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Summary: The thymus is a primary lymphoid tissue that supports the
generation of abT cells. In this review, we describe the processes that
give rise to the thymus medulla, a site that nurtures self-tolerant T-cell
generation following positive selection events that take place in the
cortex. To summarize the developmental pathways that generate
medullary thymic epithelial cells (mTEC) from their immature progeni-
tors, we describe work on both the initial emergence of the medulla
during embryogenesis, and the maintenance of the medulla during
postnatal stages. We also investigate the varying roles that receptors
belonging to the tumor necrosis factor receptor superfamily have on
thymus medulla development and formation, and highlight the impact
that T-cell development has on thymus medulla formation. Finally, we
examine the evidence that the thymic medulla plays an important role
during the intrathymic generation of distinct abT-cell subtypes. Collec-
tively, these studies provide new insight into the development and
functional importance of medullary microenvironments during self-tol-
erant T-cell production in the thymus.
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Introduction

T cells expressing the ab form of the T-cell receptor

(abTCR) are generated in the thymus from migrant lym-

phoid progenitors that arise in the liver during embryonic

life, and then in the bone marrow at postnatal periods (1,

2). As the thymus contains no intrinsic ability to generate

haemopoietic stem cells, it must be regularly seeded by

migrant T-cell progenitors in order to support the continued

intrathymic production of naive T cells (3, 4). The impor-

tance of the thymus for normal immune system function is

clear from studies that document the direct impact of

genetic alterations on thymic development, and the effect
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this has on T-cell production. For example, in both rodents

and humans with naturally occurring mutations in the

Foxn1 gene, thymus tissue fails to form correctly during

embryonic life, which results in a loss of T cell-mediated

immunity (5–8). Similarly, there are indications that in

man, the surgical removal of normal thymic tissue may also

impact T-cell production and immune system function later

in life (9, 10).

Given the importance of the thymus, intrathymic T-cell

development is a well-studied process. While the precise

nature of thymus colonizing cells is not clear, their down-

stream descendants, early thymus progenitors, are defined

by a CD4� CD8� CD44+ CD25� CD117+ phenotype (11,

12). Subsequent stages of differentiation within CD4� CD8�

stages include CD44+ CD25� double negative 1 (DN1)

which can be further subdivided on the basis of CD24 and

CD117, and then CD44+ CD25+ DN2, CD44� CD25+ DN3

(13). Successful rearrangement and expression of TCRb pro-

teins as part of the pre-TCR complex triggers thymocyte dif-

ferentiation and expansion via an intermediate

CD44� CD25� DN4 stage, resulting in the emergence of a

large pool of CD4+ CD8+ thymocytes expressing low levels

of abTCR that reside within the thymic cortex. Such cells

represent the progenitors of CD4+ 8� and CD4� 8+ thymo-

cytes that represent the most mature stage of T-cell develop-

ment in the thymus (14), and enter the peripheral T-cell

pool as recent thymus emigrants (RTE) (15).

Given the complexity of intrathymic T-cell development,

it is perhaps not surprising that thymocytes are unable to

control their own maturational program. Instead, they must

continually receive signals from their surrounding thymic

microenvironments to ensure that their step-wise develop-

ment takes place correctly (16). During postnatal stages,

lymphoid progenitors that enter the thymus via blood ves-

sels at the corticomedullary junction migrate outwards

through the cortex, resulting in the accumulation of

CD25+ CD44� DN3 progenitors within the subcapsular

region. During these early phases of development, thymo-

cytes remain in contact with cortical thymic epithelial cells

(cTEC) that form a complex reticular network of stromal cell

support throughout the cortex. Several studies have shown

that interactions with cTEC are important during both early

and later stages of thymocyte maturation. For example, cTEC

express the Notch ligand Delta-like 4, which drives the for-

mation of large numbers of cortical CD4+ CD8+ thymocytes

(17–19). To allow further differentiation, cTEC mediate thy-

mocyte positive selection by presenting a specialized array

of self-peptides via major histocompatibility complex

(MHC) class I and class II molecules (20), so that cells cap-

able of abTCR-MHC recognition are rescued from apoptosis.

Importantly, positive selection is essential for newly selected

thymocytes to gain entry into the thymic medulla (2), an

intrathymic microenvironment that is anatomically and

functionally distinct from the cortex. By acting as a reservoir

of newly selected thymocytes and as a site for T-cell toler-

ance induction, the thymus medulla shapes antigen recogni-

tion in the na€ıve T-cell pool by limiting the development of

cells that recognize self-antigens, thereby limiting the chance

of autoimmunity (21). Collectively, these studies underline

the complexity of thymocyte development, and emphasize

the importance of the cortical and medullary areas that pro-

vide stromal cell support during this process. Elsewhere in

this volume, Takahama et al. review the development and

function of the thymic cortex. Here, we focus on the thymic

medulla, beginning with studies that facilitated its analysis,

and then summarizing current knowledge of its develop-

mental origins and functional importance.

Sorting out stroma: a brief history

Early studies that combined the transplantation of embryonic

thymus and bone marrow between wildtype (WT) and

nude mice were among the first to demonstrate the link

between epithelial cell development and thymus function

(22). In order to gain insight into the role of TEC during T-

cell development, early studies aimed to isolate and propa-

gate these cells using in vitro monolayer cultures that often

required the presence of fibroblast feeder layers. However,

due to the limited isolation techniques available at the time,

TEC heterogeneity remained poorly defined and often relied

upon morphological analysis. As a consequence, the ability

to recapitulate and study thymocyte development in vitro in

the presence of defined thymic stromal cells was lacking

(23–25). As isolation methods improved, TEC heterogeneity

could be revealed by distinct patterns of cytokeratin expres-

sion (26–28), although this still did not enable the isolation

and study of distinct TEC subsets. Such studies only became

possible through the availability of reagents that recognized

cell surface determinants on TEC, and that could be used in

either magnetic bead or fluorescence activated cell sorting-

based sorting protocols. These include the fucose-binding

lectins tetragonolobus purpureas agglutinin and ulex eur-

opeus agglutinin (UEA) (29), the latter still widely being

used to identify and isolate mTEC. In addition, the genera-

tion of multiple monoclonal antibodies has greatly aided in

TEC isolation, including clone G8.8 that recognizes the pan-
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epithelial determinant EpCAM1 (30), the mouse thymus

stroma antibody series (31), and NLDC-145 (32) and 6C3

(33) that identify CD205 and Ly51 expressed by cTEC. The

availability of these reagents have helped to establish ‘Stan-

dard Operating Procedures’ that are widely used in the isola-

tion of EpCAM1+ UEA+ mTEC that are Ly51�/CD205�, and
EpCAM1+ UEA� cTEC that are CD205+ or Ly51+.

While methods for the isolation of TEC subsets improved,

in vitro systems were still limited in their ability to support

T-cell development, which perhaps could be explained at

least in part by the loss of expression of Foxn1 and Dll4 by

TEC grown in two-dimensional monolayer cultures (34,

35). Consequently, we aimed to establish new culture tech-

niques that supported the functional analysis of purified thy-

mic stromal cell types in vitro. As three-dimensional cultures

had been successfully used in the analysis of other epithelial

tissues (36), we established a system based on fetal thymus

organ culture (FTOC) (37–40) that enabled the re-associa-

tion of defined thymic stromal populations within three-

dimensional in vitro cultures. In initial studies using reaggre-

gate thymus organ cultures (RTOC), we showed that posi-

tive selection of a single cohort of CD4+ CD8+ thymocytes

could be analyzed and manipulated (41–44). Furthermore,

by varying the developmental stage of T-cell precursors used

to form RTOC, stage-specific requirements for distinct thy-

mic stromal populations were identified for the first time.

For example, while TEC alone were both essential and suffi-

cient for the maturation of CD4+ CD8+ thymocytes, a com-

bination of TEC and mesenchyme cells was shown to be

required for CD4� CD8� T-cell precursor development (45,

46). Importantly, FTOC and RTOC that have formed in vitro

can be transplanted under the kidney capsule of recipient

mice, providing a powerful approach to combine in vitro

manipulation with the study of TEC populations in vivo. With

regard to the thymic medulla, and as described in further

detail in subsequent sections, these techniques have been

particularly important in identifying and tracking the devel-

opmental potential of defined mTEC progenitor populations

(47–50), and demonstrating the importance of mTEC dur-

ing the induction of T-cell tolerance mechanisms in vivo

(51–54).

Pathways in mTEC development

mTEC progenitors

Consistent with their common endodermal germ layer ori-

gin (55), functional assays showed that the cTEC and mTEC

lineages both arise from bipotent TEC progenitors (48, 56).

Importantly, bipotent progenitors have been recently iso-

lated and further defined using a combination of markers

(e.g. a6 integrin, Sca1, CD24) and assays, which will aid in

understanding both cTEC and mTEC development (57–60).

Indeed, the events that occur downstream of bipotent pro-

genitors, notably in relation to development of the mTEC

lineage, have been the focus of investigation for many stud-

ies in recent years. While mTEC heterogeneity has been well

reported, the first direct evidence of mTEC progenitors was

provided at a functional, rather than phenotypic, level.

Notably, the demonstration that individual islets of mTEC

could be derived from a single cell, provided the starting

point to identify and study TEC progenitors that are com-

mitted to the mTEC lineage (47). In our own studies (51),

and those of others (61), by monitoring the developmental

potential of purified TEC populations using in vitro RTOC,

we showed that MHC class IIlow CD80� mTEC (mTEClow)

could generate MHC class IIhigh CD80hi (mTEChi), providing

an indication of one of the precursor–product relationships

within the mTEC lineage. Since then, and using similar

experimental approaches, mTEC progenitors – including

those that give rise to mature Aire+ mTEC – have been fur-

ther defined. For example, Hamazaki et al. (50) have shown

that a subset of TEC with the potential to generate mTEC

but not cTEC could be defined by expression of Claudin-3

and -4 (Cld3/4). Furthermore, an SSEA1+ subset of Cld3/

4+ cells was recently reported to possess both self-renewing

capabilities and the long-term potential to generate mTEC

in vivo (49). The identification of such SSEA1+ mTEC stem

cells (mTECSC) is important as it provides an opportunity to

study stages in TEC development that occur immediately

downstream of bipotent TEC progenitors (Fig. 1). In addi-

tion, and consistent with the presence of mTECSC, Ohigashi

et al. (62) recently showed that in the adult thymus, mTEC-

restricted progenitors that are generated downstream of

bipotent progenitors during embryonic life are responsible

for maintenance of the mTEC compartment in the steady

state and its regeneration following injury. Interestingly, an

earlier study showed that TEC with mTEC features could be

identified in the absence of Foxn1 expression (63), suggest-

ing that the initial emergence of the mTEC lineage can occur

in the absence of this key transcription factor. Whether

such Foxn1-independent mTEC progenitors arise from

SSEA1+ mTECSC, or represent an alternative pathway of

mTEC lineage development, is not clear.

To directly examine the lineage relationships of cTEC and

mTEC, we screened developing populations in the mouse

embryonic thymus using a panel of markers, including CD40
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and the cTEC marker CD205 (64). Using this approach,

we saw a pattern of expression defined by the serial acquisi-

tion of first CD205, and then CD40. By E15 of gestation,

we showed that while CD205+ CD40� cells expressed

cTEC-related markers such as b5t and Cathepsin-L,

CD205� CD40+ cells expressed a range of mTEC markers

including Aire, Cathepsin-S, and osteoprotegerin (OPG).

Based on this evidence, we proposed that CD205+ CD40�

cells represented cTEC-restricted progenitors (64). Surpris-

ingly however, when we assessed the developmental

potential of embryonic CD205+ CD40� TEC in vivo, we found

they gave rise to both the cTEC and mTEC lineages, including

Aire+ cells (65). Furthermore, in vitro stimulation assays

showed that a proportion of CD205+ CD40� cells expressed

RANK, a key regulator of the mTEC lineage (65). Taken

together, such findings showed that at least in the embryonic

thymus, mTEC could be derived from progenitors that are

defined by the expression of markers of the cTEC lineage.

Importantly, similar observations were reported in other

studies involving either fate mapping of TEC development

using b5tCre mice (66), or assessment of the developmental

potential of cells expressing additional cTEC traits, including

IL7YFP and CCRL1 (67, 68). Collectively, the evidence from

these studies suggested a ‘serial progression model’ of

embryonic TEC development (69), in which bipotent TEC

progenitors initially acquire a cTEC-like phenotype, which is

then followed by the loss of cTEC markers and potential,

resulting in the generation of mTEC. Given that mTEC repre-

sent a dynamic population that is continually replaced from a

progenitor pool, it is important to note that studies have not

yet been reported that directly address whether a similar

developmental process continues to take place beyond the

embryonic thymus and throughout postnatal life.

Importantly, although advances have been made in under-

standing pathways in mTEC development, the location of

immature TEC progenitors within organized thymic tissue

remains poorly understood. Recently, Onder et al. (70) used

a variety of fate mapping approaches in mice to investigate

the anatomical positioning of mTEC progenitors in relation

to medulla formation. In their studies, they indicated that

mTEC progenitors defined by expression of podoplanin

were identifiable at the corticomedullary junction, making

them well placed to contribute to continued generation of

medullary areas. Interestingly, other studies have generated

three-dimensional reconstructions of the adult mouse thy-

mus, and shown that the medulla consists of around 200

small areas (71). Whether each individual area is generated

from a single mTEC progenitor residing at the corti-

comedullary junction is not clear. Moreover, given the iden-

tification of mTEC stem cells (49) and the heterogeneity in

mTEC that is emerging from other studies (72, 73), it will

be interesting to determine whether podoplanin+ progeni-

tors represent a population that can give rise to all mature

mTEC subsets in a sustained manner.

One of the key aspects of further defining stages in mTEC

development has been the availability of tools and reagents

that can be used to define known functional regulators of

thymus medulla formation. For example, the generation of

monoclonal antibodies to analyze patterns of Aire expression

(74) has played an important part in identifying mTEC sub-

sets of functional relevance. In contrast, expression patterns

of other key mTEC regulators including RANK have been

difficult to define. Given the paucity of suitable antibodies,

we recently generated BAC transgenic mice in which expres-

sion of the fluorescent protein Venus can be used to moni-

tor RANK expression. In initial analysis of the mTEC

compartment of adult mice, we identified complex hetero-

geneity with regard to RANK expression. For example, both

mTEClo and mTEChi compartments contained RANK-Venus+

Fig. 1. Pathways in medullary thymic epithelial cells (mTEC)
development. The identification of SSEA1+ mTEC stem cells
downstream of bipotent TEC progenitors marks an important stage in
thymus medulla development. Such cells have the potential for both
self-renewal and the generation of mature mTEC progeny that establish
thymic tolerance. The mTEClo compartment, defined by low levels of
MHC class II and CD80, are known to contain the RANK+ progenitors
of Aire+ mTEChi. However, the frequency of these progenitors within
the mTEClo compartment, and their detailed phenotypic properties, are
not known. Additionally, the description of LTbR-dependent
CCL21+ mTEClo suggests that not all mTEClo may be the progenitors of
mTEChi, suggesting developmental heterogeneity within the mTEClo

compartment.
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and RANK-Venus� subsets. Moreover, subdivision of mTEClo

and mTEChi cells on the basis of expression of CCL21 and

Aire showed that RANK-Venus did not fully overlap with

either marker. While such initial studies show that further

work is required to understand the lineage relationships of

RANK+ and RANK� mTEC, they suggest that the subdivision

of the mTEC lineage into mTEClo and mTEChi is over-sim-

plistic. Indeed, although mTEClo are known to contain the

progenitors of mTEChi cells, it may be that mature cells also

reside within the mTEClo compartment. Perhaps in support

of this, a recent study (75) showed that a subset of mTEClo

cells expresses the CCR7 ligand CCL21 in a lymphotoxin b

receptor (LTbR)-dependent manner. This study is important

as it demonstrates heterogeneity within the mTEClo com-

partment, and indicates that at least some mTEClo cells

express molecules that might functionally influence thymo-

cyte development. Thus, it is still currently unclear what

proportion of the mTEClo compartment represents the

immature progenitors of mTEChi, and whether additional

mTEClo cells exist that represent mature cells in a sub-branch

of the mTEC lineage that does not include an mTEChi stage.

The TNFR superfamily and the thymus medulla

The nuclear factor (NF)-jB signaling pathway is known to

be an important regulator of thymus medulla formation

(76, 77). Signaling through various members of the tumor

necrosis factor receptor superfamily (TNFRSF) activates this

pathway and to date, four receptors (RANK, OPG – a decoy

receptor for RANK, CD40, and LTbR) have been linked to

mTEC differentiation. The requirement of NF-jB activation

for mTEC development is evident from mice deficient in

RelB, a subunit of the NF-jB complex. Indeed, Relb�/�

mice have a dramatically reduced medullary compartment,

accompanied by a loss of UEA-1+ mTEC (77–79). Impor-

tantly, in addition to severe multi-organ autoimmunity

(77), these mice have additional immune system abnormali-

ties including reduced frequencies of thymic dendritic cells

(DC) and a failure in lymph node organogenesis. Given the

complex phenotype of Relb�/� mice, it has been difficult to

determine whether the autoimmunity seen in is due to a

specific requirement for Relb expression by TEC for central

tolerance. To address this issue, we employed a thymus

transplantation system in which alymphoid 2-deoxyguano-

sine (dGuo)-treated Relb�/� FTOC were transplanted into

athymic nude mice, thereby compartmentalizing the RelB

defect to TEC (52). In these experiments, nude mice that

received Relb�/� TEC grafts developed multiple symptoms

of autoimmunity, including the presence of lymphocytic

infiltrates in the liver and autoantibodies in the serum. Inter-

estingly, WT hosts grafted with Relb�/� stroma showed no

signs of autoimmunity, presumably due to peripheral

tolerance mechanisms involving Foxp3+ regulatory T cells

(T-Reg) generation by the host thymus (52). Such observa-

tions are in line with other studies that also highlighted the

importance of NF-jB signaling in medulla development for

tolerance induction. For example, aly/aly mice deficient in

NF-jB inducing kinase (Nik) also show mTEC abnormalities

and autoimmunity (53, 80). In addition, TRAF6-deficient

mice also have medullary abnormalities including a reduc-

tion in Aire+ mature mTEC. Similar to studies employing

Relb�/� thymus grafts, engraftment of embryonic TRAF6�/

� dGuo-treated FTOC into nude mice resulted in autoimmu-

nity characterized by multi-organ immune infiltrates (81).

In a more recent study, and again to specifically address the

requirement of TRAF6 expression by TEC, Bonito et al. (82)

generated Foxn1Cre 9 TRAF6 fl/fl mice. These mice were

reported to have a diminished thymic medulla development,

a reduced frequency of Aire+ mTEC and hallmark features of

autoimmune hepatitis, including the presence of autoanti-

bodies in the sera. Combined, these studies indicate the

importance of NF-jB signaling in the formation of thymic

microenvironments for tolerance induction, and have initi-

ated further studies to identify the cell surface receptors that

employ this pathway during thymus medulla development.

RANK-mediated mTEC development

In addition to NF-jB signaling, mTEC maturation is depen-

dent on hematopoietic crosstalk, a process in which devel-

oping thymocytes provide differentiation signals necessary

for the regulation of TEC development. Such crosstalk

involves signaling through mTEC expression of TNF recep-

tors and is a process that occurs in both the embryonic and

adult thymus (83–87). In addition, and in contrast to previ-

ous reports (88), we showed that thymic microenviron-

ments remain receptive to crosstalk in the prolonged

absence of T-cell development, arguing against the presence

of a developmental window in embryonic development dur-

ing which initial crosstalk must take place (89). In relation

to the role of crosstalk during embryonic thymus develop-

ment, studies from our own lab have revealed a role for

embryonic RORct+ innate lymphoid cells and progenitors of

Vc5+ dendritic epidermal T cells in the emergence of the

first cohorts of Aire+ mTEC. For example, the addition of

RANKL expressing innate lymphoid cells from embryonic
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spleen to TEC progenitors in RTOC triggered mTEC matura-

tion, including the generation of CD80+ mTEChi cells

expressing Aire (51). Likewise, similar experiments adding

purified RANKL-expressing Vc5+ thymocytes to RTOC also

induced Aire+ mTEC development, which fits well with

their close proximity to mTEC in vivo (90). Interestingly, the

generation of embryonic mice deficient in both RORc

expression and cdT cells showed a further reduction in

Aire+ mTEC compared to mice deficient in either cell type

alone (90), suggesting that during embryonic thymus devel-

opment, innate lymphoid cells and DETC progenitors syner-

gize to trigger mTEC development.

Consistent with the importance of RANKL+ cells during

thymocyte–TEC crosstalk, studies using embryonic and adult

mice have shown a clear requirement for RANK in mTEC

maturation. For example, embryonic mice deficient in RANK

or RANKL have a complete absence of Aire+ mTEC (51,

86). Further evidence of RANK signaling for mTEC differen-

tiation was provided by experiments in which in vitro stimu-

lation of dGuo-treated FTOC with either recombinant

RANKL or agonistic anti-RANK antibody resulted in the

upregulation of CD80 and Aire expression by mTEC (51,

91). In contrast to the embryonic thymus, adult mice defi-

cient in RANK or RANKL have reduced, rather than absent,

Aire+ mTEC. Interestingly, Akiyama et al. (86) observed Aire

expression in the RANKL�/� thymus at postnatal day 3,

providing strong evidence that after birth, additional interac-

tions could influence Aire+ mTEC development in the

absence of RANK signaling. Finally, and consistent with the

importance of the RANK–RANKL axis in thymus medulla

development, we showed recently that a population of

Aire+ mTEChi can be defined by expression of OPG, a sol-

uble decoy receptor for RANKL (72). Moreover, mice defi-

cient in OPG have a large thymic medulla and increased

numbers of Aire+ and Aire� mTEChi and mTEClow cells, all

of which are RANK+ targets of OPG-mediated control (72,

85, 92). Thus, while OPG expression is limited to a particu-

lar subset of mTEC, it can operate via cis and trans mecha-

nisms to regulate homeostasis within the global mTEC

compartment.

CD40–CD40L interactions

Several studies have also highlighted the importance of an

additional TNFR, CD40, in regulation of the thymus

medulla in the postnatal period (85–87, 93, 94). Interest-

ingly, and in contrast to the requirement for RANK, CD40

signaling appears to have a more subtle effect on mTEC

maturation. For example, adult mice doubly deficient in

RANK and CD40 show a greater reduction in Aire+ mTEC

compared to RANK deficiency alone, demonstrating the

requirement for co-operation between RANK and CD40 in

postnatal mTEC differentiation (86). These experiments

suggest an essential requirement for RANK signaling during

the initial emergence of Aire+ mTEC in the embryo,

whereas subsequent postnatal mTEC differentiation relies on

co-operation between both CD40–CD40L and RANK–RANKL

signaling.

In the adult thymus, and again consistent with the impor-

tance of thymocyte crosstalk, mature thymocytes are the

major source of RANKL and CD40L. RANKL is expressed

preferentially by CD4+ CD8� thymocytes and also by a

small population of CD4� CD8+ thymocytes, whereas

CD40L is expressed exclusively by CD4+ CD8� thymocytes

(95). Studies using mice deficient in CD4+ CD8� and

CD4� CD8+ thymocytes, either individually or combined,

have investigated the importance of each cell type in mTEC

maturation. While mice deficient in MHC class I expression

and consequently CD4� CD8+ thymocytes have unaltered

numbers of mature Aire+ mTEC, H2-Aa�/�, and CiitaIV�IV�

mice lacking MHC class II expression and CD4+ CD8� thy-

mocytes have a dramatic reduction in Aire+ mTEC (87).

Interestingly, TCRa�/� mice deficient in both CD4+ CD8�

and CD4� CD8+ thymocytes appear to have a more severe

disruption of the mTEC compartment compared to mice

lacking CD4+ CD8� thymocytes alone (96), suggesting that

other abTCR-expressing cell types are capable of inducing

mTEC maturation. Interestingly, and in line with this,

CD1d�/� mice that lack iNKT cells have a reduction in

Aire+ mTEC (97). Moreover, during early stages in their

intrathymic development, iNKT cells were shown to express

both RANKL and CD40L, which decreases as they mature.

Combined, these data suggest that in addition to mainstream

abT-cell development and invariant cdT-cell development,

intrathymic iNKT-cell development also involves TNF recep-

tor ligand expression, which contributes to the maturation

of mTEC (97).

Lymphotoxinb receptor (LTbR)

LTbR is expressed by thymic stromal cells and DC but not

by developing thymocytes, and two ligands for LTbR have

been identified; LIGHT and LTa1b2. Mice deficient in LTbR

signaling have disrupted medullary architecture and defects

in mTEC populations, including a reduction in terminally

differentiated involucrin+ mTEC (98). Interestingly, unlike
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CD40�/� or RANK�/� mice, disruption of LTbR signaling

does not alter the numbers of Aire+ mTEC. However, mice

still show signs of autoimmunity (98–100), which may be

due to alterations in medullary organization rather than

altered mTEChi development. Of note, one study sorted

mTEC populations from LTa�/� and LTb�/� mice, and

showed a reduction in both Aire-dependent and Aire-inde-

pendent TRA expression (101), raising the possibility that

LTbR may influence mTEC expression of TRA indirectly.

Recently, Lkhagvasuren et al. (75) devised a method to allow

the detection of CCL21 by flow cytometry and showed

CCL21 expression predominately within CD80low mTEC. In

addition, LTbR�/� mice were shown to have a reduction in

CCL21+ mTEC (75). Whether this CCL21+ mTEClo popula-

tion is generated from CCL21� mTEClo progenitors, or

arises later from mTEChi during post-Aire stages of develop-

ment (102, 103), is currently unknown (Fig. 1). While the

positioning of CCL21+ mTEClo in current models of mTEC

development remains to be elucidated, these experiments

provide evidence that LTbR plays a direct role in the regula-

tion of the mTEClo compartment, and may provide an expla-

nation of the importance of LTbR in thymic medulla

organization and tolerance induction (99). Most recently,

the role of LTbR in thymic tolerance has been examined by

Takaba et al. (104), who described Fezf2 as a transcription

factor that is expressed by mTEC in an LTbR-dependent

manner. Importantly, Fezf2 was shown to control expression

of a small range of TRA independently of Aire, supporting

the idea that both Aire and Fez2 collectively contribute to

tolerance to self-antigens. Interestingly, while mice deficient

in both LTbR ligands (LTb�/� LIGHT�/�) show disrupted

medulla formation, the phenotype does not fully recapitulate

that seen in the LTbR�/� mice, suggesting that an additional

unknown ligand for LTbR might exist (99). Finally, the role

of LTbR in co-operation with other TNFRSF members has

been investigated during mTEC differentiation. While mice

deficient in both LTbR and CD40 had no additional medul-

lary defects compared to mice deficient in LTbR alone, mice

deficient in both LTbR and RANKL showed a greater reduc-

tion in mTEC compared to RANKL or LTbR single knockout

mice. Moreover, stimulation of FTOC with agonistic anti-

LTbR was reported to induce RANK expression by mTEC,

suggesting that initial conditioning via LTbR is important

during mTEC development by enabling effective RANK–

RANKL-mediated interactions (91). Whatever the relation-

ship between LTbR and RANK, it is clear that several

TNFRSF members combine to ensure normal development,

organization, and function of the thymus medulla, and that

various cells contribute TNFRSF ligand expression as a basis

of thymic crosstalk.

The thymus medulla and conventional abT-cell
development

Cortex to medulla migration

Given the critical role of medullary thymic microenviron-

ments in central tolerance enforcement, the migration of

thymocytes into the medulla represents a defining step dur-

ing intrathymic T-cell development. While the thymic

medulla has been known to influence the fate of conven-

tional abT cells following their positive selection in the cor-

tex, many other studies have also revealed its important role

in supporting the development of a range of T-cell subsets

including Foxp3+ T-Reg, CD1d-restricted iNKT cells, natural

Th17 cells, and invariant Vc5+ dendritic epidermal T cells

(52, 90, 97, 105, 106). Such events are summarized in

Fig. 2 and have been recently reviewed elsewhere (107). For

conventional abT cells, the capacity of positively selected

thymocytes to enter the medulla is controlled by a fine reg-

Fig. 2. Regulation of T-cell development by medullary thymic
epithelial cell (mTEC). Although the majority of thymocytes that
reside within the thymic medulla are of the conventional abT-cell
lineage, several studies have now revealed the importance of this
microenvironment in the generation of other thymus-dependent T-cell
subsets. However, in most cases, the precise mTEC compartments that
regulate development of their development are not fully understood.
Of note, these T-cell sub-lineages represent components of both the
innate and adaptive immune systems, and their development within
the thymus has also been shown to be linked to mTEC development,
indicating the importance of reciprocal interactions between multiple
T-cell subsets and mTEC progenitors for medulla formation.
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ulatory balance between cortical retaining and medullary

attractant signals. Following positive selection, CD69+ thy-

mocytes expressing the chemokine receptor CCR9 are

released from cortical retention. At least in part, this release

occurs following Semaphorin 3E-mediated ligation of the

transmembrane glycoprotein PlexinD1 expressed by

CD4+ CD8+ thymocytes. Notably, PlexinD1 binding leads to

the suppression of CCR9 sensitivity to cTEC-derived CCL25

(108, 109). Consistent with this, absence of PlexinD1 in

developing thymocytes leads to the ectopic cortical accumu-

lation of single-positive thymocytes, highlighting a potential

dominant role for CCR9 in the positioning of positively

selected thymocytes.

The opposing localization of single-positive thymocytes

within the medulla is positively regulated by CCR7 signal-

ing. In this regard, mice deficient for either CCR7 or the

cognate ligands CCL19 and CCL21 demonstrate a failure to

accumulate single-positive thymocytes within the medulla

and consequently exhibit defects in negative selection (110–

112). Interestingly however, we (113) and others (114)

reported that for CD4+ thymocytes, upregulation of CCR7

does not occur immediately following positive selection, but

rather takes place at later stages of single-positive thymocyte

maturation. Given that postpositive selection thymocytes

exhibit increased directed migration to the medulla (115),

it is highly likely that additional positive chemoattractant

signals, beyond the release from cortical retention via Plex-

inD1 activity, regulate attraction of thymocytes to the

medulla. In agreement with this, broad inhibition of thymo-

cyte chemokine receptor signaling via pertussis toxin admin-

istration in both in vitro and in vivo systems leads to a reduced

capacity of single-positive thymocytes to accumulate within

the medulla (112, 114).

In the search for potential chemokine receptors that regu-

late guided medullary migration of thymocytes prior to

upregulation of CCR7 expression, CCR4 emerged as an

interesting candidate. Notably, work by our group and

others revealed that CCR4 demonstrated a highly restricted

pattern of expression during thymocyte development,

exhibiting rapid upregulation by CD69+ thymocytes follow-

ing positive selection (113, 114, 116). Correspondingly,

postpositive selection thymocytes demonstrate an in vitro

capacity to migrate toward the CCR4 ligands CCL17 and

CCL22 (116) that are expressed by both mTEC (117) and

thymic DC (118) within thymic microenvironments. How-

ever despite these clues, analysis of CCR4-deficient mice by

our laboratory did not reveal an apparent role for CCR4-

mediated signaling in medullary localization of single-posi-

tive thymocytes, nor thymocyte maturation, including the

development of T-Reg that we previously demonstrated to

be medullary-dependent (52). Moreover, analysis of CCR4/

CCR7 double knockout mice revealed that CCR4 appeared to

be dispensable even in the absence of CCR7, ruling out

potential redundancy between these two chemokine recep-

tors. Interestingly a recent study, using an ex vivo thymic slice

culture system, revealed that CCR4-deficient thymocytes

exhibit reduced medullary migration of the earliest CD69+

postpositive selection thymocytes (118). Moreover, such

CCR4-deficient animals were reported to exhibit impaired

thymocyte deletion and further manifested lacrimal gland

lymphocytic accumulations and increased autoantibodies,

suggestive of a role for CCR4-mediated migration in T-cell

tolerance. Interestingly, while CCR4 appears to regulate

CD69+ CD4+ CD8+ thymocyte medullary entry and interac-

tions between single-positive CD4+ thymocytes and thymic

DC, it remains to be precisely ascertained how differential

chemokine signaling regulates the balance of DC versus

mTEC-mediated central tolerance, including the differential

outcomes of either negative selection or T-Reg development.

Single-positive thymocyte maturation

Following cortical to medullary migration, thymocytes are

estimated to reside within medullary microenvironments for

a period of approximately 1 week (119–121). Using two-

photon imaging of ex vivo thymic explant cultures, studies

have demonstrated that single-positive thymocytes adopt a

‘random walk’ pattern of movement restricted to limited

medullary subzones estimated to be 30 lm in diameter

(122). During such medullary residency, thymocytes

undergo progressive maturation prior to thymic export and

are co-ordinately subjected to both negative selection events

and enforcement of T-Reg development. Semi-mature sin-

gle-positive thymocytes can be defined by changes in a

panel of differentiation markers including expression of

CD69, CD24, CD62L, and Qa2. Thus, while newly selected

thymocytes have a CD69+ CD24+ CD62L� Qa2� pheno-

type, with progressive development their more mature

descendants are CD69� CD24low CD62L+ Qa2+. While

semi-mature single-positive thymocytes defined by CD24

expression are susceptible to deletion as a result of TCR trig-

gering, more mature CD24� thymocytes respond to the

same stimulation via proliferation, suggesting that the matu-

rational status of medullary-resident thymocytes dictates

their susceptibility to negative selection events (123).

The necessity for functional medullary thymic microenvi-

ronments to enforce central tolerance is underpinned by
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experiments documenting aberrant negative selection and

T-Reg development in mice with mTEC defects. Interest-

ingly, in addition to imposing central tolerance, analysis of

mice deficient in RelB, where mTEC development is greatly

impaired, revealed an absence of the most mature

Qa2+ CD4+ CD8� thymocytes suggesting that mTEC sup-

port the progressive maturation of conventional thymocytes

(124). However, these studies did not rule out a possible

hematopoietic intrinsic role of RelB, or the compounding

effect of peripheral autoimmunity that occurs in such mice

(77). Using transplantation of RelB-deficient fetal thymus

grafts into WT mice, we found that normal phenotypic pro-

gression of CD4+ CD8� thymocyte maturation occurred in

the absence of RelB-dependent mTEC. Consistent with this,

we found that following intravenous injection, newly

selected thymocytes were able to complete their maturation

extrathymically, providing support for medullary-indepen-

dent maturation of conventional SP4 thymocytes (52). The

ability of immature CD4+ CD8� thymocytes to mature in an

mTEC-independent manner may be linked to the potential

of peripheral DC to support the maturation of RTE (125).

Although how these mechanisms operate is still unclear, it

may involve interactions of newly produced T cells with

secondary lymphoid organ-resident DC that have been

shown to promote phenotypic maturation of thymocytes in

in vitro co-culture systems (126). Interestingly, our experi-

ments in which RelB-deficient thymi were engrafted into

WT mice demonstrated the presence of host DC within thy-

mus grafts (52). Combined with in vitro studies demonstrat-

ing the ability of DC to upregulate Qa2 expression on

immature thymocytes (126), this suggests a potential role

for thymic DC in the regulated development of CD4+ CD8�

thymocytes. Given that Aire-deficient mice are also reported

to display defects in CD4+ CD8� thymocyte maturation for

poorly defined reasons (124) and that DC positioning is

defective in Aire-deficient animals (127), the requirement

for thymic DC activity and localization in the regulation of

intrathymic thymocyte maturation warrants investigation.

Thymocyte egress

Following intrathymic selection events, single-positive thy-

mocytes acquire the ability to egress from thymic microen-

vironments. Although it was previously unclear whether the

exit from the thymus occurred in a random fashion inde-

pendent of maturational status (128), recent studies have

indicated that this process may involve a strictly regulated

mechanism. Notably, only mature single-positive thymo-

cytes upregulate transcriptional regulators of thymic egress

including Foxo1 and Klf2, which control expression of the

sphingosine-1 phosphate-1 receptor (S1P1). Expression of

the G-protein-coupled receptor S1P1 confers the ability of

thymocytes to migrate toward high concentrations of the

ligand S1P. Critically, the concentration of S1P is highest

within the blood and within thymic microenvironments;

neural crest-derived pericytes lying in close physical approx-

imation to blood vessels at the thymic corticomedullary

junction play key roles in the production of active S1P

(129). The significant role of S1P:S1P1 interactions in the

regulation of thymic egress via reverse transendothelial

migration has been highlighted by several studies demon-

strating that abrogation of S1P gradients or S1P1-mediated

signaling leads to a blockade in mature SP thymocyte egress

and their concomitant retention in thymic perivascular

sheathes (130–133).

In addition to the role of S1P in the emigration from thy-

mic microenvironments, mice deficient for expression of

LTbR have been reported to exhibit retention of mature

CD62L+ thymocytes within the thymus (99). Although the

precise mechanism of LTbR-mediated regulation of thymo-

cyte egress is unknown, interestingly LTbR-deficient thymi

have not been reported to exhibit overt perivascular accu-

mulations that occur as a result of dysregulated S1P signal-

ing, perhaps suggesting that LTbR regulates alternative

pathways controlling thymic egress. Notably, the chemoki-

nes CCL19 and CCL21 represent known LTbR targets (134).

Although CCL21 has not been implicated in thymic egress

events, disruption of CCL19 signaling via in vivo antibody-

mediated neutralization leads to a reduction in thymic emi-

gration at least during neonatal stages (135).

The thymus medulla controls Foxp3+ T-cell

development

In addition to the clonal deletion of autoreactive T cells in

the medulla, the thymus actively maintains T-cell tolerance

through the generation of natural T-Reg. The T-Reg lineage

is defined by the forkhead box family transcription factor

Foxp3, the expression of which is both necessary and suffi-

cient for T-Reg to mediate antigen-specific suppression of

peripheral T-cell responses (136). Mice deficient in T-Reg

through natural mutation of the X-linked Foxp3 gene –

‘scurfy’ mice – develop fatal autoimmune disease a few

weeks postpartum (137), demonstrating the absolute

requirement of T-Reg in maintaining immune tolerance in

the periphery. Emergence of the T-Reg lineage in the thy-
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mus occurs at an intermediate point in the development of

CD4+ T cells in the medulla that can be defined by cell sur-

face expression of CD69 and the chemokine receptor CCR7

(52). T-Reg development has a particular set of require-

ments relative to the intrathymic generation of conventional

CD4+ T cells, including appropriate levels of TCR triggering

(138), co-stimulation, and c-chain cytokine signaling (139–

142). Foxp3+ T-Reg are only detectable postpartum in the

murine thymus (143), coinciding with the maturation of

the medulla, where distinct stromal populations in mTEC

and DC provide a unique niche for T-Reg selection. Recently

we showed an absolute requirement for mTEC in the induc-

tion of T-Reg development (52). As development of the

mTEC lineage is blocked in the absence of Relb expression

(78, 79), by grafting wildtype or Relb�/� fetal lobes under

the kidney capsule of wildtype mice we were able to assess

the necessity for mTEC in the development of conventional

T cells and T-Reg. In Relb�/� lobes, we observed almost

complete abrogation of T-Reg generation, including their

CD25+ Foxp3� precursors (52). In contrast, the develop-

ment and maturation of conventional CD4+ CD8� thymo-

cytes proceeded normally in mTEC-deficient lobes, including

the generation of mature Qa2hi CD69� cells (52). Such

findings are of interest as they indicate a differential require-

ment for mTEC in conventional and T-Reg development that

underscores the importance of the thymic medulla for T-cell

tolerance induction.

In Nur77-GFP mice, in which levels of GFP in thymocytes

are an indicator of the strength of TCR triggering, T-Reg

have a higher level of GFP compared to conventional

CD4+ CD8� thymocytes (138), suggesting that they

undergo high-affinity antigen recognition during their

development. Indeed, through mixed bone marrow chi-

meras including an increasingly dilute fraction of G113

TCR-transgenic cells, antigen-specific T-Reg were shown to

compete for their selecting ligand. Higher fractions of Fox-

p3+ cells were detectable among transgenic T cells when

they represented only a small proportion of thymocytes

(138), and hence were better positioned to receive TCR

stimulation above the affinity required for Foxp3 induction.

Through expression of the transcription factor Aire, and the

regulation of self-antigen expression, mTEC have an effec-

tive capacity to provide high-affinity TCR interactions lead-

ing to T-Reg generation. Interestingly, while this fits with

the observation that T-Reg are reduced in the Aire�/� thy-

mus, this is likely complicated by the finding that DC posi-

tioning within the medulla is controlled by Aire-dependent

chemokine expression (127). However, studies on the gen-

eration of antigen-specific T-Reg show that cells with TCR

specificities to known Aire-dependent self-antigens fail to

develop in the absence of Aire expression (144–146) pro-

viding strong evidence that Aire plays a direct role during

T-Reg thymic development.

Recently, T-Reg generation was viewed as a defined two-

step process, wherein Foxp3� precursors formed through

strong TCR engagement upregulate the high-affinity IL2Ra

chain CD25, and gain responsiveness to thymic IL-2, allow-

ing subsequent expression of Foxp3 (142). This precursor

population is again identifiable by high levels of Nur77-GFP

(138), and like mature T-Reg, CD25+ Foxp3� cells are

greatly reduced in Relb�/� thymus grafts (52), suggesting a

reliance on high-affinity antigen recognition in the initial

stages of T-Reg lineage commitment. Moreover, interactions

between thymocytes and mTEC/DC involving TNFRSF

members and their ligands have been reported to be

required for T-Reg development. It is known that CD80/86

co-stimulation is required for the induction of CD25+ pre-

cursors (139, 142, 147) and TCR signaling and CD80/86

co-stimulation together are required for subsequent upregu-

lation of a cluster of other TNFRSF members on the surface

of T-Reg precursors, including OX40, GITR, and TNFR2

(141). Interestingly, the corresponding ligands are expressed

by both mTEC and DC within the thymic medulla, and pro-

vision of co-stimulation through these receptors appears to

be required for the generation of CD25+ precursors, and

their efficient conversion into Foxp3+ T-Reg (141). Simi-

larly, stimulation via CD27, a TNFRSF member expressed by

CD4+ CD8� thymocytes, by medullary APC-derived CD70

has been shown to be important in thymic T-Reg generation

(140). However, as CD27 expression does not appear to be

a direct indicator of TCR signaling strength, and T-Reg sur-

vival is altered in CD27�/� mice (140), CD27–CD70 inter-

actions may be part of a distinct but complimentary

developmental pathway during intrathymic T-Reg genera-

tion.

A more recent view of T-Reg development and its control

was provided by Tai et al. (148), who demonstrated the

existence of T-Reg precursors with a Foxp3+ CD25� pheno-

type. This population was shown to have a unique challenge

in their development, as Foxp3 conferred a pro-apoptotic

signature to cells, typified by accumulation of PUMA and

active Bim, both regulators of apoptosis. Rescue from cell

death during these early stages of T-Reg development was

shown to be provided by IL-2 signaling after upregulation

of CD25, which triggers downstream expression of the pro-

survival molecule Bcl-2 (148). As this discovery of distinct
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subsets of T-Reg precursors is followed by further analysis

of their developmental requirements, a clearer picture of the

mechanisms that control Foxp3+ T-Reg development in the

thymus should emerge.

It is clear from several studies that mTEC are important

regulators at multiple stages of T-Reg differentiation. When

combined with the increasing understanding of signaling

pathways involved in mTEC homeostasis, the thymic stroma

has become an increasingly appealing target for drugs aim-

ing to alter the balance of production of conventional T

cells and T-Reg. Indeed, Khan et al. (92) demonstrated that

through treatment of mice with blocking anti-RANK anti-

bodies, the homeostasis of Aire+ mTEC could be disrupted

which limited the development of Foxp3+ T-Reg and

allowed the escape of autoreactive T cells from negative

selection. Interestingly, this escape from central tolerance

mechanisms was sufficient to increase the efficiency of

anti-tumor immune responses, and prolonged the survival

of mice inoculated with B16 melanoma. Further reciprocal

studies also focused on how expansion of the mTEC com-

partment might be a means to boost production of T-Reg.

Mice in which Aire+ mTEC are expanded as a result of dis-

ruption of homeostatic pathways, including those lacking

either TEC expression of TGFbRII (149) or OPG (150),

have been used as models to investigate this. Interestingly,

numbers of thymic T-Reg are increased in both models.

Moreover, ablation of T-Reg in mice lacking TEC expres-

sion of TGFbRII displayed a mild autoimmune phenotype

(149), while enhanced tumor growth was noted in nude

mice co-transplanted with OPG-deficient fetal thymus

(150), suggesting that peripheral tolerance could be

enhanced in the absence of negative regulation of mTEC

development.

These findings are supportive of the idea that the devel-

opment of T-Reg is limited by the availability of mTEC in

the normal thymus. However, through use of RAG2pGFP

mice, in which developing thymocytes are transiently

induced to express GFP, thymic T-Reg have been found to

be a heterogeneous population consisting of both newly

produced GFP+ cells and GFP� cells that represent recircu-

lating mature peripheral T cells (119). In light of this, we

investigated whether the increase in thymic T-Reg seen in

models with expanded mTEC compartments mapped to de

novo Rag2pGFP+ versus recirculating Rag2GFP� T-Reg in

the thymus. We crossed OPG-deficient mice with

RAG2pGFP mice, and found that while thymic T-Reg

numbers were indeed increased, this could be explained

by an increase specifically in the recirculating Rag2pGFP�

fraction (72). Moreover, as T-Reg recent thymic emigrants

were present in normal numbers in these mice (72), our

data argue against the idea that increasing the mTEC popu-

lation size enhances the efficiency of T-Reg generation.

Interestingly, while two recent publications have demon-

strated the capacity of recirculating T-Reg to actively con-

strain de novo thymic T-Reg production by competing for

DC-derived IL-2 (151, 152), enhanced thymic T-Reg recir-

culation seen in OPG�/� mice did not further reduce T-

Reg development. Further studies are required to deter-

mine the control of peripheral T-Reg recirculation back to

the thymus, and its impact on intrathymic T-cell develop-

ment. Collectively, such studies show that T-Reg develop-

ment involves a complex series of events that controls

their optimal intrathymic production. Current findings

suggest considerable potential in the exploitation of path-

ways regulating mTEC, and their provision of co-stimula-

tion, in tailoring the output of T-Reg for treatment of

autoimmune disease and cancer.

Concluding remarks

The intrathymic generation of self-tolerant CD4+ CD8� and

CD4� CD8+ abT cells requires controlled migration through

the thymus. The thymic medulla plays a key role in this pro-

cess by mediating the negative selection of thymocytes with

the potential to generate autoimmune responses to self-anti-

gens. Additionally, the medulla plays an important role in

maintaining tolerance in peripheral tissues by supporting the

generation of Foxp3+ T-Reg. Critical to medulla function is

the establishment of mTEC environments that influence mul-

tiple aspects of intrathymic T-cell development. Significant

progress has been made in understanding the pathways that

control mTEC development, including identification of mTEC

stem cells, and the role of TNFRSF molecules. However, our

knowledge of mTEC development remains incomplete, and

further studies are required to understand the formation and

maintenance of mTEC microenvironments, particularly in the

steady-state adult thymus and following thymic injury. Addi-

tionally, how mTEC are able to control the balance between

negative selection and the production of conventional and

Foxp3+ T-Reg is poorly understood, and will require further

detailed investigation of mTEC heterogeneity at both the

phenotypic and functional level. Ultimately, gaining a clearer

understanding of the control of the thymic medulla will aid

in understanding and manipulating self/non-self discrimina-

tion that determines the balance between tolerance and

immunity.
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