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Identifying environmental correlates of intraspecific genetic
variation

KA Harrisson1, JDL Yen2, A Pavlova1, ML Rourke3, D Gilligan4, BA Ingram5, J Lyon6, Z Tonkin6 and
P Sunnucks1

Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The
distribution of genetic variation across a species’ range can reveal critical information that is not necessarily represented in
species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific,
individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella
peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for
nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both
approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean
annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river
reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent
with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent
habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and
unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an
overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray
cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example,
reduced frequency of large floods, overfishing and chemical pollution).
Heredity (2016) 117, 155–164; doi:10.1038/hdy.2016.37; published online 8 June 2016

INTRODUCTION

Genetic variation is fundamentally linked to effective population size
and evolutionary potential (that is, capacity to adapt to environmental
change) (Frankham, 1996; Reed and Frankham, 2003; Scoble and
Lowe, 2010; Harrisson et al., 2014). By integrating information about
evolutionary and demographic processes, the distribution of genetic
variation across a species’ range can reveal critical insights about the
viability of populations that is not necessarily represented in species
occurrence or abundance patterns (Thomassen et al., 2010; Kovach
et al., 2015). Understanding the distribution of intraspecific genetic
variation and how it relates to environmental factors can assist better
allocation of conservation resources and more robust predictions
about species responses to environmental change (Frankel, 1974;
Moritz, 2002; Vandergast et al., 2008; Scoble and Lowe, 2010;
Thomassen et al., 2010; Sgrò et al., 2011; Gotelli and Stanton-
Geddes, 2015). Although many studies have explored links between
environmental factors and species’ occurrence or abundance patterns
(Elith and Leathwick, 2009), few studies have explicitly and rigorously
quantified associations between the environment and levels of
intraspecific genetic variation across species’ ranges (that is, with

individual- or site-based measures of the amount of genetic variation
as the response variable) (but see Thomassen et al., 2010; Kovach
et al., 2015). Methods based on individual- or site-based measures of
genetic variation (that is, amount of genetic diversity) are distin-
guished here from related methods based on population structure and/
or patterns of genetic differentiation (for example, Foll and Gaggiotti,
2006; Jay et al., 2012; Manel and Holderegger, 2013; Wang and
Bradburd, 2014; Fitzpatrick and Keller, 2015).
Often characterised by strong environmental gradients, rivers are

useful systems for exploring links between environmental factors and
species’ distributions. Flow-related variables are commonly identified
as important predictors of species occurrence patterns in rivers, with
flow considered a ‘master variable’ strongly associated with habitat
complexity, geomorphology and many key physicochemical properties
of rivers including temperature, pH and oxygen concentration (Poff
et al., 1997). Disruption to a river’s natural flow regime as a result of
human activities (for example, flow regulation, construction of dams
and weirs and water extraction) can have negative consequences for
biodiversity, but may benefit some species (Bond et al., 2010; Koehn
et al., 2014). For example, in environments with highly variable and
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unpredictable natural flow regimes, flow-dependent species may
benefit from artificially induced perennial flows (Bond et al., 2010).
In addition to flows, a wide range of other factors are commonly
implicated as drivers of species’ occurrences in rivers, including annual
climatic extremes, riparian vegetation, presence of introduced species
and levels of basin connectivity (Rathert et al., 1999).
The Murray–Darling Basin (MDB) covers more than 1 million km2

of south eastern Australia and is characterised by a flow regime that, in
its natural state, is among the most variable in the world (Finlayson
and McMahon, 1988). The MDB has experienced considerable change
in land use and river condition over the past two centuries following
European settlement. As a result, native fish populations in the MDB
have declined to ∼ 10% of pre-European levels because of the
combined influences of multiple pressures including habitat loss and
fragmentation, altered flow regimes, introduced fishes and overfishing
—pressures consistent with reductions in freshwater fish numbers in
many river systems globally (Barrett, 2004).
The Murray cod Maccullochella peelii (Mitchell, 1838) is a large,

long-lived, endemic freshwater fish species that occurs through much
of the MDB. The Murray cod is estimated to live for up to ~ 50 years
(possibly 4100 years) and can grow to nearly 2 m and 4100 kg,
although individuals 450 kg are now rare (Rowland, 1989). Murray
cod naturally occur in both faster-flowing, cooler, rocky, upstream
river reaches and larger, turbid, slower-flowing lowland rivers, with an
apparent preference for deep water and habitat with overhanging
vegetation and in-stream woody habitat, the latter being important for
shelter and spawning (Lintermans et al., 2005). The Murray cod is
capable of large migratory and dispersal distances of up to 1500 km,
but movements are typically limited to distances o200 km (Koehn
et al., 2009). These movements are typically associated with upstream
spawning migrations, with subsequent downstream larval drift, and
Murray cod tend to exhibit strong site-fidelity outside of the spawning
season (Koehn et al., 2009). Spawning is temperature-cued, occurring
in spring once temperatures reach 15 °C (Koehn and Harrington,
2006). Subsequent larval survival and recruitment success is thought to
be linked to the occurrence of overbank flooding, although there
remains uncertainty surrounding the influence of flows on the
distribution and abundance of Murray cod (Rowland, 1989; Koehn
and Harrington, 2006; King et al., 2009). Although thermal impacts
(cold-water pollution) are known to influence egg and larval survival
(Todd et al., 2005), the species has been demonstrated to spawn
annually in both regulated and unregulated systems (Humphries,
2005; Koehn and Harrington, 2006; King et al., 2009). The larval
duration of the Murray cod is typically o1 month, and sexual
maturity is reach at ∼ 4–6 years of age (Rowland, 2004). Terminal
wetlands partially isolate the Lachlan, Macquarie and Gwydir catch-
ments, and these catchments are modestly genetically differentiated
(mean pairwise FST=0.06; range: 0.03–0.13) (Figure 1; FST values from
Appendix VI in Rourke et al., 2011). The remaining major river
catchments in the Murray Darling Basin are connected by moderate to
high levels of gene flow (mean pairwise FST=0.01; range: 0–0.04)
(Figure 1; FST values from Appendix V1 in Rourke et al., 2011).
Despite being relatively widespread, the Murray cod is listed

nationally as vulnerable under the Environment Protection and
Biodiversity Conservation (EPBC) Act 1999 and as a threatened
species in the State of Victoria under the Victorian Flora and Fauna
Guarantee (FFG) Act 1988. Overharvesting as a result of commercial
and recreational fishing contributed to substantial declines of Murray
cod through the first half of the twentieth century, particularly in the
southern tributaries (Rowland, 1989; Lintermans et al., 2005). Addi-
tional pressures that likely exacerbated declines across the MDB

included chemical pollution, removal of woody in-stream habitat
(‘de-snagging’), introduction of alien fish species, establishment of
dams and weirs that pose barriers to fish movement and changes to
flow, flood and temperature regimes associated with river flow
regulation (Rowland, 1989; Lintermans et al., 2005). A contraction
in the distribution of Murray cod through the 1900s was particularly
evident in waters impounded by major dams, the upper reaches of
major rivers and smaller tributaries (Lintermans et al., 2005).
After a population crash in the 1960s, commercial fisheries were no

longer viable, and Murray cod stocks have remained at relatively low
levels since (Lintermans et al., 2005). Although wild Murray cod are
no longer fished commercially (the last fishery closed in 2003),
recreational fishing is still permitted (Lintermans et al., 2005).
Supplementation of wild populations using hatchery-reared stock
has been used since the 1970s to support the continuation of
recreational fishing, with tens of millions of fish released across the
MDB (mostly as fingerlings into impoundments) (Lintermans et al.,
2005; Rourke et al., 2010; Rourke et al., 2011). Limited monitoring of
recruitment success of stocked individuals means that the effects
of stocking on wild populations are not well understood. Evidence of
localised effects of stocking exists in some catchments. For example, a
proportion of genetically nonadmixed individuals in the Warrego,
Namoi and Border rivers may indicate the presence of stocked
individuals (Rourke et al., 2011). However, across large areas of the
MDB (thousands of river km across the southern parts of the basin
and the more northern Darling and Condamine catchments), stocking
has not had detectable effects on patterns of genetic diversity or
population structure (Rourke et al., 2010, 2011).
Given the cultural and socioeconomic importance of the Murray

cod, there is strong interest in ensuring its persistence. Understanding
the environmental conditions associated with large, healthy popula-
tions will be key to effective conservation management. In this study
we explored associations between patterns of individual-based genetic
variation across the Murray cod’s range and a set of environmental
variables considered relevant to the biology and life history of Murray
cod (including variables related to flow regime, habitat, connectivity,
temperature and invasive species).

MATERIALS AND METHODS

Sampling
We used existing genotype data for 16 microsatellite loci that were previously
published in Rourke et al. (2011), removing individuals with data missing for
420% of loci. Murray cod samples used here (N= 616) were sourced from 15
major river catchments across the MDB (Figure 1 and Table 1) and collected
between 1994 and 2006 (87% were sampled between 2000 and 2006). Given
Murray cod reach sexual maturity at ∼ 4–6 years of age, tend to be more fecund
at older ages and can live up to ~ 50 years, the genetic composition of
populations is expected to change over decadal—rather than annual—time-
scales (Lintermans et al., 2005). Because the Murray cod is a large-bodied fish,
the species (and therefore sampling) is typically associated with more
permanent water bodies (larger streams and river channels). Fish were
predominantly sampled from rivers (cf., dams or reservoirs) to avoid sampling
large numbers of closely related stocked fish (Rourke et al., 2011) (Table 1).
Previous analysis of age class distributions and genetic information suggested
that populations did not consist of batches of closely related fish from hatchery
or wild spawnings (Rourke et al., 2011).

Environmental data
We selected 11 variables that represent the environmental attributes considered
most relevant to the biology and life history of Murray cod populations (such as
flow, connectivity, invasive species, habitat and temperature; details in Table 2).
Because of the large geographic scale of our sampling, data availability
placed some limitations on the environmental variables we were able to
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include. For example, detailed physicochemical data (for example, pH, oxygen
concentration, water temperature) and site-specific habitat information were
unavailable, and hence we relied on proxies (Table 2). Similarly, in the absence
of measured flow data, we relied on partially modelled accumulated soil water
surplus (run-off) to characterise flow attributes (Table 2). Use of accumulated
soil water surplus as a proxy for flow is an established practice and the two are
usually highly correlated (Stein et al., 2002). Most of the environmental data
were sourced from the National Environmental Stream Attributes Database
v1.1.5 (available at: http://www.ga.gov.au/) that is linked to the Geofabric digital
elevation model (DEM)-derived stream network (Australian Hydrological
Geospatial Fabric Version 2; available at: https://data.gov.au/). Each segment
in the stream network was linked with its natural and anthropogenic

characteristics from the National Environmental Stream Attributes Database

based on its stream segment number. Mean stream segment length in our study

was 6.9 km (range 0.2–43.5 km). Additional environmental variables were

sourced from the Sustainable Rivers Audit (MDBA, 2012) and the Bureau of

Meteorology (available at: http://www.bom.gov.au) (Table 2). The selected

variables were chosen based on expert advice and limited to those that showed

substantial variation across sampled sites. All pairs of variables had Pearson’s

correlation coefficients (r) o0.7, and hence our inferences were unlikely to be

affected by collinearity of variables (Dormann et al., 2013) (Supplementary

Appendix S1). Environmental data were extracted for each sampling location

using ArcMap 10.2 (ESRI).

Figure 1 Sampling locations of Murray cod (N=616) across the MDB are indicated by black circles. Major streams in the MDB are shown in grey and the
major rivers sampled are labelled and highlighted in black. Genotype data for samples used in this study were previously published in Rourke et al. (2011).
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Individual-based measure of genetic variation
We used an individual-based measure of genetic variation: homozygosity by
locus (HL), calculated in GENHET v3 in R (Coulon, 2010; R Core Team,
2014). Using an individual-based metric allowed us to resolve finer-scale
associations with environmental variables, as compared with population-based
metrics (for example, allelic richness). Higher HL indicates that an individual
has proportionally more homozygote genotypes, reflecting greater genetic
similarity of its parents. Lower HL indicates that an individual has proportion-
ally more heterozygote genotypes, reflecting greater genetic dissimilarity of its
parents, expected for populations with high genetic diversity (Frankham, 1996).
HL accounts for locus variability by attributing more weight to homozygosity at
more variable loci.
The amount of genetic variation present in a population is expected to be

positively correlated with the general capacity of that population to adapt to
environmental change and thus to represent a generalised measure of
evolutionary potential that accounts for many of the uncertainties surrounding
both the genetic basis of adaptation and predictions about environmental
change (Harrisson et al., 2014). Levels of variation at a relatively small panel of
microsatellite markers may not always be correlated strongly with fitness,
trait-based measures of evolutionary potential (that is, narrow-sense herit-
ability) or genome-wide variation (Reed and Frankham, 2001; Sgrò et al., 2011).
However, correlations between heterozygosity at a small panel of microsatellite
markers and fitness measures (heterozygosity–fitness correlations) are weakest
in populations with very large current effective population size (Reed et al.,
2003; Miller et al., 2014). Murray cod populations in our study are not
characterised by large effective population sizes, having undergone strong
population contractions over the last two centuries (Ne estimates across
sampled catchments ranged from 22 to 407; Supplementary Appendix S2).
For a standard panel of 10–15 loci, in open populations (for example,
populations with migration and/or admixture, as for Murray cod), HL should
also be more correlated with genome-wide homozygosity and inbreeding
coefficients than are other common individual-based measures: internal
relatedness and the uncorrected proportion of homozygous loci (Aparicio
et al., 2006). Our panel of loci is comparable to other studies that have found
associations between intraspecific genetic variation and environment (for
example, Faulks et al., 2011; Kovach et al., 2015).

Identifying environmental correlates of individual-based
intraspecific genetic variation
To identify environmental variables correlated with HL, we applied two
different methods. First, we fitted a random forest model that uses binary
recursive partitioning to quantify the amount of variation in the response

variable that is explained by each predictor variable (Breiman, 2001). The
random forest model makes no a priori assumptions about relationships
between the predictors and response variables, allowing nonlinear responses
and complex interactions (Breiman, 2001). Second, we fitted a hierarchical
Bayesian regression model that quantifies the relative importance of each
predictor variable, accounting for linear and nonlinear relationships. Compared
with the random forest model, the Bayesian model also accounted for
population history (see below).

Random forest model
We fitted the random forest model using the randomForest package in R
(Breiman, 2001; Liaw and Wiener, 2002). We allowed a maximum of 1000 trees
in the model, sampled one variable randomly at each proposed split and set a
minimum terminal node size of 5 individuals. We used a permutation approach
to quantify variable importance, based on 10 permutations per tree (Breiman,
2001). We defined variable importance as the reduction in mean-squared errors
when including a given predictor variable in the model (higher values indicate
that a given variable is more important).

Bayesian model
We used a hierarchical Bayesian regression model to estimate linear and
nonlinear relationships between HL and the selected environmental covariates
(Table 2; Thomson et al., 2010). The approach is a Bayesian variant of
multivariate adaptive regression splines (Friedman, 1991). Model selection (that
is, the identification of which variables to include) was performed using
reversible-jump Markov chain Monte Carlo that estimates the posterior
probability that a given predictor variable has an association with the response
variable, accounting for linear, quadratic and cubic associations (Lunn et al.,
2006, 2009). River catchment and sampling site were included as clustering
variables (given exchangeable priors; equivalent to random effects in a standard
mixed model) to control for population history (for example, founder effects
and drift) and unmeasured environmental variables by accounting for variation
in HL among sites and catchments that was not explained by the remaining
predictor variables. The response variable (HL) was assumed to be normally
distributed and all predictor variables were standardised to zero mean and unit
variance. All parameters were assigned uninformative prior distributions.
Models were fitted with the reversible-jump add-in for WinBUGS 1.4 (Lunn
et al., 2000) and model outputs were managed in R (R Core Team, 2014).
Models were run using three chains of 50 000 iterations following a 50 000
iteration burn-in period. Full model details and WinBUGS code are
provided in Supplementary Information (see Supplementary Appendices S3
and S4, respectively).

Table 1 Number of individuals (N individuals), number of sites (N sites), mean number of individuals per site (mean N individuals per site),

number of individuals stocked between 1978 and 2006 (N individuals stocked) and the percentage stocked into impoundments (as opposed to

rivers) (% stocked into impoundments) and mean homozygosity by locus (mean HL) for each catchment analysed in this study

Catchment N individuals N sites Mean N individuals per site N individuals stocked % Stocked into impoundments Mean HL

Benanee 31 10 3 84 000 0 0.27

Border 90 22 4 732 000 66 0.29

Condamine 31 11 3 181 000 95 0.23

Darling 22 7 3 60 000 32 0.26

Goulburn-Broken 19 7 3 1 117 000 47 0.25

Gwydir 30 6 5 508 000 90 0.29

Kiewa 12 1 — 80 000 0 0.28

Lachlan 40 7 6 707 000 93 0.26

Lower Murray 72 7 10 152 000 17 0.35

Macquarie 16 2 8 1 095 000 89 0.30

Murray-Riverina 123 27 5 656 000 1 0.33

Murrumbidgee 41 7 6 2 007 000 90 0.32

Namoi 44 9 5 853 000 88 0.28

Ovens 38 14 3 106 000 2 0.27

Warrego 7 7 1 8000 82 0.18
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Inferences were based on the Bayesian model averaged parameter estimates.
Bayesian model averaging estimates the average parameter value over all
possible models (that is, each possible combination of variables), where the
contribution of each possible model is weighted by its posterior probability
(Raftery et al., 1997). Model posterior probabilities emerge naturally from a
reversible-jump Markov chain Monte Carlo sampling scheme because the
sampler visits each possible model in proportion to its posterior probability;
the Bayesian model averaged parameter estimate is simply the average of the
parameter over all Markov chain Monte Carlo iterations. The relative
importance of each predictor variable was given by the posterior probability
of variable inclusion for each variable. The prior probability of variable
inclusion was 0.5, and hence posterior probabilities of variable inclusion
40.5 indicate evidence in favour of variable inclusion, with values 40.75
providing strong evidence for variable inclusion (odds ratio 43).

Assessing model fit
We used root-mean-square errors (RMSEs) and coefficients of determination
(r2) to measure model fit. RMSEs measure the average difference between
observed and fitted values. The r2 values were based on Pearson’s r and measure
the proportion of linear variation explained by a given model. RMSE and r2

values were based on out-of-bag samples for random forest models because
these models have a tendency to overfit (Breiman, 2001). For the Bayesian
model, RMSE and r2 values were based on the fitted model because margin-
alisation over all possible models avoids overfitting (Gelman and Hill, 2006).
We used posterior predictive diagnostics to assess Bayesian model adequacy

(Gelman et al., 1996). We calculated a summed discrepancy measure (Sobs=Σ
(HLobs−HLexp)

2, where HLobs and HLexp are observed and modelled values of
HL, respectively) and generated a reference distribution for this discrepancy
measure (Ssim) based on simulated data drawn from the posterior distribution
of the model. If the posterior distributions of Sobs and Ssim overlapped (0.1oPr
(Sobs4Ssim)o0.9) then the fitted model was capable of generating the observed
data, indicating an appropriate model structure.

Visualising patterns of individual-based intraspecific genetic
variation
For conservation management it is useful to be able to predict and visualise
relationships between intraspecific genetic diversity and environment
(Thomassen et al., 2010). To demonstrate how our approach could be used
to generate spatially explicit predictions of intraspecific genetic diversity based
on environment, we first extracted data for all environmental predictor
variables for each stream segment across all major streams in the MDB
(‘major’ was defined based on the stream segment classification under stream
hierarchy in the Geofabric stream network database). These environmental
predictors were then combined with the Bayesian model averaged parameter
estimates to predict HL values for each stream segment along the major stream
network. Predicted HL values across the MDB were visualised in ArcMap.

Testing for effects of stocking and degree of admixture on HL
Stocking and/or admixture could potentially have an influence on HL. We used
a standard linear regression to test for an association between the intensity of
stocking and mean HL in each catchment (Table 1). To quantify the degree of
admixture, we ran STRUCTURE analysis for K-values 1–10 using the
admixture model with correlated allele frequencies (Pritchard et al., 2000;
Falush et al., 2003). Twenty replicate runs of 3 × 106 Markov chain Monte
Carlo, after an initial burn-in period of 106 repetitions, were performed for
each value of K. Results were summarised using the standard pipeline on the
Clumpak web server (Kopelman et al., 2015). The most likely number of
clusters (K) was selected using the Evanno et al. (2005) ΔK method that finds
the point of greatest change in the distribution of LnP(D). Each individual was
proportionally assigned to each of the three genetic clusters identified by the
STRUCTURE analysis. Individuals with a Q-value of 40.2 were considered
assigned to a cluster. Thus, each individual was assigned an admixture
coefficient of 1, 2 or 3 to reflect how many clusters it was assigned to (that
is, degree of admixture). To test for an association between degree of admixture
and HL, we performed a standard analysis of variance of HL against admixture
coefficient.

RESULTS

Environmental correlates of individual-based intraspecific genetic
variation
Random forest model. For the random forest model the overall model
fit was poor (Pearson’s r= 0.20), suggesting that environmental
variables explained ∼ 4% of the variation in HL. The RMSE was
0.12, indicating that fitted HL values differed from observed values by
0.12 on average. Annual mean accumulated soil water surplus and
flow regime disturbance index had the strongest associations with HL
and had importance values that were twice as large as other included
variables.

Bayesian model. For the Bayesian method the overall model fit was
moderate (Pearson’s r= 0.40), suggesting that environmental and
clustering variables explained ∼ 16% of the variation in HL. The
RMSE was 0.11, indicating that fitted HL values difference from
observed HL values by 0.11 on average. The posterior predictive
probability was 0.74, suggesting that the fitted model structure was
adequate. There was strong evidence for flow regime disturbance
index to be included in the regression model (inclusion probability=
0.85, equivalent to an odds ratio= 5.7; Table 3), with weak evidence
for inclusion of annual mean accumulated soil water surplus (a proxy
for mean annual flow; inclusion probability= 0.56; Table 3) and little
evidence for other variables (inclusion probabilities o0.5; Table 3).
There was some evidence that flow regime disturbance had a
nonlinear relationship with HL, whereas all other variables had linear
(if any) relationships (Table 3).
There was strong evidence of a negative, nonlinear effect of flow

regime disturbance on HL: individual-based homozygosity decreased
with disturbance to the natural flow regime (odds ratio 43; Table 3
and Figure 2a). The effect was modest, corresponding to a ∼ 0.015
change in HL with each 1 s.d. change in the predictor variable that is
equal to ∼ 2% of the observed range of HL. There was also weak
evidence of a negative, approximately linear effect of annual mean
accumulated soil water surplus (a proxy for mean annual flow) on HL
(odds ratio= 1.4; Figure 2b). The effect was about half as strong as
that estimated for flow regime disturbance, corresponding to a ∼ 0.006
change in HL with each 1 s.d. change in the predictor, equal to ∼ 1%
of the observed range of HL.

Visualising patterns of individual-based intraspecific genetic
variation
Spatially explicit Bayesian model predictions of HL were visualised for
all major rivers in the MDB (Figure 3). Levels of HL predicted by the
model were lowest in the most heavily regulated, downstream major
river channels (Murray, Darling, Murrumbidgee and Goulburn
Rivers) and highest in the upper reaches of major rivers and smaller
tributaries (Figure 3).

Testing for effects of stocking and degree of admixture on HL
There was no evidence of an association between stocking intensity
and mean HL (slope= 0.014, R2= 0.13, P40.05). STRUCTURE
detected three major genetic clusters across the study region,
consistent with the patterns previously reported in Rourke et al.
(2011) (see Supplementary Appendix S5). There was no evidence that
degree of admixture had an effect on HL (F= 3.4, P40.05; mean HL
values for admixture coefficients 1, 2 and 3 were 0.27, 0.31 and 0.29,
respectively).
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DISCUSSION

We identified potential ecological factors associated with patterns of
genetic variation across the range of a widespread freshwater fish
species. In contrast to most comparable studies, the approaches used
in this study focus on an individual-based measure of genetic diversity
(cf., population-based measures of diversity and/or measures based on
genetic differentiation/distance) and statistically quantified the relative
importance of a given predictor variable, accounting for linear and
nonlinear relationships. Our Bayesian method also accounted for
population history (for example, differences in levels of genetic
variation among catchments resulting from processes such as founder

effect and drift). Both the random forest and Bayesian model
supported effects of disturbance to the natural flow regime and mean
annual flow on HL. The Bayesian model performed best, explaining
∼ 16% variation in HL as compared with ∼ 4% explained by the
random forest model. Better performance of the Bayesian model may
reflect the fact that it also accounts for variation in HL that is due to
differences among sites and catchments. We were also able to make
spatially explicit predictions about the distribution of genetic diversity
across all major streams in the MDB, demonstrating a useful
visualisation and management approach for conservation planning.
However, given our model explained only ∼ 16% of the variation in
HL, we stress that our predictions of HL across the MDB should be
interpreted with caution.
The Bayesian model indicated strong support for a negative

association between HL and disturbance to the natural flow regime.
Populations that are associated with lower HL values are likely to be
healthier, have larger effective population size and higher genetic
diversity than populations of individuals with higher HL values
(Frankham, 1996; Reed and Frankham, 2003; Aparicio et al., 2006).
From an evolutionary perspective, higher genetic diversity is also likely
to be positively correlated with a population’s evolutionary potential,
at least in a general sense (Harrisson et al., 2014). Thus, our findings
suggest that river reaches across the MDB that have more disturbed
flow regimes are likely to support larger, more genetically diverse
populations of Murray cod. Although this result seems counter-
intuitive because many native fish species are adversely affected by
river regulation (Koehn et al., 2014), more consistent, perennial flows
observed in regulated channels may reduce the frequency of popula-
tion bottlenecks that can occur during the dry phases that typify the
highly variable and unpredictable natural flow regime in the MDB
(Bond et al., 2010). In the MDB the greatest disturbance to the natural
flow regime typically occurs in lowland river reaches where river
regulation and water extraction for irrigation support agricultural
production. Thus, relative to rivers with less disturbed flow regimes,
heavily regulated lowland rivers may have greater habitat availability
and reduced exposure to low flow conditions and associated harsh
water conditions (for example, low oxygen and high temperature)
in the summer months or drought periods (Reich et al., 2010).
Our study is correlative rather than mechanistic and we do not claim

−1.5 −0.5 0.5

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

V
ar

ia
bl

e 
ef

fe
ct

Flow regime disturbance index
−0.5 0.5 1.5 2.5

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

Mean accumulated soil water surplus

Figure 2 Bayesian model averaged parameter estimates for variables with
probability of inclusion 40.5: (a) flow regime disturbance index and (b)
annual mean accumulated soil water surplus. The y axis represents the
deviation from the mean HL value (in units of HL) for a given standardised
value of the predictor variable. The grey shaded region denotes 1 s.d. either
side of the mean fitted effect.

Table 3 Relative variable importance estimated with a random forest model and a hierarchical Bayesian model

Environmental predictor variable Random forest model
Bayesian model

Importance Values Probability of variable
inclusion

Direction of effect
(slope±1 s.d.)

Degree

Flow regime Disturbance index 0.002 0.85 Negative (–0.015±0.010) 1.5

Mean accumulated soil water surplus for summer 0.001 0.39 Negative (–0.001±0.004) 0.6

Stream and valley percentage extant woodland cover 0.001 0.34 Negative (–0.001±0.003) 0.5

Fish condition index 0.001 0.34 Positive (0.001±0.004) 0.5

Annual mean net primary productivity 0.001 0.42 Negative (–0.002±0.006) 0.7

Coefficient of variation of annual totals of accumulated soil water surplus 0.001 0.39 Positive (0.001±0.005) 0.6

Annual mean accumulated soil water surplus 0.002 0.56 Negative (–0.006±0.009) 1.0

Barrier free flow path length 0.001 0.38 Negative (–0.001±0.004) 0.6

Average spring temperature 0.001 0.38 Negative (–0.002±0.006) 0.6

Stream and valley percentage extant forest cover 0.001 0.40 Negative (–0.002±0.004) 0.6

Fish nativeness score 0.001 0.40 Negative (–0.003±0.006) 0.7

Importance values for the random forest model are proportional to the reduction in root-mean-square errors when a given predictor variable is included in the model; higher values indicate a more
important variable. Importance values for the Bayesian model are posterior probabilities of inclusion for each environmental predictor variable. For the Bayesian model, we also present the model
averaged parameter estimates for the slope and degree. The prior probability of variable inclusion was 0.5, and hence values 40.75 correspond with odds ratios 43. The slope of a given effect
indicates the direction of a variable’s effect, and the degree is the number of knots included in the spline term for a given variable, indicating the nonlinearity of a variable’s effect (0 is no effect, 1
is a linear effect, 2 is a quadratic effect and 3 is a cubic effect).
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a direct causal link between flow regulation and HL. However, our
findings are consistent with other studies that report positive associa-
tions between intensity of flow regulation and Murray cod occurrences
(Bond et al., 2010; Reich et al., 2010) and population trajectories (Yen
et al., 2013).
In addition to strong support for a negative association between

flow regulation and HL, we also detected weak evidence for a negative
association between mean annual soil water surplus (a proxy for mean
annual flow and river size) and HL. As the main lowland river
channels that typically experience the highest levels of disturbance to
the natural flow regime are also typically larger rivers (with larger flow

volumes), the relative effects of flow regulation and mean annual soil
water surplus are partially (and unavoidably) confounded. However,
the flow regime disturbance index and mean annual soil water surplus
were not highly correlated in our study (r= 0.48), and support for a
stronger association between flow regime disturbance and HL (cf.,
mean annual soil water surplus and HL) suggests that associations
between genetic variation and flow regulation are not solely the result
of large (more regulated) rivers supporting larger populations of
Murray cod. Differences in HL among catchments resulting from
differences in river size were accounted for by inclusion of river
catchment as a clustering variable in the Bayesian model.

Figure 3 Visualisation of patterns of HL predicted by the Bayesian model for Murray cod across all major streams in the MDB, Australia. The largest rivers
are shown in grey.
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All large rivers in the MDB experience disturbance to the natural
flow regime, at least to a moderate extent. As large, completely
unregulated rivers no longer exist in the MDB, and thus are not
included in our sampling, we have no information on HL levels in
large unregulated rivers. Similarly, despite negative associations
between flow-related variables and HL, our study focuses only on
relative levels of genetic variation across the MDB for the period of
sampling (1994–2006), and does not reflect historical patterns or
assess whether levels of genetic diversity are sufficient for long-term
population persistence (that is, ‘high’ genetic diversity is relative only
to very recent levels of genetic diversity in Murray cod that might still
be lower than historical genetic diversity). Given that Murray cod
populations have experienced severe declines over the past two
centuries and population numbers remain very low relative to
historical levels, our results should not be taken as evidence that
extensive river regulation across the MDB has had an overall positive
effect on Murray cod populations (Barret, 2004; Lintermans et al.,
2005). Instead, our study suggests that within the contemporary
system, the greater amount and stability of habitat afforded by flow
regulation may have some benefits for the large-bodied Murray cod,
and that other pressures (either independent of environment or not
included in our model) may be more critical to the persistence of
Murray cod, for example, habitat loss, overfishing and chemical
pollution (Rowland, 1989; Lintermans et al., 2005).
The environmental and clustering variables included in our

Bayesian model were able to explain ∼ 16% of the variation in HL,
comparable to other studies of associations between genetic variation
and environmental variables (see, for example, Faulks et al., 2011).
Additional factors that likely explain the remaining variation in HL
include: environmental and demographic stochasticity, a relatively
large migration range, the necessarily relatively low resolution
(spatially and temporally) of the environmental data used in analysis
and the modest power of our (16-locus) genetic assay. A complex
history of stocking and illegal translocations of adult fish across all
catchments analysed here may also contribute to variation in HL that
was unexplained by our model. However, because there was no
significant relationship between the numbers of fish stocked and mean
HL at the catchment level, we argue that stocking effects are more
likely to add noise than drive the observed pattern.
Here we demonstrate two approaches that can identify environ-

mental variables associated with range-wide patterns of individual-
based intraspecific genetic variation. Our genetic modelling approach
is likely to provide information about the viability of populations
(notably effective population size, evolutionary potential) not captured
by more commonly studied abundance or occurrence patterns, and
could be readily applied to other wide-ranging taxa. There is scope for
our approach to be extended and incorporated into a species
distribution modelling framework. Combining genetic data with
presence and abundance data from across species’ ranges in a single
framework could improve understanding of links between species
distributions and underlying environmental drivers, and allow for
better predictions of the capacity of species to respond to future
environmental change through both range shifts and in situ adaptation
(Scoble and Lowe, 2010; Fitzpatrick and Keller, 2015; Gotelli and
Stanton-Geddes, 2015).
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