as macrophages (181). Although viral integrase and
matrix are components of the PIC, the entire matrix is dispensable
for viral nuclear import (182). Regarding the interaction domains,
the catalytic core domain of integrase (positions 50 to 212) may
bind to matrix, while C-terminal tyrosine phosphorylation of ma-
trix is crucial for the integrase-matrix interaction (181). Replacing
tyrosine with phenylalanine at matrix position 132 can block PIC
nuclear import (181). Independent analyses are still required to
verify the reproducibility of the integrase-matrix interaction.

Matrix-Vpr Interaction

HIV-1 matrix has been found to interact with Vpr by using yeast
two-hybrid assays and coimmunoprecipitation assays (183). As

FIG 5 Env structure complex and schematic model of HIV-1 pairwise protein interactions during viral entry. (A) Structural model of a prefusion HIV-1 Env
spike associated with CD4 on the extracellular membrane. Surface representations of GP120, GP41, and CD4 proteins are shown in blue, green, and pink,
respectively. Lipid bilayers of the extracellular membrane (606) are shown at the bottom, where nitrogen and phosphorus are indicated by blue and yellow
spheres, respectively. The crystallized structure of the CXCR4 coreceptor in green is placed in the center across the extracellular membrane. Red areas on the
GP120 surface illustrate the Tat-binding site (86, 89). Table S1 in the supplemental material provides a list of PDB accession numbers used for our structural
visualization. PyMOL V1.7 visualization software was used (see http://www.pymol.org/). (B) Top view of a prefusion HIV-1 Env spike in complex with CD4 on
the extracellular membrane. (C) Bottom view of the prefusion HIV-1 Env spike in complex with CD4. GP120 subunits within the trimeric Env spike bind to CD4.
Red areas indicate Tat-binding sites. (E) Schematic view of the binding of Env to CD4 and coreceptors for viral attachment to the host membrane. GP120 on the
mature virion surface interacts with CD4 to induce the aggregation of CD4 and chemokine coreceptors (e.g., CCR5 and CXCR4) (607, 608). Thereafter, GP120
binds to chemokine coreceptors on the host membrane. (F) Construction of GP41 six-helix bundles. Interactions between GP120 and chemokine coreceptors
induce conformation rearrangements in Env spikes, which expose GP41 to construct the six-helix bundles (20). (G) Viral entry. GP41 six-helix bundles pull the
extracellular membrane to create a fusion pore, which might consist of 1 to 7 Env spikes depending on divergent HIV strains (61, 62). The viral core in the HIV
particle is then injected into the host cytoplasm by entering the newly created fusion pore. Note that protein shapes do not represent the exact protein structures,
nor are the protein sizes to scale.
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FIG 6 Surface representation of HIV-1 reverse transcriptase and schematic model of the HIV-1 RTC. (A) Surface representation of HIV-1 RT (PDB accession
number 3KLG). Two major subunits, p51 and p66, are annotated. The p66 subunit consists of fingers, thumb, palm, connection, and RNase H domains (609).
HIV-1 RNA/DNA is shown in the middle, and the active site of RT is mapped to the 3= end of the DNA located between the fingers and thumb domains of HIV-1
RT. See Movie S1 in the supplemental material for a structural movie of HIV-1 RT. (B) Schematic model of HIV-1 pairwise protein interactions in the RTC. The
HIV-1 RTC consists of RT, protease, integrase, matrix, capsid, nucleocapsid, Vif, Tat, Nef, Vpr, and many cellular proteins, although the exact composition of
the RTC remains debated (93–95). HIV-1 capsid and a subset of phosphorylated matrix are weakly associated with the RTC (95, 96). Seven HIV-1 pairwise
protein associations, including the RT-integrase, RT-nucleocapsid, RT-Vif, RT-Tat, RT-Nef, and protease-Tat interactions as well as the RT-tRNALys3-Vpr
association, are mapped (Tables 1 and 3). Cellular cofactors (e.g., eEF1A), marked by yellow stars, may interact with the RTC to facilitate HIV-1 reverse
transcription (610). Localization of the RTC in the cytoplasm is mediated by the interaction between HIV-1 matrix in the RTC and the actin cytoskeleton (611),
although only a small subset of matrix is present in the RTC (95). A protein-protein interaction network is shown at the bottom left to demonstrate the physical
protein interactions. Question marks indicate unclear interaction domains. Note that protein shapes do not represent the exact protein structures, nor are the
protein sizes to scale.
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nucleophilic proteins, HIV-1 matrix and Vpr collaboratively im-
prove the stoichiometry of nucleophilic components in the PIC
and promote PIC nuclear import in nondividing cells (184). Al-
though Vpr-mediated nuclear export is dispensable for viral pack-

aging (185), HIV-1 Vpr promotes the nuclear import of the PIC in
macrophages (186). In fact, HIV-1 Vpr in the cytoplasm is trans-
ported into the nucleus by hijacking cellular proteins such as im-
portin alpha (186). As described previously, matrix also takes part

FIG 7 Schematic model of viral integration and cartoon representation of viral integrase. The HIV-1 PIC is comprised of cellular cofactors, viral dsDNA, integrase, RT,
matrix, nucleocapsid, Vpr, and a small amount of capsid (96, 164–166), although the exact composition of the PIC remains debated (163). (A) Viral uncoating. The RTC
turns into the PIC with the recruitment of host factors (e.g., LEDGF/p75). During this process, Nef, Tat, and most capsid proteins are dissociated from the PIC (169). (B)
Nuclear import. The PIC is imported from the cytoplasm to the nucleoplasm. Vpr physically interacts with the nuclear pore complex for PIC nuclear import (612). The
formation of the central DNA flap promotes viral uncoating at the nuclear pore (613). Although it remains debated, a small amount of capsid is associated with the PIC
to enhance its nuclear import (96). At the late stages of viral integration, Rev may interact with integrase to prevent the nuclear import of the overexpressed PIC (179).
(C) Chromosomal localization. Assisted by cellular proteins such as LEDGF/p75, HIV-1 dsDNA in the PIC is tethered to the host chromosome (170). (D) Integration.
HIV-1 dsDNA is integrated into host chromosomes by viral integrase (168). (E) Cartoon representation of a prototype foamy virus integrase in complex with dsDNA
(PDB accession number 3OY9). The active site of integrase is shown in the middle. See Movie S2 in the supplemental material for a structural movie of viral integrase.
(F) Cartoon representation of the HIV-1 integrase tetramer in the absence of dsDNA (PDB accession number 1K6Y). Four subunits of the integrase tetramer are shown
in green, blue, pink, and orange, respectively. For the schematic models in panels A to D, the protein shapes do not represent the exact protein structures, nor are the
protein sizes to scale. Question marks indicate that interaction domains remain unclear.
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in nuclear import due to its interaction with HIV-1 integrase (181).
Regarding the interaction domains, the C-terminal domain of matrix
(positions 88 to 132) may interact with Vpr (183), but the interaction
domains in Vpr remain unclear. Future studies are still required to
verify the reproducibility of the matrix-Vpr interaction.

Integrase-Nef Interaction

The physical interaction between integrase and Nef has consis-
tently been detected by using yeast two-hybrid assays, coimmu-
noprecipitation assays, and GST pulldown assays (149). Although
biological functions of this interaction remain unclear, it is spec-
ulated that Nef may take part in HIV-1 reverse transcription and
integration (149). More studies are required to investigate the activi-
ties of this interaction as well as the binding domains. Additional
analyses are still required to verify the reproducibility of the integrase-
Nef interaction, as it has been reported in only a single study.

Integrase-dsDNA-Vpr Association

HIV-1 integrase, Vpr, and dsDNA are key components of the HIV
PIC (Fig. 7). During viral integration, it is known that integrase
inserts viral dsDNA into host chromosomes (24). As the most
abundant viral protein in the PIC (187), HIV-1 Vpr promotes the
nuclear localization of viral dsDNA during the nuclear import of
the HIV-1 PIC (184, 188). To enhance PIC nuclear import, HIV-1
Vpr acts as a DNA architectural protein to bridge two or more
DNA helices into synaptic and stretched nucleofilaments (187).
The binding of HIV-1 Vpr to DNA also induces double-strand
breaks in chromosomal DNA, which might influence viral inte-
gration (189). Moreover, full-length Vpr and its C terminus (po-
sitions 52 to 96) not only stimulate the strand transfer reaction but
also enhance the binding of integrase to viral dsDNA (190). Inter-
estingly, Vpr-derived peptides (positions 57 to 71 and 61 to 75)
can inhibit the activity of HIV-1 integrase (162). Overall, Vpr may
promote integrase activity via its interaction with dsDNA, al-
though a direct interaction between integrase and Vpr remains
unclear.

Integrase-dsDNA-Nucleocapsid Association

Although a direct interaction between integrase and nucleocapsid
has not been reported, the integrase-dsDNA-nucleocapsid struc-
tural complex plays multiple roles during viral integration. (i) The
chaperone activity of nucleocapsid on viral DNA enhances HIV-1
integration (191). Specifically, the zinc finger domains of nucleo-
capsid not only stabilize the binding of integrase to viral dsDNA
but also complement DNA binding to promote the integrase
strand transfer reaction (192). (ii) HIV-1 nucleocapsid can pro-
mote coupled integration by �1,000-fold under in vitro condi-
tions (193). During viral DNA integration, viral integrase takes
part in the coupled joining that merges two ends of the viral ge-
nome into the host genome (193). (iii) In the presence of Mg2�, a
high concentration of viral integrase is required for HIV-1 inte-
gration (194). For an efficient DNA strand transfer reaction, nu-
cleocapsid counteracts this defect by keeping a low concentration
of integrase in the presence of Mg2� (194). Overall, nucleocapsid
interacts with viral dsDNA to promote integrase activities during
viral integration.

Integrase-TNPO3/CypA-Capsid Association

Although a direct interaction between capsid and integrase has
not been reported, transportin 3 (TNPO3, transportin-SR2, or

TRN-SR2) interacts with viral integrase and capsid to facilitate the
nuclear transport of the viral PIC (195–198). As a member of the
importin-� family, TNPO3 recognizes serine/arginine-rich re-
peats within precursor mRNA splicing factors and transports
these factors from the cytoplasm to the nucleus (199). Regarding
the interaction domains, it has been reported that TNPO3 inter-
acts with amino acid positions in the integrase CTD (e.g., R262 to
K264, K266, and R269) (198). HIV-1 integrase mutants with
R262A and K264A mutations display a weak interaction with
TNPO3, showing a 2.3-fold-lower affinity than that of the wild-type
integrase (200). Although it is not a major determinant of HIV-1
nuclear import, the integrase-TNPO3 interaction may take place
when the PIC enters the nucleus but before viral integration (201,
202). Other studies also suggest that viral capsid, not integrase, dic-
tates the TNPO dependency of PIC nuclear import (195, 201).

Cyclophilin A (CypA) is an important cellular peptidyl-prolyl
isomerase that participates in the uncoating of viral core (203,
204). CypA physically interacts with viral capsid (204–206), while
viral integrase is required to maintain the physical interaction be-
tween capsid and CypA (203). Owing to the capsid-CypA interac-
tion, HIV-1 capsid can be either stabilized or destabilized by CypA
(207, 208). On the one hand, viral capsid is stabilized by CypA
when it travels to the nuclear pore in the cytoplasm (205). On the
other hand, viral capsid escapes from CypA dependence through
conformational dynamics (206). Accumulated evidence also im-
plies a direct association between HIV-1 capsid and integrase, be-
cause capsid mutants (Q63A and Q67A) exert a deleterious effect
on viral integration (164). Moreover, the presence of integrase
mutants (e.g., C130S) induces the degradation of capsid in the
cytoplasm, thus decreasing viral core stability (203).

Overall, viral capsid and integrase are associated with cellular
proteins (e.g., TNPO3 and CypA) in order to facilitate PIC nuclear
import and viral integration.

VIRAL TRANSCRIPTION AND TRANSLATION

Two different HIV transcription pathways have been observed
before and after viral dsDNA integration. (i) A small amount of
regulatory proteins (Rev, Tat, and Nef) can be synthesized
from unintegrated viral DNA, a process called preintegration
transcription (25, 209) (Fig. 3). These synthesized viral pro-
teins interact with cellular machineries to regulate viral pro-
duction at subsequent stages of the HIV life cycle (Fig. 8). For
instance, Rev transports viral RNAs from the nucleus to the
cytoplasm (210). (ii) A large number of viral mRNAs are pro-
duced by cellular microRNA (miRNA) machineries, which
synthesize mRNA from viral dsDNA integrated into host chro-
mosomes (27). Viral mRNAs are then processed (polyadenyla-
tion, methylation, capping, and splicing) for protein maturation
(211). Posttranslational modifications of viral proteins (e.g.,
phosphorylation, methylation, and acetylation) are also essential
during this process (147, 212).

Previous studies have reviewed mechanisms of HIV transcrip-
tion and translation (27–29), Rev-mediated nuclear export (213),
Gag-mediated nuclear localization (214), and interactions be-
tween HIV proteins and cellular transcription factors (28, 29,
215). Here, we focus on physical interactions and functional asso-
ciations between HIV-1 proteins, which play important roles in
viral transcription and translation.
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Tat-Rev Interaction

The direct interaction between HIV-1 Rev and Tat has been
detected by two-hybrid assays, pulldown assays, and coimmu-
noprecipitation assays (216). The nuclear export signal region
of HIV-1 Rev (Fig. 2) takes part in the proteasomal degradation
of cytoplasmic Tat at the posttranslational level, leading to a
significant decrease of HIV-1 gene expression (216). The Rev-
mediated downregulation of Tat might be associated with

HIV-1 latency, because the decrease of the intracellular level of
Tat below a critical threshold potentially marks the rise of
HIV-1 latency (216). Moreover, the regulatory proteins Rev
and Tat shuttle between the nucleus and the cytoplasm to in-
teract with various cellular factors (4, 216). HIV-1 Rev and Tat
expressed via viral preintegration transcription (Fig. 3) are fre-
quently targeted by human cytotoxic T lymphocytes for the
immune control of viral infections (217).

FIG 8 Schematic model of HIV-1 protein interactions during viral transcription and translation. Five steps are described. (i) HIV-1 Tat initiates viral
transcription by its interaction with the TAR of viral RNA, which is a regulatory element located downstream of the HIV-1 LTR (212). Tat subsequently
recruits the subunits of the positive transcription elongation factor (e.g., cyclin T1 [CycT1] and cyclin-dependent kinase 9 [CDK9]) to construct a
transcription complex (212). This complex activates the kinase CDK9 for the hyperphosphorylation of RNA polymerase II, which interacts with Tat and
other host factors (e.g., DSIF [5,6-dichloro-1-�-D-ribofuranosylbenzimidazole sensitivity-inducing factor] [614]) to produce viral genomic mRNAs (615,
616). Genomic mRNAs are spliced thereafter. Although many host proteins take part in viral transcription (23), only CDK9, cyclin T1, p300, DSIF, INI1,
and RNA polymerase II are shown. (ii) Nuclear export of newly synthesized viral RNAs is accomplished by either Rev- or Gag-mediated pathways
(239–242). In the former case, Rev recruits cellular factors (e.g., CRM1 and RanGTP) to export viral genomic RNAs as well as incompletely spliced and
unspliced mRNAs from the nucleoplasm to the cytoplasm (30, 213). The binding of Vpr to the nuclear pore complex (NPC) is predominantly localized
in the nuclear envelope of the nucleus (247, 248). In the latter case, RNA nuclear export is activated by the nuclear export signal (NES) of matrixGag, which
interacts with CRM1 (214, 242). The nuclear export of viral RNA allows viral protein maturation in the cytoplasm and cellular compartments. CRM1,
RanGTP, Rev, and Gag are then imported back to the nucleus (213, 214, 242). (iii) HIV-1 Vif and Vpr, both of which are expressed in the cytoplasm, can
independently trigger G2/M cell cycle arrest (233). Vif may also interact with Vpr to mediate the degradation of Vpr and to reduce Vpr-induced cell cycle
arrest (232). (iv) At the late stage of viral transcription, the proteasomal degradation of Tat is induced by viral nucleocapsid (228). Moreover, Rev induces
Tat degradation by downregulating the expression level of the cellular protein NQO1 (216). Question marks indicate unclear interaction domains. Note
that protein shapes do not represent the exact protein structures, nor are the protein sizes to scale.
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Although the Tat-Rev interaction does not induce Rev-me-
diated Tat degradation, Rev causes Tat degradation in the cy-
toplasm by downregulating the level of a host protein called
NAD(p)H:quinine oxidoreductase 1 (NQO1) (216). A host
protein called DEAD box RNA helicase (DDX1) has also been
reported to interact with both HIV-1 Rev and Tat (218). Dur-
ing nuclear export, Rev interacts with DDX1 to promote Rev
multimerization on the Rev response element (RRE) of viral
mRNA (219). Moreover, an HIV-1 Tat mutant, called nullba-
sic, interacts with DDX1 to disrupt the subcellular localization
of Rev, thereby decreasing the expression of Rev-dependent
viral mRNA (218). To counteract this defect, wild-type Tat
interacts with DDX1 to restore the Rev-mediated export of
viral mRNA (218). Regarding the interaction domains, the nu-
clear localization signal (positions 35 to 50) of Rev is vital for
the Tat-Rev interaction (216), whereas interaction domains in
Tat remain unclear. Additional studies are still required to ver-
ify the reproducibility of the Tat-Rev interaction.

Tat-Vpr Interaction

Data from GST pulldown and coimmunoprecipitation assays sug-
gest that HIV-1 Vpr physically interacts with Tat and cyclin T1 in
the nucleus (220). Tat is a regulatory protein known for its inter-
action with positive transcription elongation factor b (pTEFb), a
structural complex consisting of cyclin-dependent kinase 9
(CDK9) and cyclin T1 (221, 222). During viral transcription, a
tertiary complex, Tat-Vpr-pTEFb, is constructed to promote the
superactivation of the HIV-1 long terminal region (LTR), leading
to increased transcriptional activity (220).

Regarding the interaction domains, Vpr may interact with the
Tat domain within amino acid positions 50 to 67 (220). Moreover,
a single substitution, R73S, in Vpr severely reduces the Tat-in-
duced transcription of the HIV-1 LTR, suggesting a key role of
Vpr R73 in modulating Tat activity (220). The exact interaction
domains in Vpr are yet to be clarified. More studies are still needed
to verify the Tat-Vpr interaction, because this interaction has been
reported in only a single study.

Tat-Nef Interaction

The direct interaction between HIV-1 Tat and Nef has been iden-
tified by using coimmunoprecipitation assays, GST pulldown as-
says, and transient-transfection assays (223). Colocalized in the
nucleus, both Tat and Nef can be expressed during preintegra-
tion transcription (Fig. 3). First, Nef induces many host factors
(e.g., CDK9, Tat-SF1, and IRF2) to promote Tat-mediated
transcriptional activity (224). Second, Nef-mediated signaling
can enhance Tat-mediated transcriptional activity via an extra-
cellular signal-regulated kinase (ERK) mitogen-activated pro-
tein kinase (MAPK)-dependent pathway (225). Third, Nef pro-
motes Tat-mediated transcription via the heterogeneous nuclear
ribonucleoprotein K (hnRNP-K)-nucleated signaling complex
(226). Note that hnRNP-K plays essential roles in transcriptional
processes and molecular interactions (227). Overall, Nef exerts an
impact on Tat-mediated transcription either by direct interaction
or by signaling pathways mediated via cellular cofactors (223–
226). The exact protein domains that mediate the Tat-Nef inter-
action remain unclear. Future studies are still required to verify
the Tat-Nef interaction and its functions.

Tat-Nucleocapsid Interaction

The direct interaction between Tat and nucleocapsid has been
detected by using yeast two-hybrid assays, GST pulldown assays,
coimmunoprecipitation assays, and subcellular colocalization as-
says (228). For HIV-1 and HIV-2, both Tat and nucleocapsid are
chaperone proteins that mediate the proper folding of viral RNA
(229, 230). Interestingly, the proteasomal degradation of Tat is
induced by viral nucleocapsid in a ubiquitin-independent man-
ner, subsequently reducing Tat-mediated transcription at the late
stage of viral transcription (228). In the absence of Tat, nucleo-
capsid is localized predominantly in the cytoplasm (228), even
though nucleocapsid can shuttle from the cytoplasm to the nu-
cleus (231). The exact interaction domains in Tat and nucleocap-
sid remain unclear. Additional studies are still required to verify
the Tat-nucleocapsid interaction, because it has been reported in
only a single study.

Vif-Vpr Interaction

HIV-1 Vif may interact with Vpr according to coimmunoprecipi-
tation assays (232). HIV-1 Vpr and Vif share common activities
during the viral life cycle: (i) both HIV-1 proteins independently
cause T-cell cytopathicity (233), (ii) they can promote viral infec-
tions by the induction of cell cycle arrest at the G2/M phase in
dividing cells (234–237), and (iii) HIV-1 Vpr and Vif downregu-
late the antiviral cellular factor APOBEC3G through the protea-
somal degradation pathway (238). On the other hand, Vif may
interact with Vpr to mediate the degradation of Vpr via the ubiq-
uitin and proteasome pathways (232). It has been speculated that
this interaction may modulate Vpr activity in order to decrease the
accumulation of HIV-infected cells at the stage of G2/M cell cycle
arrest (232). Experimental evidence also suggests that the elimi-
nation of both the vif and vpr genes from the HIV-1 genome, but
not each gene individually, prevents cell death and G2/M cell cycle
arrest of HIV-infected cells (233). To our knowledge, the exact
protein domains that mediate the Vpr-Vif interaction remain un-
clear. More studies are still required to verify the Vif-Vpr interac-
tion, as it has been reported in only a single study.

Rev-CRM1-MatrixGag Association

HIV-1 Rev and matrixGag physically interact with a cellular pro-
tein called chromosome region maintenance 1 (CRM1) to export
viral RNA via the Rev-mediated or the Gag-mediated export path-
ways (239–242). As a major pathway, Rev recruits CRM1,
RanGTP, and other host proteins (e.g., DDX3) to export viral
mRNA from the nucleus to the cytoplasm (213, 243). The CRM1-
Rev interaction has been demonstrated by pulldown assays, mam-
malian two-hybrid assays, gel mobility shift assays, and protein
footprinting assays (239, 240). During the early stage of HIV-1
infection, the nuclear export signal of Rev binds to CRM1 and
other cellular factors, leading to the dynamic trafficking of Rev
between the nucleus and the cytoplasm (239, 240).

The CRM1-matrixGag interaction, identified by two-hybrid as-
says, paves the way for the Gag-mediated nuclear export pathway
(242). MatrixGag harbors one nuclear export signal (NES) (posi-
tions 18 and 22) (242) and two nuclear localization signals (NLSs)
(positions 24 to 31 and 110 to 114) (244) (Fig. 2). During the early
stage, matrixGag NLSs promote the nuclear localization of the PIC
in nondividing cells (244). During the late stages of viral transla-
tion, the matrixGag NES is a dominant signal that counteracts the
nuclear import activity of the matrixGag NLS to keep Gag in the
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cytoplasm (242). Although the localization of HIV-1 Gag proteins
in the nucleus has been proposed (214, 242), the nuclear traffick-
ing ability of HIV-1 Gag remains debated (245). Overall, the bind-
ing of CRM1 to Rev and matrixGag plays a key role in the nuclear
export of viral mRNA. Further investigation of Gag-mediated nu-
clear trafficking is still warranted.

Rev-CG1-Vpr Association

Human nucleoporin-like protein 1 (NLP-1 or CG1), which inter-
acts with Rev and Vpr, is an important component of the nuclear
pore complex (NPC) (246, 247). On the one hand, data from
mammalian two-hybrid assays suggest a direct interaction be-
tween Rev and CG1 (246). The Rev-CG1 interaction, which re-
quires the nuclear export signal of Rev (positions 75 to 83), plays a
role in Rev-mediated nuclear export after viral transcription
(246). On the other hand, GST pulldown assays, coimmunopre-
cipitation assays, and yeast two-hybrid assays demonstrate that
CG1 physically interacts with Vpr (247). The Vpr-CG1 interac-
tion enhances the docking of Vpr at the nuclear pore complex,
leading to the accumulation of Vpr in the nuclear envelope (247).
Although it is localized predominantly in the nuclear envelope,
Vpr harboring two nuclear localization signals (positions 17 to 34
and 46 to 74) shuttles rapidly between the nuclear and cytoplasmic
compartments (247–249). Regarding the interaction domains, al-
pha-helix regions of Vpr (positions 17 to 46 [247], L23, and K27
[248]) may interact with the N-terminal region of CG1 (positions
94 to 170 [247]). Overall, the binding of the human protein CG1
to HIV-1 Rev and Vpr plays an important role in HIV-1 nuclear
export.

Tat-p300/SWI/SNF-Integrase Association

Although a direct interaction between Tat and integrase has not
been reported, HIV Tat and integrase are colocalized in the nu-
cleus (Fig. 3), permitting a possible association through nuclear
proteins. The transcriptional coactivator and histone acetyltrans-
ferase p300 is known to regulate chromatin conformation and
DNA transcription (250). Concrete evidence suggests that p300
physically interacts with HIV-1 Tat (251–254) and integrase (255,
256). On the one hand, the acetyltransferase p300 acetylates two
lysine residues (K50 and K51) in HIV-1 Tat, resulting in an im-
provement of the Tat-mediated transcriptional activation of the
HIV-1 promoter as well as an increased binding affinity of acety-
lated Tat for core histones (251, 253). In addition to K50 and K51,
p300 also acetylates K28 in the activation domain of Tat to pro-
mote HIV-1 transcription (257). On the other hand, HIV-1 inte-
grase is subject to posttranslational modifications by cellular co-
factors (e.g., p300) (258, 259). During viral integration, p300
acetylates three lysine residues (K264, K266, and K273) in the
C-terminal domain of viral integrase (255, 256). Although it re-
mains debated (258), the p300-mediated acetylation of HIV-1 in-
tegrase might increase the binding affinity of integrase for nucleo-
somal DNA and promote the integrase strand transfer reaction
(255). In addition to p300, other cellular cofactors (e.g., CREB and
GCN5) are recruited by Tat to promote HIV-1 transactivation
(260–263). Overall, p300 acts as an acetyltransferase to alter the
activities of HIV-1 Tat and integrase.

The SWI/SNF (switch/sucrose nonfermenting) complexes are a
family of ATP-dependent chromatin-remodeling complexes that
utilize the energy of ATP hydrolysis to remodel the nucleosome in
order to make the DNA accessible during transcription, replica-

tion, and DNA repair (264, 265). Human SWI/SNF complexes
consist of multiple subunits, such as a single ATPase (either BRM
or BRG1), three core subunits (BAF47 [also called INI1 or SNF5],
BAF155, and BAF170), and several accessory subunits (e.g., �-ac-
tin) (264). Among these subunits, INI1 (266, 267), BRM (268),
BRG1 (269), and �-actin (269) can physically interact with HIV-1
Tat, while INI1 binds to HIV-1 integrase (270–272). To activate
viral transcription, Tat binds to the transactivation response
(TAR) element, which is a 59-nucleotide stem-loop in viral RNA
(29, 273). Subsequently, Tat recruits pTEFb (a structural complex
with CDK9 and cyclin T1), SWI/SNF chromatin-remodeling
complexes, and other cellular cofactors to the HIV-1 promoter
(268, 274). In this process, p300 acts synergistically with INI1 and
BRG1 to activate the HIV-1 promoter (269). As for the integrase-
SWI/SNF interaction, the binding of the INI1 subunit of SWI/SNF
to HIV-1 integrase not only promotes the efficient integration of
viral DNA into stable nucleosomes (275, 276) but also enhances
the packaging of INI1 (270). Overall, the meticulous associations
between viral proteins (Tat and integrase) and cellular cofactors
(p300 and SWI/SNF) in the nucleus play an important role in
HIV-1 integration and transcription.

VIRAL ASSEMBLY AND BUDDING

As illustrated in Fig. 9, HIV genomic RNA, Vif, Nef, Vpr, Env,
Gag/GagPol precursors, and host factors (e.g., TIP47 [tail-inter-
acting protein of 47 kDa] and lipid) are assembled into nascent
HIV virions, subsequently pinching off from the cell membrane
(2, 30, 277). The presence of multiple HIV proteins in nascent
virions thus establishes a basis for HIV pairwise protein interac-
tions. The amounts of HIV-1 proteins per virion have been quan-
tified in the literature.

For Gag and GagPol, an immature HIV-1 particle contains
�2,400 � 700 copies of Gag precursors, quantified by electron
tomography and scanning transmission electron microscopy
(278). Dot blot assays also measured the ratio of Gag to GagPol to
be 20:1 (279), corresponding to �120 GagPol copies per virion.

For Env, cryo-electron microscopy tomography shows �14
Env spikes per HIV-1 virion (280). Typically, each HIV virion
contains 5 to 15 Env spikes (22).

For Vif, semiquantitative Western blot analyses estimated an
average of 30 to 80 copies of Vif per virion (281). Although con-
troversial results have been reported, it is generally agreed that
there are �100 Vif copies per virion (43, 282, 283).

For Vpr, phosphorimage analyses estimated the molar ratio of
Vpr to capsid to be �1:7 (284). Findings from X-ray crystallo-
graphic analyses suggest that the HIV-1 capsid lattice consists of
�250 hexamers and exactly 12 pentamers of capsid (285), which
correspond to �1,560 capsid monomers per virion. Therefore,
�220 copies of Vpr might be encapsulated per virion.

For Nef, autoradiography and bioimager analyses estimated
that �5 to 10 copies of Nef are incorporated per virion (286).

Previous studies have reviewed the roles of Env trafficking and
packaging (5, 287), HIV-1 genome packaging (288), membrane
lipids (289), and cellular cofactors (290) in promoting viral bud-
ding. Here, we focus on HIV-1 pairwise protein interactions and
associations during viral budding.

MatrixGag-GP41Env Interaction

The GP41CT can physically interact with matrixGag (69–76). The
matrixGag-GP41CT interaction takes part in multiple activities
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during viral budding. (i) This interaction promotes Env packag-
ing (76, 291). (ii) Although the entire matrixGag protein is dispens-
able for Env packaging (182), the matrixGag-GP41Env interaction
enhances the proper intracellular transport of Env glycoproteins
in HIV-infected CD4� T lymphocytes (292). (iii) Given that Gag
and Env proteins are colocalized in the plasma membrane (293),
the matrixGag-GP41CTEnv interaction permits the efficient asso-
ciation of Env glycoproteins anchored with lipid rafts on the
extracellular membrane (294). (iv) Gag may determine the in-
hibition of Env internalization because in the absence of Gag,
Env on the extracellular membrane is rapidly internalized
through endocytosis (295). The presence of Gag decreases the
rate of Env internalization by targeting the internalization mo-
tif in the HIV-1 GP41CT (295). (v) Matrix trimerization that
builds a lattice capable of accommodating the GP41CT is cru-
cial for Env packaging (296). (vi) Human proteins may exert an
impact on the matrixGag-GP41Env interaction. For instance, the
cellular cofactor TIP47 interacts with both matrixGag and Env
during viral budding (297). Because of this, the overexpression
of TIP47 promotes Env packaging, whereas TIP47 depletion
can abolish Env packaging (297).

Regarding the interaction domains, data from mutagenesis

analyses suggest that amino acid substitutions (e.g., E16K, K29E,
K31E, and E99V) in matrixGag can impair Env packaging (74, 75,
292, 298). Substitutions at serine positions (S9, S67, S72, and S77)
in HIV-1 matrixGag dramatically reduce the phosphorylation of
matrixGag and inhibit the binding of matrixGag to lipid rafts,
thereby causing an impairment of Env packaging (299). More-
over, three matrixGag substitutions (L12E, L30E, and V34I) effi-
ciently block Env packaging (71, 76), whereas Y712C/F substitu-
tions in the GP41CT compensate for the impaired infectivity of
virions with the three matrixGag substitutions described above
(70). Other studies have also confirmed that L12 and V34 in ma-
trixGag play a critical role in Env packaging (69, 76).

NCGag-Vif Interaction

Vif physically interacts with nucleocapsid in the Gag precursor
(NCGag), an interaction identified by coimmunoprecipitation as-
says, GST pulldown assays, phage display assays, and mammalian
two-hybrid assays (300–303). This interaction works in three as-
pects. (i) Vif packaging into nascent HIV-1 particles not only re-
quires the binding of Vif to two zinc finger domains in NCGag but
also depends on the interaction between Vif and viral genomic
RNA (300). In the absence of Vif, NCGag is less stably packaged

FIG 9 Schematic model of HIV-1 protein interactions during viral budding. Env trimers are exported to the extracellular membrane through a secretory pathway
(617). Gag and GagPol are targeted to glycolipid-enriched membrane lipid rafts, where cholesterol, sphingolipids, and glycosylphosphatidylinositol-linked
proteins are abundant (618). Several HIV protein interactions have been observed. The first interaction is the matrixGag-GP41Env interaction. Mediated by the
cellular cofactor TIP47, matrixGag interacts with GP41Env for Env packaging into HIV particles (297). Another is the Vpr-Gag interaction. Vpr is incorporated
into nascent virions through the binding of Vpr to NCGag and p6Gag (315, 316, 324). A third interaction is the Vpx-p6Gag interaction. HIV-2 Vpx binds to p6Gag

for Vpx packaging (333). A fourth interaction is the NCGag-Vif interaction. NCGag interacts with Vif for the packaging of Vif (300–303). A fifth interaction is the
Env-Nef interaction. Nef enhances the packaging of Env (339, 341). On the viral membrane, �50 to 63 HLA-II complexes are incorporated per virion (619). As
a capsid-encoding virus (620), HIV is featured by its fullerene cone harboring �250 hexamers and exactly 12 pentamers of HIV-1 capsid (285). Protein shapes
do not indicate exact protein structures, nor are the protein sizes to scale.
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into the HIV-1 core (304). Moreover, Vif and NCGag share com-
mon binding sites on tRNALys3, a cellular primer which is incor-
porated into HIV-1 particles (305). (ii) Despite a small amount of
Vif being imported into HIV-1 particles (306), the Vif-NCGag in-
teraction promotes the stability of HIV-1 core and prevents the
premature degradation or the disassembly of nucleoprotein com-
plexes (304). Vif negatively regulates the NC-assisted maturation
of the viral RNA dimer in nucleoprotein complexes, which in turn
prevents the premature initiation of reverse transcription (133).
(iii) Vif selectively inhibits protease-mediated proteolytic cleavage
between NCGag and SP1Gag (307). In order to keep a low level of
expression of Vif that inhibits protease activity, most newly syn-
thesized Vif proteins are rapidly degraded by cellular proteases
(307). (iv) Vif induces the degradation of the human cytidine
deaminase APOBEC3G via the ubiquitin-proteasome pathway,
thereby preventing the packaging of APOBEC3G into nascent
HIV particles (308, 309). When this Vif-mediated degradation is
impaired under certain circumstances, APOBEC3 proteins are ef-
ficiently incorporated into nascent HIV-1 particles through their
interactions with NCGag or matrixGag (310).

Regarding the interaction domains, two zinc finger domains of
nucleocapsid are essential for Vif packaging (300). Early studies
suggested that nucleocapsid may interact with the motif at the C
terminus of Vif (positions 171 to 192) (303) or Vif domains (po-
sitions 68 to 81, 89 to 100, 162 to 173, and 177 to 189) (301).
Subsequent studies reanalyzed the role of the Vif C terminus and
refuted its interaction with NCGag (302, 311). Instead, the N-ter-
minal domain (positions 1 to 22) and the central domain (posi-
tions 70 to 100) of Vif might interact with NCGag (302).

NCGag-Vpr Interaction

HIV-1 Vpr can interact with nucleocapsid (NCGag) in Gag precur-
sors, an interaction detected by two-hybrid assays, far-Western
blot assays, Vpr binding assays, and competition experiments us-
ing agarose bead-immobilized avidin (312–314). During the early
assembly of Gag, Vpr is encapsulated into nascent viral particles
via its interaction with Gag (312–316). Vpr multimerization is
crucial for the Gag-Vpr interaction (315). On the one hand, NCGag

cooperates with p6Gag to promote Vpr packaging (313), although
NCGag is dispensable for Vpr packaging (317). On the other hand,
Vpr enhances the transcription of unspliced gag transcripts ex-
pressed from unintegrated viral DNA (318). In contrast to the
Vpr-NCGag interaction in HIV, Vpr and Vpx in SIVsm do not bind
to NCGag, suggesting a distinct difference between HIV and SIVsm
proteins (314). In addition, the NC-Vpr structural complex can
activate phosphatase 2A0, a cellular protein that inhibits the tran-
sition of the cell cycle (319).

Regarding the interaction domains, the C-terminal helix do-
main of Vpr (positions 70 to 80) may interact with NCGag (313).
An early study proposed that two zinc finger domains of NCGag

may interact with Vpr (313), but this result was refuted by a sub-
sequent study (314). Future studies are needed to verify their in-
teraction domains.

p6Gag-Vpr Interaction

Vpr can be incorporated into nascent viral particles via its inter-
action with the p6 domain (p6Gag) in Gag precursors (314, 320–
330). This interaction has been identified by using yeast two-
hybrid assays, immunoprecipitation assays, maltose-binding
protein pulldown assays, nuclear magnetic resonance, fluores-

cence lifetime imaging microscopy, and plasmon waveguide res-
onance spectroscopy techniques (314, 315, 322, 328). The binding
affinity between Vpr and p6Gag is increased under the environ-
ment of lipid bilayer membranes (328). Notably, p6Gag cooperates
with NCGag to promote Vpr packaging (313).

Regarding the interaction domains, the F15RFG18 motif (329)
and the leucine-rich motif (L41XXLF45) of p6Gag (314, 320, 325–
327, 330) may interact with the N-terminal domain of Vpr (posi-
tions 18 to 34 [322] and 1 to 71 [327]). The phosphorylation of
position S487 in p6Gag promotes the Gag-Vpr interaction and en-
hances Vpr packaging (331).

p6Gag-Vpx Interaction

HIV-2 and simian immunodeficiency virus (SIV) Vpx proteins
can interact with p6Gag according to coimmunoprecipitation as-
says, GST pulldown assays, yeast two-hybrid assays, and in vitro
binding assays (314, 320, 332, 333). The Vpx-p6Gag interaction
drives Vpx packaging into HIV-2 and SIV particles (314). In con-
trast to the HIV-1 Vpr-NCGag interaction, SIV Vpx does not in-
teract with NCGag (314). In nondividing cells, the conserved do-
main of Vpx (positions 60 to 85) in HIV-2 and SIV is essential for
PIC nuclear import (334, 335). Regarding the interaction do-
mains, the leucine-containing motif D17XAXXLL23 in p6Gag

(320) may bind to SIVmac Vpx (320) and HIV-2 Vpx (positions
73 to 89) (332, 333).

GP41Env-Nef Interaction

HIV-1 binding assays suggest that Nef can physically interact with
the GP41CT (336). This interaction potentially offers a distinct
feature for Nef to protect HIV-1 virions from potent neutralizing
monoclonal antibodies (e.g., 2F5 and 4E10) that target the
GP41CT (337). As an accessory protein with multiple activities,
Nef not only is involved in CD4 downregulation (338, 339) but
also enhances viral entry involving CD4 and chemokine receptors
(286, 340). In the former case, Nef downregulates CD4 to prevent
the aggregation of Env-CD4 complexes in the endoplasmic retic-
ulum (17, 341, 342), thereby inhibiting CD4 packaging into
HIV-1 particles of either CCR5- or CXCR4-tropic strains (343).
HIV-1 Nef also collaborates with Env to activate plasmacytoid
dendritic cells for the production of interferon alpha (IFN-�)
based on CD4-dependent mechanisms (338). Overall, Nef coun-
teracts the inactivation of trimeric Env spikes to promote Env
packaging (344), although Nef is dispensable for viral infection
(345).

Regarding the interaction domains, data from mutagenesis
analyses suggest that the C-terminal domain of Nef (positions 181
to 210) may interact with the C-terminal dileucine motif (posi-
tions 712 to 715) of the GP41CT (336). Deletion of the GP41CT
abrogates the Nef-induced enhancement of viral infectivity in
HIV-infected CD4� T lymphocytes (336). Moreover, the ty-
rosine-based sorting motif (Y712XXL715) in the GP41CT is re-
quired for the efficient intracellular trafficking of Env glycopro-
teins (346). Future studies are still needed to verify the
reproducibility of the GP41CT-Nef interaction.

Gag-RT Interaction

Findings from coimmunoprecipitation assays and Western blot
analyses suggest that HIV-1 RT interacts with Gag for RT packag-
ing (347, 348). HIV-1 matrixGag and p6Gag in Gag might interact
with RT, covering the thumb domain of RT (347). However, the
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occurrence of HIV-1 RT packaging is likely limited, because it is
rare for RT encoded by GagPol to be cleaved by viral protease and
to become mature before viral budding. Precise interaction do-
mains in RT and Gag remain unclear. For future studies, indepen-
dent experiments are still needed to verify the reproducibility of
the Gag-RT interaction.

MatrixGag-RNA-NCGag Association

To our knowledge, a direct interaction between matrix and nu-
cleocapsid has not been reported, despite the finding that the N-
terminal domain of matrixGag in Gag might fold back onto the
C-terminal domain of NCGag for the regulation of Gag assembly
(349). During viral budding, viral genomic RNA interacts with
two Gag domains: matrixGag (350–355) and NCGag (351, 353, 356–
360). The basic residues of HIV-1 NCGag and the N-terminal re-
gion of matrixGag (K26KQYK30) are required for the packaging of
viral genomic RNA (351, 352, 358). Before viral budding, and after
viral budding and maturation, NCGag preferentially binds to the
psi and Rev response elements in the viral genomic RNA, while
NCGag binds to many sites on the HIV-1 genome (353). In addi-
tion to viral RNA, many host proteins (e.g., importin-�/�) also
interact with matrixGag and NCGag for Gag packaging and intra-
cellular trafficking (361).

The matrixGag-RNA-NCGag association allows multiple activi-
ties. (i) This association is critical for genomic RNA packaging
(356). From a broad perspective, viral matrixGag generally con-
tributes to RNA binding and genomic RNA packaging in deltaret-
roviruses (e.g., bovine leukemia virus) (362). (ii) The binding of
Gag to genomic RNA contributes to Gag multimerization (351,
357, 363). (iii) Before the delivery of Gag to appropriate budding
sites, the binding of viral RNA to matrixGag protects matrixGag

from its association with inadequate cellular membranes (350,
355). Thiadiazolanes that target the matrixGag-RNA interaction
can inhibit HIV-1 replication (354). (iv) To promote virus
budding, viral RNA can downregulate Gag membrane binding
(364). In the absence of phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P2], viral RNA interacts with matrixGag to abolish the
binding of Gag to liposomes (364). (v) MatrixGag inhibits the an-
nealing of primer tRNALys3 onto viral genomic RNA, whereas NC-
Gag is essential for tRNALys3 annealing (365). MatrixGag exclusively
interacts with cellular tRNAs (e.g., tRNALys3) in the cytosol,
thereby regulating Gag binding to cell membranes (353). Overall,
the matrixGag-RNA-NCGag association plays a critical role in viral
budding.

CapsidGag-LysRS-Vpr Association

Recognized as a conserved cellular enzyme, lysyl-tRNA synthetase
(LysRS) takes part in protein synthesis and circulates in multiple
compartments (the nucleus, mitochondria, and plasma mem-
brane) for transcriptional regulation, cytokine-like signaling, and
the transport of proteins to the cell membrane (366). Although a
direct interaction between capsid and Vpr has not been reported
to our knowledge, LysRS physically interacts with both HIV-1 Vpr
(159) and capsidGag (367–369). On the one hand, HIV-1 Vpr in-
teracts with LysRS to inhibit the LysRS-catalyzed aminoacylation
of tRNALys3, although the accessory protein Vpr is dispensable for
viral production (159). During viral budding, tRNALys3 is incor-
porated into HIV-1 particles (367, 370, 371). On the other hand,
newly synthesized LysRS binds rapidly to capsidGag on the plasma
membrane during the course of viral budding, thereby avoiding

the localization of LysRS to other cellular compartments (367).
This process permits the incorporation of �25 LysRS molecules
per HIV-1 particle (372).

Regarding the interaction domains, the C-terminal domain of
capsid (positions 177 to 231) may interact with amino acid posi-
tions 208 to 259 within the dimerization helix of LysRS (369, 373).
The homodimerization of Gag and LysRS indeed contributes to
the capsidGag-LysRS interaction (368). LysRS interacts with the
N-terminal domain of HIV-1 Vpr (positions 1 to 39) (159). Over-
all, LysRS binds to capsidGag for its packaging and interacts with
Vpr to prevent the LysRS-mediated aminoacylation of tRNALys3.

Gag-AIP1-Nef

As an accessory protein known for its multiple activities, Nef not
only increases the total amount of Gag proteins localized at the
plasma membrane but also enhances cell-to-cell viral infection in
primary CD4� lymphocytes (374). Although a direct interaction
between Gag and Nef has not been reported to our knowledge,
both NCGag and Nef bind to AIP1 for efficient viral budding (375–
378). AIP1 (apoptosis-linked gene 2 [ALG2]-interacting protein
1) (also known as Alix or PDCD6IP) is associated with the endo-
somal sorting complex required for transport (ESCRT) machin-
ery (377). The ESCRT machinery is known for promoting cargo
sorting and multivesicular body biogenesis (379). On the one
hand, GST pulldown assays demonstrate the physical interaction
between NCGag and the Bro1 domain of AIP1 (378). On the other
hand, data from GST pulldown and coimmunoprecipitation as-
says suggest that Nef physically binds to AIP1 (375, 377). The
Nef-AIP1 interaction not only promotes the proliferation of mul-
tivesicular bodies (375) but also facilitates CD4 degradation
through lysosomal pathways (377). HIV-1 Nef and glycosylated
Gag cooperatively downregulate two transmembrane proteins,
serine incorporator 3 (SERINC3) and SERINC5, from the cell
surface to prevent their packaging, consequently counteracting
their antiviral activity (380).

Regarding interaction domains, the Brol1 and V domains of
AIP1 interact with Nef (377). The first 202 positions in the Brol1
domain of AIP1 bind to the zinc finger and N-terminal domains of
NCGag (376, 378, 381), particularly key positions such as R3, R7,
R10, K11, K14, K20, and R26 (382). Data from crystallization
analyses also suggest that amino acid position F105 at the unique
extended loop of AIP1 is crucial for HIV-1 budding (383). More-
over, the Y135PLT138 motif in Nef may interact with AIP1 (375).

NCGag-Tsg101/AIP1-P6Gag Association

Two cellular proteins, Tsg101 and AIP1 (also termed Alix), are
important components of the ESCRT machinery, which initiates
protein sorting into late endosomes (379, 384). During the early
stage of viral budding, the Gag protein in its ubiquitinated form
recruits AIP1 and Tsg101/ESCRT-I to initiate ESCRT-mediated
assembly (385). Thereafter, the downstream ESCRT-III and VPS4
factors are recruited to complete viral budding (386). Experimen-
tal evidence suggests that HIV-1 NCGag physically interacts with
AIP1 (378) and Tsg101 (387). In addition, HIV-1 p6Gag interacts
with AIP1 (386, 388, 389) and Tsg101 (390). During viral bud-
ding, AIP1 is packaged into viral particles through the interaction
between the Bro1 domain of AIP1 and the zinc finger domains of
NCGag (378). Moreover, the binding of Gag to the ESCRT machin-
ery is vital for virus scission from the extracellular membrane of
HIV-infected cells (382). Notably, the NCGag-AIP1 interaction re-
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quires the involvement of RNA (376) and the cellular protein
galectin-3 (391). In the former case, viral RNA bridges the inter-
action between NCGag and AIP1 (376). In the latter case, galectin-3
interacts with AIP1 to promote the AIP1-p6Gag interaction (391).

Regarding the interaction domains, the Bro1 and V domains of
AIP1 can bind to NCGag and p6Gag, respectively (376, 378). The
N-terminal basic residues and zinc finger domains of NCGag in-
teract with AIP1 (381). Two motifs, P7TAP10 and L35YPXnL, in
p6Gag interact with the cellular proteins Tsg101 and AIP1, respec-
tively (381). Moreover, the C-terminal proline-rich domain of
AIP1 (positions 391 to 510) may interact with p6Gag (388), while
the N-terminal domain of Tsg101 binds to the P7TAPP11 motif in
p6Gag (390). Overall, NCGag and p6Gag in Gag cooperatively inter-
act with Tsg101 and AIP1 to recruit the ESCRT machinery for
viral budding.

Vif-APOBEC3G-Integrase Association

Although a direct interaction between HIV-1 integrase and Vif has
not been reported, integrase and Vif interact with apolipoprotein
B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G or
A3G) (33–43). APOBEC3 proteins from the human APOBEC3
family of DNA cytosine deaminases are known as anti-HIV cellu-
lar proteins that impair viral DNA synthesis and integration by
introducing G-to-A hypermutation to the viral genome (43, 392–
394). APOBEC3G physically interacts with HIV-1 integrase to
prohibit the formation of proviral DNA (33). To counteract this
restriction, Vif physically interacts with APOBEC3G for the
degradation of APOBEC3G (35, 36, 39–42, 395). HIV-1 Vif in
complex with cellular proteins (e.g., Cul5, Rbx1, and elongins
B and C) induces the ubiquitination and proteasomal degrada-
tion of APOBEC3G in the cytoplasm (38). Moreover, Vif inter-
acts with the transcription cofactor CBF-� to enhance the deg-
radation of APOBEC3G (396). In studies of four subspecies of
African green monkey, it has been shown that APOBEC3G is
adaptively diversifying within hosts because of the antago-
nism-driven coevolution between Vif and APOBEC3G (397).
In addition to APOBEC3G, Vif binds to other proteins in the
human APOBEC3 family (e.g., APOBEC3C [398, 399] and
APOBEC3F [43, 400]). Alanine-scanning analyses revealed six Vif
residues (D14, R15, M16, W79, D172, and W174) in three con-
served motifs that are essential for the degradation of APOBEC3C
and APOBEC3F (401).

Interaction domains of integrase-APOBEC3G and APOBEC3G-
Vif interactions have been investigated by extensive studies. In the
former case, the C-terminal domain of HIV-1 integrase (positions
213 to 288) may interact with the link domain of APOBEC3G
(positions 104 to 156) (33). In the latter case, HIV-1 Vif binds
to the N-terminal domain of APOBEC3G within the �1-�1,
�2-�2, and �4-�4 loop regions (395). The P161PLP164 motif of
Vif is essential because mutations at this motif disrupt the Vif-
APOBEC3G interaction, triggering the escape of APOBEC3G,
which allows APOBEC3G packaging into nascent HIV particles
(36). In summary, many Vif motifs have been found to interact
with APOBEC3G, such as D14RMR17 (39), W21xSLVK26 (402),
Y40RHHY44 (39), V55xIPLx4 –5Lx	x2YWxL72 (403), Y69xxL72

(404), L81GxGxxIxW89 (41), P161PLP164 (36, 405), E171DRW174

(41), and T(Q/D/E)x5ADx2(I/L), located between positions 96
and 107 (42). Additional studies are still needed to investigate
whether these Vif motifs vary due to different protein interaction
interfaces or due to different experimental settings.

Vif-MAPK/HCK-Nef Association

MAPK is a serine/threonine/tyrosine-selective protein kinase that
phosphorylates multiple HIV-1 proteins, such as matrix, Vif, Tat,
Rev, and Nef (406). Specifically, MAPK phosphorylates HIV-1 Vif
positions T96 and S165 to downregulate viral replication (407).
To counteract this defect, the proline-rich repeat region of Nef
(positions 69 to 83) physically interacts with MAPK (408). This
interaction allows HIV-1 Nef to inhibit the kinase activity of
MAPK (408). In fact, Nef not only alters the activity of the MAPK
pathway for T-cell receptor stimulation in primary CD4 T cells
(409) but also induces many transcription factors (e.g., activator
protein 1) (410). In astrocytes, MAPK and hematopoietic cell ki-
nase (HCK) signaling pathways take part in the production of
Nef-induced interleukin-6 (IL-6), interleukin-8 (IL-8), and
chemokine (C-C motif) ligand 5 (CCL5) (411, 412).

As a member of the Src family of tyrosine kinases, HCK plays a
role in the innate immune response and many signaling pathways
(413, 414). HCK physically interacts with HIV-1 Vif (415, 416)
and Nef (417–422). Specifically, the SH3 domain of HCK binds to
the proline-rich motif P72QVP75 in the N-terminal anchor do-
main of Nef (422, 423) as well as the P161PLP164 motif in HIV-1 Vif
(415). The SH2 and SH3 domains of HCK physically interact with
the P72xxP75 motif of HIV-1 Nef to stabilize the functional con-
formation of the Nef dimer (421). Multiple functions of the Vif-
HCK-Nef association have been characterized. (i) Vif interacts
with HCK to counteract the HCK-mediated inhibition of viral
release (416). (ii) HIV-1 Nef can selectively activate HCK (418).
This activation can inhibit the functions of macrophage colony-
stimulating factor (M-CSF) receptor in monocytes and macro-
phages (424). The direct interaction between Nef and HCK in-
duces the activation of HCK, which is indispensable for the
downregulation of the M-CSF receptor Fms accumulated as an
immature protein at the Golgi apparatus (420). (iii) The Nef-HCK
interaction promotes viral growth of Nef-positive (Nef�) viruses
but does not alter CD4 downregulation (425). (iv) HCK is in-
volved in the Nef-mediated downregulation of CD1 expression in
dendritic cells (426). In addition to HCK, other Src family mem-
bers (e.g., Lyn and c-Src) interact with Nef (418).

Overall, Nef activates the HCK pathway to downregulate cell
surface receptors (419, 420), but Vif counteracts the HCK-medi-
ated inhibition of viral release. Moreover, MAPK phosphorylates
Vif, whereas Nef inhibits the kinase activity of MAPK.

Vpu-CD4-GP120Env Association

As a key receptor on cell membranes, CD4 is known to physically
interact with GP120 (427–432) and Vpu (14, 19, 433). Due to the
flexible nature of HIV-1 Env, the closed and open conformations
of Env drive the dynamic binding of Env to CD4, coreceptors, and
antibodies (56, 434). To promote viral entry, GP120 interacts with
CD4 to trigger profound dynamic structural rearrangements and
to induce the aggregation of CD4 and coreceptors (e.g., CCR5)
(427, 435–439). During viral budding, this aggregation, however,
prohibits the packaging of Env into viral particles (12–17). As of
today, a large number of antibodies (e.g., VRC01) that target
CD4-binding sites in GP120 have been demonstrated to have a
broad and potent activity of neutralization (440–446). Many an-
tiviral agents (e.g., NBD556) against the GP120-CD4 interaction
are under investigation (447–449).

As an accessory protein with high sequence variability, HIV-1
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Vpu not only enhances viral budding but also induces CD4 deg-
radation (14, 15, 450). HIV-1 Vpu is colocalized with Env and Gag
in the trans-Golgi network (451). The binding of HIV-1 Vpu to
newly synthesized CD4 causes the retention of CD4 in the ER and,
subsequently, the delivery of CD4 to the ER-associated degrada-
tion pathway (12–19). The rapid downregulation of CD4 reduces
the amount of Env-CD4 structural complexes in the ER, thus pro-
moting the transport of Env to the Golgi apparatus, where oligo-
saccharide modifications take place (12, 13, 19, 452). The Vpu-
CD4 interaction requires the phosphorylated Vpu monomer as
the active structure, because monomeric but not multimeric Vpu
acts on CD4 downregulation (19), and phosphorylated but not
nonphosphorylated Vpu triggers CD4 degradation (453). Many
cellular proteins, such as �TrCP, also take part in the Vpu-depen-
dent degradation of CD4 (15, 18). Overall, HIV-1 Vpu induces
CD4 degradation to promote Env packaging.

Vpu-Tetherin/CD4-Nef Association

Although a direct interaction between HIV-1 Vpu and Nef is yet to
be explored, Vpu and Nef share common activities to downregu-
late various host proteins (e.g., tetherin, CD4, and CD62L) (341,
454, 455). It has been shown that human tetherin (also termed
BST2) interacts with Vpu (456–463) and Nef (464). Meanwhile,
CD4 physically binds to Vpu (14, 19, 433) and Nef (465). To
explore possible associations between HIV-1 Vpu and Nef, we
focus on the downregulation of tetherin and CD4 induced by Vpu
and Nef.

Human tetherin is known for its antiviral activity that restricts
viral budding, whereas this mechanism is antagonized by HIV-1
Vpu and Nef, resulting in the promotion of viral budding (457,
466–468). Although the exact mechanisms of Vpu action remain
debated (469), the binding of HIV-1 Vpu to tetherin leads to the
capture of tetherin (459) and subsequently to the downregulation
of tetherin via lysosomal and/or proteasomal degradation (459,
461). Different aspects of this mechanism have been reported. (i)
HIV-1 Vpu hijacks trafficking pathways of the clathrin adaptor
protein complex 1 (AP1) and adaptor protein complex 2 (AP2) to
induce postendocytic membrane trafficking events that remove
tetherin from the cell membrane (456, 458). (ii) Despite the fact
that tetherin enhances the susceptibility of HIV-infected cells to
antibodies, HIV-1 Vpu and Nef antagonize tetherin to protect
HIV-infected cells from antibody-dependent cell-mediated cyto-
toxicity, a type of human immune response where virus-specific
antibodies activate the killing of HIV-infected cells (470–472).
(iii) Among four HIV-1 groups (groups M, N, O, and P), only
HIV-1 group M encodes Vpu that robustly counteracts human
tetherin (473). Interestingly, the Nef-mediated antagonism of hu-
man tetherin is conceived to have evolved before the spread of
HIV-1 group O (474).

HIV-1 Vpu and Nef act synergistically to counteract CD4 ex-
pression on the HIV-infected cell membrane that deleteriously
blocks Env packaging into nascent HIV particles (341). On the one
hand, HIV-1 Vpu determines CD4 downregulation by capturing
newly synthesized CD4 in the ER, and the ER-retained CD4 is
subsequently redistributed to the ER-associated degradation
pathway (19). On the other hand, HIV-1 Nef in complex with AP2
interacts with the cytosolic tail of cell surface CD4, causing the
internalization of cell surface CD4 to endosomes (475, 476).
HIV-1 Nef also mediates the postendocytic targeting of internal-
ized CD4 from the endosomes to the multivesicular body path-

way, leading to the eventual degradation of CD4 in lysosomes
(477). In addition to CD4, HIV-1 Vpu and Nef downregulate a
broad spectrum of more than 32 cell surface receptors (454). Sig-
nificant downregulation has been observed in the tetraspanin pro-
tein family harboring various cellular proteins (e.g., CD9, CD53,
CD63, CD81, and CD82) that take part in membrane-based pro-
cesses (454, 478). As another example, HIV-1 Nef and Vpu inhibit
the adhesion and the signaling of L-selection (CD62L) to keep
HIV-infected cells away from lymph nodes, a mechanism for
HIV-1 to escape from host immune surveillance (455). In the
presence of HIV-1 Vpu, Nef acts synergistically to downregulate
PVR, a ligand that activates the receptor CD226 in natural killer
cells and CD8� T cells against HIV-1 infections (479). Overall,
HIV-1 Vpu and Nef can downregulate various cellular proteins to
enhance viral budding.

Vpu-CK2-Rev Association

Casein kinase 2 (CK2) is a ubiquitous serine/threonine-selective
protein kinase in all eukaryotes (480, 481). CK2 not only phos-
phorylates serine residues S52 and S56 at the cytoplasmic domain
of HIV-1 Vpu (453, 482) but also phosphorylates HIV-1 Rev ser-
ine residues S5 and S8 to downregulate viral production (483,
484). In the former case, CK2-catalyzed phosphorylation is critical
for Vpu-mediated CD4 degradation (453, 482). In the latter case,
the regulatory beta subunit of CK2 binds to the N-terminal do-
main of Rev via electrostatic and hydrophobic interactions (483,
485). HIV-1 Rev harboring its arginine-rich domain (positions 35
to 50) activates CK2 to promote viral replication (484). Overall,
the Vpu-CK2-Rev association makes it possible for Rev to trigger
the activity of CK2, which phosphorylates HIV-1 Vpu for CD4
degradation.

Vpu-UBP-MatrixGag Association

Although a direct interaction between HIV-1 Vpu and Gag has
not been reported, a Vpu-binding protein (UBP) has been iden-
tified to mediate the functional association between HIV-1 Vpu
and matrixGag in Gag (486–489). HIV-1 Vpu can redistribute UBP
and Gag to the intracellular membrane of HIV-1-infected cells
(488). Newly synthesized Gag is initially transported to the extra-
cellular membrane, where the endocytic uptake of Gag is dis-
missed in the presence of HIV-1 Vpu (490). In contrast, the
absence of HIV-1 Vpu causes a significant amount of Gag to be
redistributed to internal membranes for endocytosis (490). In-
terestingly, Vpu start codon mutants can rescue the impaired
viral infectivity of a matrix mutant with the amino acid substi-
tution L30E (491). Overall, HIV-1 Vpu collaborates with UBP
to inhibit the endosomal accumulation of Gag in late endo-
somes, an inhibition process that enhances viral budding (492–
494).

VIRAL MATURATION

After viral budding, immature HIV virions undergo maturation
processes during which Gag and GagPol precursors are cleaved
into mature proteins based on protease-mediated proteolytic pro-
cessing (Fig. 10). Information about HIV maturation, core mor-
phology, and Gag protein structures has been reviewed elsewhere
(1, 2, 30, 31). Here, we focus on HIV-1 pairwise protein interac-
tions that take place during viral maturation.
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FIG 10 HIV-1 morphology, schematic model of protease-mediated proteolytic processing, and protease-substrate structural complexes. (A) Morphology of
HIV-1 immature and mature particles during viral maturation. Schematic models of HIV-1 immature and mature particles are also illustrated. Protease-
mediated proteolytic processing triggers the maturation of viral proteins inside HIV particles, resulting in significant changes of virion morphology. Electron
micrograph images of HIV virions were obtained from the Centers for Disease Control and Prevention (CDC/Maureen Metcalfe and Tom Hodge; http://phil
.cdc.gov/phil/details_linked.asp?pid
13472). (B) Protease-mediated proteolytic processing on Gag and GagPol precursors during viral maturation. Five steps
have been recorded. First, GagPol dimerization within two GagPol precursors induces the activation of protease dimers with low enzymatic activity (507). Gag
and GagPol dimerization occurs before their anchoring to the cell membrane, while GagPol is efficiently packaged into nascent viral particles through its
interaction with Gag (621). The transframe region p6* in GagPol prevents premature protease-mediated proteolytic processing (508). The second step is
protease-mediated intramolecular (cis) autoprocessing. The connection link between SP1 and nucleocapsid is cleaved by protease within the same GagPol dimer
(622). The third step is protease-mediated intermolecular (trans) autoprocessing. HIV protease in one GagPol dimer further cleaves multiple cleavage sites
(NC-p6*, p6*-protease, MA-CA, CA-SP1, protease-p51, protease-p66, p66-integrase, p51-p15, and p15-integrase) in another GagPol dimer (593, 623). After
GagPol cleavage, HIV protease, integrase, RT, capsid, and nucleocapsid are folded properly. The fourth step is protease-mediated proteolytic processing of Gag.
Mature viral protease cleaves Gag precursors in a specific order: SP1-NC, SP2-p6, MA-CA, CA-SP1, and NC-SP2 (31). This process releases MA, CA, SP1, NC,
SP2, and p6 from Gag precursors. In the fifth step, during the maturation of HIV-1 proteins, a series of conformation rearrangements turns immature particles
into mature particles (624). Note that protein shapes do not represent the exact protein structures, nor are the protein sizes to scale. (C) HIV-1 protease structures
crystallized with 6 substrate peptides derived from Gag and GagPol cleavage sites. Upstream and downstream amino acids of Gag cleavage sites are shown in red
and yellow, respectively. See Table S1 in the supplemental material for PDB accession numbers.
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Protease-Gag/GagPol Interaction

HIV protease cleaves its substrates (Gag and GagPol) at specific
cleavage sites (495–497), a mechanism called protease-mediated
proteolytic processing (Fig. 10). This important mechanism al-
lows the maturation of HIV structural proteins (matrix, capsid,
nucleocapsid, and p6) and enzymatic proteins (protease, RT, and
integrase), thereby transforming immature virions into mature
virions with the full capacity for new viral infections (498). As of
today, it remains a challenge to resolve the protein structures of
full-length Gag and protease in order to identify exact interaction
positions in Gag that bind to viral protease. Although the full-
length structure of Gag in complex with viral protease has not
been resolved, the tertiary structures of protease in complex with
peptides near the Gag cleavage sites reveal that protease or Gag
substitutions contribute to weak binding (499), low interaction
energies (500), and reduced van der Waals contacts (501). Recent
findings also suggest that amino acid substitutions in Gag induce
significant resistance to protease inhibitors (PIs), causing treat-
ment failure in patients receiving PI-based therapies (502–505). In
the presence of protease drug-resistant mutations, cleavage site
mutations in Gag and GagPol compensate for impaired protease-
mediated cleavages (497, 505). This novel mechanism of HIV drug
resistance is discussed below.

GagPol precursors harbor the transframe region p6* at the
neighboring region of protease (Fig. 10). At the initial stage of viral
maturation, the autoprocessing of HIV protease at the GagPol
dimer produces mature viral enzymes (506, 507). As demon-
strated by kinetic analyses and cross-linking experiments, p6*
inhibits HIV-1 protease activity via a direct interaction (508–
510). Multiple activities of p6* have also been reported. (i) p6*
prevents protease activities until viral assembly is completed,
therefore counteracting premature enzymatic processing
(510). In line with this evidence, a complete deletion of p6*
enhances protease-mediated proteolytic processing (511). (ii)
Cleavages on incorrect p6* positions may significantly reduce
the maturation of viral particles, highlighting the importance
of accurate cleavages at p6* for protease activation (512). (iii)
Although GagPol precursors lacking the p6* region could be
incorporated into HIV-1 particles, p6* exerts negative regula-
tion on protease dimerization, and it is indispensable for pro-
tease-mediated maturation (513).

Although interaction domains are yet to be explored, non-ac-
tive-site residues and the C-terminal domain of p6* may regulate
embedded protease functions by modulating protease conforma-
tions (514). The hydrophilic tripeptides (E4DL6 and E4DF6) at the
N-terminal domain (509) and S65FNF68 at the C-terminal domain
(508) of p6* may block the substrate-binding cleft of HIV-1 pro-
tease. Moreover, the central domain of p6* is unlikely to modulate
protease activity (515).

Protease-Vif Interaction

Findings from coimmunoprecipitation assays, ELISAs, and
HIV-1 binding assays suggest that HIV-1 Vif physically interacts
with protease (282, 516, 517). To inhibit the premature activation
of viral protease, HIV-1 Vif interacts with protease to interfere
with protease dimerization (516–518). The binding of Vif to pro-
tease might take place inside HIV-1-infected cells prior to viral
budding, potentially interrupting the autoprocessing of Gag and
GagPol precursors (518). Accumulated evidence suggests that Vif

selectively inhibits protease-mediated proteolytic processing at
specific cleavage sites (e.g., matrix � capsid [518] and SP1 � NC
[307]). Although it remains debated, the Vif-protease interaction
is speculated to inhibit the protease digestion of cellular cofactors
(516, 519).

Regarding the interaction domains, the N-terminal domain of
protease (positions 1 to 9 [516, 517]) may interact with the central
domain of Vif (positions 78 to 98 [516, 519]). Of interest, Vif-
derived peptides (positions 21 to 65 [520], 30 to 65 [519], 81 to 88
[521], 78 to 98 [519], and 88 to 98 [521]) may efficiently inhibit
HIV-1 protease activity.

Protease-RT Interaction

Data from coimmunoprecipitation analyses and ELISAs suggest a
direct interaction between HIV-1 protease and RT (522). On the
one hand, HIV-1 heterodimeric RT contributes to efficient pro-
tease-mediated proteolytic processing at many cleavage sites (e.g.,
RT-integrase) (523). HIV-1 RT upregulates protease activity in a
concentration-dependent manner, but this upregulation is inde-
pendent of pH and ionic strength (523). On the other hand,
HIV-1 protease may inhibit DNA synthesis by heterodimeric RT
(522). However, HIV-1 protease does not affect the activity of the
RNase H domain in RT (522). Future studies are still needed to
verify the protease-RT interaction, because this interaction has
been reported by only a single study.

Regarding the interaction positions, alanine substitutions
(T128A, Y146A, W398A, W401A, and W406A) in RT severely
impair the efficiency of protease cleavages on Gag and GagPol
precursors (524, 525). The decreased stability of RT mutants
(e.g., F130W), however, increases the susceptibility of HIV-1
RT to protease-mediated degradation (526). Moreover, HIV-1
RT substitutions (e.g., L264S, I274T, L279S, and L310S) induce
the misfolding and misprocessing of GagPol precursors, lead-
ing to the impairment of protease-mediated cleavages (527).

Protease-Nef Interaction

HIV-1 protease cleaves most Nef molecules at a location between
positions W57 and L58 (AW57 � L58E) (528–531), while the cleav-
age site in HIV-2 Nef is located between Y39 and S40 (EY39 � S40Q)
(532). This protease-mediated cleavage may take place inside HIV
particles given the fact that a small amount of Nef is incorporated
into HIV virions (286, 531, 533). Being independent of Nef my-
ristoylation (532) and CD4 downregulation (534), this cleavage
dissociates Nef into two parts: the N-terminal myristoylated
membrane anchor domain and the C-terminal core domain (286,
530, 533). The former domain determines Nef packaging and CD4
downregulation (535). The latter domain might be stably associ-
ated with the viral core within mature HIV-1 particles (536). Full-
length Nef inhibits protease activity, while the absence of Nef
could decrease the production of mature viral particles (537). In
comparisons of the activities of HIV-1 and HIV-2 proteases, it was
found that Nef is cleaved more selectively by HIV-1 protease than
by HIV-2 protease (532).

Regarding the cleavage sites, the fully conserved residue W57
and the relatively conserved residue L58 in HIV-1 Nef have been
demonstrated in large-scale sequence data sets (4). Mutagenesis
analyses also suggest that the alanine substitution W57A substan-
tially decreases the efficiency of Nef processing, whereas L58A has
little to no impact (530).
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Protease-GP41CT Interaction

During viral maturation, HIV-1 protease cleaves the GP41CT
(538, 539). This cleavage produces large truncations in the
GP41CT, causing resistance to an entry inhibitor called ampho-
tericin B methyl ester (AME) (538, 539). Three protease-mediated
cleavage sites (P203 � L204, S205 � F206, and R236 � L237) at the GP41CT
generate large truncations of �140 amino acids, a mechanism that
has been speculated to induce conformation changes to the exter-
nal regions of Env glycoproteins (538, 539). Although the pro-
tease-mediated cleavage of the GP41CT allows the virus to de-
velop AME resistance, large truncations of the GP41CT may
impair viral entry and reduce viral fitness (539). Apart from the
fact that AME has not been approved for HIV treatment, it re-
mains unclear whether the cleavage of the GP41CT takes part in
other biological activities.

ABSENCE OF HIV PAIRWISE PROTEIN INTERACTIONS

Although more than 34 HIV pairwise protein interactions have
been discovered (Fig. 11 and 12), the absence of several HIV pro-
tein interactions has also been investigated.

Absence of Vif-Capsid Interaction

A possible association between Vif and capsidGag was initially pro-
posed because short deletions in capsidGag (positions 284 to 304
and 350 to 362) may enhance Vif packaging (306). Independent
analyses, however, suggested that Vif could not interact with ma-
ture capsid in HIV-1-infected H9 cells (303). In fact, Vif packaging
does not require a direct interaction between Vif and capsidGag;
instead, it requires the binding of Vif to NCGag and/or to viral
genomic RNA (300–303, 311).

Absence of p6Gag-Vif Interaction

It has been shown that p6Gag is dispensable for Vif packaging,
because a complete truncation of p6Gag does not prevent Vif pack-
aging (540). As a matter of fact, Vif packaging requires the binding
of Vif to NCGag and/or viral genomic RNA (300–303, 311).

Absence of Matrix-Nef Interaction

HIV-1 matrix is dispensable for Nef-enhanced virus infectivity
(541), even though the serine phosphorylation of HIV-1 matrix is
promoted by the interaction between Nef and the human serine
kinase PAK65 (542). More importantly, results from GST pull-
down assays suggest that Nef cannot physically interact with
HIV-1 Gag (543).

Absence of p6*-Nef Interaction

An early study suggested that Nef might interact with the trans-
frame domain p6* in GagPol precursors (Fig. 10) by using GST
pulldown and coimmunoprecipitation assays (543, 544). It was
proposed that this interaction could enhance Nef packaging
and viral infectivity (543, 544). However, subsequent analyses
refuted these results. First, clustered substitutions in p6* did
not affect Nef packaging (545). Second, viral infectivity is re-
duced in HIV-1 mutants with 40 substitutions of the 56 total
residues in p6*, but this phenomenon is observed to be in a
Nef-independent manner (545). Third, Nef packaging is medi-
ated by the plasma membrane via a bipartite membrane loca-
tion signal of Nef (533). Importantly, Nef can be packaged in
the absence of GagPol (533). Fourth, the presence of Nef inside
viral particles does not increase HIV-1 infectivity (546). To
unveil how Nef improves viral infectivity, a recent study sug-

FIG 11 HIV protein-protein interaction networks. Surface or cartoon representations of 16 HIV protein structures are shown in squares. Three types of colored
arrows represent HIV pairwise protein interactions between 16 mature HIV proteins. Green arrows, well-known interactions that have been cited �300 times or
have been reported by at least 3 publications with more than 100 citations in total (see Table S2 in the supplemental material); gray arrows, little-known
interactions that have been reported by a single paper with fewer than 100 citations; blue arrows, lesser-known interactions, including the remaining interactions.
Four protein groups are shown background areas. Gray, Env glycoproteins; blue, regulatory proteins; pink, viral enzymes; yellow, structural proteins. According
to our current knowledge, neither mature capsid nor Vpu physically interacts with any other HIV proteins.
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gests that Nef inhibits the packaging of the host transmem-
brane proteins SERINC3 and SERINC5 to counteract their an-
tiviral activity that inhibits HIV-1 production in primary
human blood cells (547). Overall, p6* is unlikely to take part in
Nef packaging or in Nef-mediated viral infectivity.

Absence of Vif-Env Interaction

An early study suggested that Vif may regulate Env structural
conformations via its interaction with the GP41CT (548). Nev-
ertheless, three subsequent studies refuted such an associa-
tion by demonstrating that (i) the replication capacity of

HIV-1 mutants with deletions in the GP41CT was independent
of Vif activity (549); (ii) Vif functions are unrelated to Env, and
Vif does not influence Env packaging (550); and (iii) GP41 is
intact in cells infected with either the wild type or a Vif mutant
(551).

Absence of Vpx-NCGag Interaction

Data from yeast two-hybrid assays suggest that SIV Vpx does not
interact with NCGag (314), although HIV-1 Vpr interacts with
both NCGag and p6Gag (315, 316, 324).

FIG 12 Summary of possible HIV-1 pairwise protein associations. The names of 15 HIV-1 proteins are shown at the left and top. Five HIV-1 protein classes
(envelope glycoproteins, regulatory proteins, accessory proteins, viral enzymes, and structural proteins) are shown on the left. The biological functions of HIV-1
pairwise protein associations are shown at the top right. Protein functions are mapped with different colors. If one protein association bears multiple functions,
at most two major functions are annotated, and the mapped squares combine different colors inside. At the bottom is a summary of HIV-1 pairwise protein
associations. Black stars indicate protein associations where two HIV-1 proteins are associated via a third molecule (Table 3), and black horizontal lines indicate
impractical interactions between HIV-1 proteins, which are unlikely to take place during the HIV-1 life cycle (see the text for details). Empty squares without any
mark inside imply that HIV protein associations or interactions remain unclear. Note that interactions involved with Gag and Env precursors are decomposed
into individual protein interactions. For instance, the Gag-RT interaction (347) is decomposed into the matrix-RT and p6-RT interactions. The Gag-Vpr
interaction leads to the NC-Vpr and p6-Vpr interactions. MatrixGag connecting with capsidGag in Gag results in the matrix-capsid interaction. Due to the limited
number of reports on HIV-2, only information on HIV-1 protein associations is presented.
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Absence of Other HIV Protein Interactions

Based on protein activities and localizations during the HIV-1 life
cycle, the absence of the following HIV-1 protein interactions
could be speculated based on our current knowledge:

1. HIV-1 Vpu circulates mainly in the cytoplasm, and it is
rarely observed in the nucleus, the RTC, the PIC, and nas-
cent HIV-1 particles, where protease, RT, and integrase are
localized (Fig. 3). It is therefore tempting to speculate that
HIV-1 Vpu might be unlikely to interact with these viral
enzymes during the HIV-1 life cycle.

2. GP120 is an envelope glycoprotein anchored mostly on cel-
lular membranes and the membrane surface of HIV-1 par-
ticles (Fig. 5). This limits the possible interactions between
GP120 and HIV structural/enzymatic proteins (matrix,
capsid, nucleocapsid, p6, protease, RT, and integrase).

3. GP41 in Env spikes is anchored mostly on cellular and viral
membranes. GP41 is cleaved by protease and interacts with
matrix, whereas it is absent in the nucleus, the viral core, the
RTC, and the PIC (Fig. 7). It is thus tempting to speculate
that GP41 might be unlikely to interact with either capsid,
nucleocapsid, p6, RT, or integrase.

4. Rev is absent in HIV particles, the RTC, and the PIC. Thus,
Rev might be unlikely to physically interact with HIV-1 pro-
tease and RT to affect their enzymatic activities.

In addition to the above-mentioned speculations, other HIV
pairwise protein interactions are yet to be discovered. Here, we
present a few examples. (i) A direct interaction between Vpr and
Nef has not been reported, but Vpr is required for Nef expression
from the unintegrated HIV-1 DNA during preintegration tran-
scription (318). (ii) Although it remains unclear whether p6Gag

physically interacts with capsidGag, amino acid mutations in
HIV-1 p6Gag may interrupt the proteolytic cleavage between cap-
sidGag and SP1Gag (552). (iii) Neutralizing responsiveness to Nef
and glycosylated Gag is determined by GP120 V1/V2 regions
(344), whereas it remains unclear whether GP120 physically inter-
acts with Nef or glycosylated Gag. (iv) A recent study speculates a
possible interaction between integrase and capsid (553), but ex-
perimental evidence is still lacking. Overall, future investigations
of HIV genome-wide interactions are still needed to unveil all
possible HIV protein interactions and to characterize their biolog-
ical mechanisms and interaction domains.

CLINICAL RELEVANCE AND THERAPEUTIC IMPLICATIONS

Despite the many anti-HIV inhibitors approved by the FDA, a
curative vaccine or drug against worldwide HIV infections has not
been discovered (4, 554, 555). To enlighten the possible applica-
tions of HIV genome-wide protein associations, this section fo-
cuses on the clinical relevance and therapeutic implications from
two aspects. First, novel mechanisms of HIV drug resistance are
discussed to shed light on why some HIV-infected patients have
failed antiviral treatments without drug-resistant mutations in
drug-targeted proteins. Second, we provide an overview of HIV-
derived peptide inhibitors that target viral enzymes on the basis of
HIV pairwise protein interactions.

Novel Mechanisms of HIV Drug Resistance

Why do some HIV-infected patients fail highly active antiretrovi-
ral therapies (HAARTs) without detectable drug-resistant muta-

tions in drug-targeted proteins? HIV genome-wide protein asso-
ciations may provide insights into this mystery. It is known that
drug-resistant mutations in drug-targeted proteins lead to treat-
ment failure in HIV-infected patients (556). However, recent
studies also suggest that protein-protein interactions may provide
novel drug resistance mechanisms for HIV to escape the inhibi-
tion of antiviral drugs (4, 85, 557, 558). In principle, current find-
ings rely on the hypothesis that the drug resistance of anti-HIV
inhibitors could be established by sequence changes outside drug-
inhibited proteins, owing to the physical interactions between
drug-inhibited proteins and other HIV proteins. In fact, HIV pro-
tein interactions have a strong impact on viral genomic diversity,
potentially affecting antiviral treatments and vaccine outcomes
(44). Here, we provide proof-of-concept examples to highlight
novel mechanisms of drug resistance driven by HIV genome-wide
protein associations.

GP120 mutations may confer resistance to GP41 inhibitors.
As an approved entry inhibitor, enfuvirtide (T20) is a peptide with
36 amino acids derived from the C-terminal heptad repeat region
of HIV-1 GP41 (559). Sequence changes in this heptad repeat are
known to confer drug resistance to enfuvirtide (556). However,
the V3 loop of GP120, which interacts with host coreceptors (e.g.,
CCR5), also harbors mutations that confer resistance to enfu-
virtide (560, 561). In an independent manner, both the GP41 hep-
tad repeat and the GP120-coreceptor interaction contribute to
sensitivity to enfuvirtide (560). To explain this finding, a mecha-
nism has been proposed whereby conformation changes in GP41
are driven by the GP120-coreceptor interaction, thereby affecting
sensitivity to the entry inhibitor enfuvirtide (561).

GP41 mutations may confer resistance to CCR5 and protease
inhibitors. It is known that CCR5 inhibitors (e.g., maraviroc)
interrupt virus entry by inhibiting the CCR5-GP120 interaction;
therefore, sequence changes in GP120 may induce drug resistance
to CCR5 inhibitors (556, 562). Surprisingly, clinical and exper-
imental evidence suggests that GP41 mutants (e.g., G516V,
M518V, and F519I) confer resistance to the CCR5 inhibitor vicri-
viroc (563–565). To explain this observation, a novel mechanism
has been proposed whereby sequence changes in GP41 may shift
the GP120-GP41 interaction to compensate for different confor-
mations of CCR5, causing resistance to vicriviroc (566).

HIV-1 protease cleaves the GP41CT (538, 539), while the
GP41CT physically interacts with the matrix region of Gag (78).
Because of this physical interaction, GP41 mutations can impair
protease-mediated proteolytic processing, conferring resistance
to protease inhibitors (85). Although clinical evidence seems to
support this mechanism, the list of GP41 mutations associated
with protease drug resistance has yet to be fully described.

Integrase mutations may confer resistance to RT inhibitors.
HIV integrase physically interacts with viral RT (101–106), driv-
ing integrase mutations to confer resistance to RT inhibitors
(RTIs) (e.g., efavirenz) (557). For instance, viruses with integrase
mutations (G140S and Q148H) and the RT mutation K103N have
significantly increased fold changes in 50% inhibitory concentra-
tions (IC50s) of efavirenz compared to those of viruses with the RT
drug-resistant mutation K103N alone (557). This finding is in
agreement with data from viral fitness analyses, which suggest that
integrase mutations (G140S and Q148H) rescue the replicative
fitness of HIV-1 harboring RT drug-resistant mutations (K103N
and E138K) under the selective pressure of efavirenz (557). The

Li and De Clercq

708 mmbr.asm.org September 2016 Volume 80 Number 3Microbiology and Molecular Biology Reviews

http://mmbr.asm.org


list of RTI-resistant mutations outside the RT coding region has
yet to be fully described.

RT mutations may confer resistance to integrase inhibitors.
HIV RT physically interacts with viral integrase (101–106), per-
mitting RT mutations to confer resistance to integrase inhibitors
(e.g., raltegravir) (557). HIV-1 strains with RT mutations (E138K)
and integrase mutations (G140S and Q148H) have significantly

increased IC50s of raltegravir compared to those of viruses with
integrase mutations alone (557). This observation is in agreement
with viral fitness changes in which RT drug-resistant mutations
(K103N and Y181C) rescue the replicative fitness of viruses har-
boring integrase drug-resistant mutations under the selective
pressure of raltegravir (557). In the absence of drug pressure, pro-
tease and RT drug-resistant mutations may decrease the replica-

FIG 13 Overview of HIV-1 pairwise protein associations during the HIV-1 life cycle. The approximate numbers of viral proteins per HIV-1 particle are
annotated in the box at the top left (see Viral Assembly and Budding). Direct physical interactions between HIV-1 proteins are shown by different arrow
marks, annotated in the key at the top. If an interaction exerts multiple activities, only the major function is annotated by an arrow mark. Dash lines
demonstrate functional protein associations in which two HIV-1 proteins interact with a third molecule, whose name is placed within a text box. Tables
1 and 3 summarize physical protein interactions and functional associations at each stage of the HIV-1 life cycle. Detailed signaling pathways and
mechanisms of action are described in the text. Annotated protein associations indicate only their presence at a certain stage of the HIV-1 life cycle and
do not indicate the simultaneous existence of all possible associations. Note that protein shapes do not represent the exact protein structures, nor are the
protein sizes to scale.
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tive fitness of viruses harboring integrase mutations (567). A list of
INI-resistant mutations outside the integrase coding region has
yet to be fully described.

Gag mutations may confer resistance to protease inhibitors.
HIV protease cleaves Gag precursors during viral maturation
(Fig. 10). Amino acid mutations in Gag may cause an impaired
enzymatic activity of HIV protease, inducing treatment failure
of PI-based therapies in patient populations (502, 504, 505).
Clinical and experimental studies have generally agreed that
the protease-mediated processing of Gag establishes an alter-
native mechanism for HIV to select specific amino acid muta-
tions in Gag, thus conferring resistance to protease inhibitors
(502, 504, 505). In analyses of Gag amino acid mutations asso-
ciated with PI resistance, it has been shown that PI-associated
Gag mutations are located mainly at the C-terminal domain
and cleavage sites of Gag (502, 504, 556, 568, 569). Moreover,
Gag mutations such as V128I, Y132F, K415R, Q430R, A431V,
L449FV, S451GT, R452S, and P453TL are significantly associ-
ated with protease drug resistance (502, 505). As new PI-asso-
ciated Gag mutations have been consistently reported (558,
570), further studies are required to map all PI-associated Gag
mutations and to evaluate their impacts in studies with large
patient populations.

Vif mutations may confer resistance to protease inhibitors.
HIV-1 Vif can physically interact with protease during viral
maturation (282, 516, 517). In analyses of Vif sequences sam-
pled from PI-treated and PI-naive patients, amino acid substi-

tutions at five positions of Vif (R36, P47, E101, D117, and
L124) are associated with protease drug resistance (571). Due
to the limited number of copies of Vif molecules incorporated
into HIV particles (Fig. 13), a question that remains to be ex-
plored is whether Vif-associated drug resistance plays a signif-
icant role in large patient populations.

Apart from the novel mechanisms of HIV drug resistance de-
scribed above, other HIV pairwise protein associations may have
provided alternative pathways for HIV to develop resistance
against anti-HIV drugs, marking a new era for the investigation of
HIV drug resistance. Importantly, our survey indicates that HIV
genomic sequencing is needed to detect novel drug-resistant mu-
tations occurring outside drug-targeted regions, whereas this
strategy has not been implemented in current commercial geno-
typic or phenotypic resistance assays. Overall, a comprehensive
survey of HIV genome-wide protein associations sheds light on
novel mechanisms of HIV drug resistance from a genome-wide
perspective, contributing to the advancement of antiviral treat-
ments.

Development of HIV-Derived Peptide Inhibitors

Based on publications accumulated over the past 3 decades, our
review provides a comprehensive overview of HIV pairwise pro-
tein associations at different stages of the HIV life cycle, poten-
tially contributing to the development of anti-HIV inhibitors. In
light of the FDA approval of enfuvirtide (572, 573), this section

TABLE 4 HIV-derived peptide inhibitors that interfere with HIV protein associations

HIV protein
association

Drug
target(s) HIV protein(s) (positions), sequence of HIV-derived peptide inhibitora Mechanism(s) of drug action Reference

RT-integrase Integrase RT (176–195), PDIVIYQYMDDLYVGSDLEI RT-derived peptides inhibit
3=-end processing and the
strand transfer reaction of
integrase

575
Integrase RT (366–385), KQLTEAVQKITTESIVIWGK
Integrase RT (396–415), ETWETWWTEYWQATWIPEWE

RT Integrase (46–65), KGEAMHGQVDCSPGIWQLDC IN-derived peptide binds to
RT and inhibits RT activity

576

Vpr-integrase Integrase, RT Vpr (57–71), VEAIIRILQQLLFIH Vpr-derived peptides inhibit
activities of integrase and
RT

162

Vpr-RT Integrase, RT Vpr (61–75), IRILQQLLFIHFRIG

Integrase-Rev Integrase Rev (13–23), FRKLIYLTKVL Rev-derived peptides bind to
integrase and inhibit
enzymatic activities of HIV-
1 integrase

174
Integrase Rev (53–67), GLYRTSPSGRIWSI

Rev Integrase (66–80), WTHLEGKIILVAVHVA Integrase-derived peptides
abrogate the inhibitory
effect of Rev upon viral
integration

180
Rev Integrase (118–128), WGSNFTSTTVKA

Protease-Vif Protease Vif (1–9), MENRWQVMI The N-terminal domain of Vif
inhibits the enzymatic
activity of HIV-1 protease

516
Protease Vif (21–65), WKSLVKHHMYVSGKARGWFYRHHYESPHPRISSEVHIPLGDARLV 520

Protease-p6* Protease p6* (65–68), SFNF The C terminus of p6* inhibits
HIV-1 protease activity

508

Protease PR (1–5), Tat (49–61), p6* (65–68), PR (95–99),
PQITLRKKRRQRRRPPQVSFNFATLNF

Inhibits protease dimerization
and activities

580

a Peptide information begins with the HIV protein name followed by the peptide-derived region in the HIV protein and the peptide sequence. For instance, “RT (176 –195),
PDIVIYQYMDDLYVGSDLEI” shows a peptide with the sequence “PDIVIYQYMDDLYVGSDLEI,” which is derived from HIV RT between amino acid positions 176 and
195. Only representative peptide inhibitors with potent inhibitory activity were collected from the literature. Note that p6* is a transframe region in GagPol precursor
proteins (Fig. 10).
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highlights HIV-derived peptide inhibitors being developed based
on HIV pairwise protein associations (Table 4).

RT-integrase interaction. On the one hand, peptide inhibitors
derived from HIV-1 RT (positions 166 to 185 and 519 to 532) can
efficiently inhibit 3=-end processing and the strand transfer reac-
tion of integrase (574, 575). On the other hand, a peptide derived
from HIV-1 integrase (positions 46 to 65) can inhibit the poly-
merase activity of HIV-1 RT (576) (Table 4).

Vpr-integrase association. Peptide inhibitors (positions 58 to
72, 57 to 71, and 61 to 75) derived from an alpha-helix structure of
Vpr can inhibit the activity of HIV-1 integrase (162, 577). By
screening a peptide library built from HIV-1 protein sequences,
Vpr-derived peptides containing the motif L64QQLLF69 exhibit
promising inhibitory activity against HIV-1 integrase (578).

Vpr-RT association. Although RT-binding domains in Vpr re-
main unclear, peptides derived from two Vpr regions (positions
57 to 71 and 61 to 75) physically interact with HIV-1 RT to inhibit
reverse transcription (162).

Integrase-Rev association. Rev-derived peptides (positions 13
to 23 and 53 to 67) efficiently inhibit the enzymatic activity of
integrase (180). Moreover, integrase-derived peptides (positions
66 to 80 and 118 to 128) can rescue Rev-mediated inhibitory ef-
fects (180).

Protease-Vif association. Peptide inhibitors derived from the
N-terminal domain of HIV-1 protease (positions 1 to 9) can
mimic the interface of the protease-Vif interaction to block pro-
tease-mediated proteolytic processing (517). Moreover, Vif-de-
rived peptides (positions 30 to 65 [519], 41 to 65 [520], 78 to 98
[519], 81 to 88 [521], and 88 to 98 [521]) efficiently inhibit pro-
tease activity.

Protease-p6* interaction. A peptide inhibitor derived from
four parts (p6* CTD, Tat cell-permeable domain, and protease
NTD and CTD) (Table 4) blocks protease dimerization and inter-
rupts protease-mediated proteolytic processing (579, 580). Note
that four amino acids (S65FNF68) at the p6* CTD are essential for
inhibiting the activity of viral protease (508).

Overall, anti-HIV peptides derived from protease, RT, integrase,
Vif, Rev, Vpr, and p6* have shown potent activities against enzymatic
activities of HIV protease, RT, and integrase. For this reason, an in-
depth understanding of HIV genome-wide protein interactions may
provide insights into anti-HIV drug development.

CONCLUSIONS AND FUTURE PERSPECTIVES

Armed with publications accumulated over the past 3 decades,
this review provides for the first time a comprehensive overview of
HIV genome-wide protein associations at major stages of the HIV
life cycle (Fig. 13). Our genome-wide perspective on HIV pairwise
protein associations reveals intrinsic cross talk between HIV pro-

teins, contributing to the investigation of novel drug resistance
and the development of novel antiviral agents (581–584). Bear in
mind that the HIV genome encodes only 16 proteins; a high level
of HIV pairwise protein associations is therefore expected. Given
120 possible HIV pairwise protein associations between 16 viral
proteins, our review summarizes experimental evidence on 34 di-
rect physical interactions (Fig. 11) and 17 functional associations
(Fig. 12). To provide a global perspective of HIV genome-wide
protein interactions, we have also mapped the protein interaction
domains to HIV protein structures, along with integrated infor-
mation on protein secondary structure, protein intrinsic disorder,
and protein sequence diversity (Fig. 14). Overall, this in-depth
overview of HIV genome-wide protein associations reveals a high
level of mutual collaborations between HIV proteins during the
HIV life cycle.

Our survey suggests that every HIV protein is associated with
another viral protein. Among 16 viral proteins, only HIV-1 Vpu
and structural proteins are unlikely to interact with other viral
proteins due to their functional roles (see Text S1 in the supple-
mental material). HIV-1 Vpu is known to interact with host pro-
teins for CD4 downregulation and tetherin antagonism (585),
while structural proteins (e.g., capsid) are expected to maintain
stable HIV structures with lesser associations (503). In com-
parison, HIV-1 regulatory and accessory proteins (Tat, Rev,
Vpr, Vif, and Nef) have more opportunities to engage in a
dialogue with other viral and host proteins in many cell com-
partments, because they undertake multiple activities during
the HIV life cycle (Fig. 13).

Despite many findings accumulated over the past 3 decades,
investigation of HIV pairwise protein associations from a ge-
nome-wide perspective is still warranted. Previous studies un-
veiled the global landscape of HIV-host protein interactions from
high-throughput data (6–11). However, most of these studies
have underestimated HIV pairwise protein interactions, provid-
ing little to no information on the sophisticated associations be-
tween HIV proteins. Exploration of HIV genome-wide protein
associations requires the accurate detection of protein associa-
tions at different stages of the HIV life cycle. Here, we highlight
several challenges for future studies.

1. HIV macromolecular structures such as the RTC and the
PIC have not been resolved in spite of countless attempts
being made over the past decades.

2. A single protein interaction (e.g., RT-integrase) may have
different activities at several HIV life stages, making the elu-
cidation of such interactions difficult.

3. HIV proteins harbor intrinsically disordered structures to
interact with other proteins (44, 586). Intrinsically disor-

FIG 14 Integrated map of HIV-1 pairwise protein interactions in the full-length genome. Fifteen HIV-1 proteins are plotted in a circle with seven layers. In layer
1, red links in the center indicate interaction domains for HIV-1 pairwise protein interactions (Table 1). Orange links indicate physical interactions between
HIV-1 proteins, but their interaction domains are yet to be resolved (Table 1). In layer 2, indices of amino acid positions are annotated by using HIV-1 HXB2 as
a reference. Layer 3 shows protein secondary structures (dark blue, helix structures; light blue, beta-strand structures; pink, random-coil structures) (44). In layer
4, intrinsic disorder scores of individual amino acid positions are shown in green. The range of intrinsic disorder scores is between 0 and 1 (the higher the value,
the higher the structural variability) (44). In layer 5, 15 HIV-1 proteins have their names annotated accordingly. In layer 6, amino acid genetic diversity of the
HIV-1 subtype B genome is exhibited in gray. Diversity values of between 0 and 1 are mapped on five sublayers (44). In layer 7, protein interaction domains are
mapped on cartoon representations of crystallized HIV-1 protein structures. HIV-1 multimeric proteins are shown outside the circle. Data sets for HIV-1
intrinsic disorder scores and amino acid diversity were gathered from our recent report (44). Human proteins involved in HIV-1 pairwise protein associations
are not illustrated. See Table S1 in the supplemental material for a list of PDB accession numbers used for structural visualization. PyMOL V1.7 (see http://www
.pymol.org/) and Circos V0.64 (http://circos.ca/) visualization software were used.

Li and De Clercq

712 mmbr.asm.org September 2016 Volume 80 Number 3Microbiology and Molecular Biology Reviews

http://www.pymol.org/
http://www.pymol.org/
http://circos.ca/
http://mmbr.asm.org


dered structures usually have dynamic forms, which might
hinder accurate detections of protein interaction domains
(586).

4. Many HIV pairwise protein interactions and their accurate
interaction domains have yet to be fully described (Fig. 14
and Table 1). Of 34 pairwise protein interactions, more
than 10 interactions are known, and their biological
functions are well characterized in the literature (Fig.
11). Nevertheless, future studies are still required to ad-
dress the reproducibility of the other HIV protein inter-
actions, especially those interactions reported in only a
single article (Table 2).

5. Many experiments performed in cell-free settings or with
nonnatural target cells may have underestimated the nature
of HIV protein interactions because of different protein ex-
pression levels and/or the lack of host proteins in cell-
free and nonnatural settings. Furthermore, cell type-spe-
cific factors in different HIV strains might have been
underestimated, because most cell culture experiments
have been performed by using cell lines infected with
HIV-1 subtype B strains (e.g., HXB2). Therefore, the de-
velopment of cell culture experiments that represent dy-
namic protein interactions in a real biological context
remains a challenge.

Our review focuses mainly on HIV-1 and less on HIV-2/
SIV, because HIV-1 causes major infections worldwide, and
the number of reports on HIV-2 and SIV is limited. Although
both HIV-1 and HIV-2 originated from SIV (587), they have
distinct gene maps (Fig. 1). Particularly, Vpu in HIV-1 and Vpx
in HIV-2/SIV, which play different roles during the HIV life
cycle, mark a distinct difference (588, 589). For instance, the
packaging of SIV Vpx is absolutely dependent on the
L41XXLF45 motif of SIV p6Gag (320), but HIV-1 Vpu is not
packaged into virions (590). Therefore, it warrants further in-
vestigations to explore the differences of genome-wide protein
associations between HIV-1 and other simian immunodefi-
ciency viruses (e.g., HIV-2 and SIV). On the other hand, our
review identified HIV protein interactions based on keyword
searches of reports published between 1985 and 2015, but ad-
ditional HIV protein interactions will be (or might have been)
reported in the literature. For this reason, we have established
an online platform (http://www.virusface.com/) to update the
information on HIV protein interactions.

Overall, our review provides insights into HIV pairwise protein
associations from a genome-wide perspective, shedding light on
potential therapeutic targets for drug discovery. Importantly, a
comprehensive map of HIV genome-wide protein associations
has been established to support the hypothesis that all HIV pro-
teins collaborate meticulously to facilitate viral infections during
the viral life cycle.
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