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Background
Out-of-hospital cardiac arrest (OHCA) is a major cause of mortality globally [1]. Arrested 
blood circulation prevents delivery of oxygen and glucose to the body, resulting in absent 
breathing and brain injury. Immediate treatment is important to increase chance of sur-
vival. There are around 400,000 OHCAs each year in the US alone, and only 10  %  
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Background:  Out-of-hospital cardiac arrest is a life threatening situation where the 
first person performing cardiopulmonary resuscitation (CPR) most often is a bystander 
without medical training. Some existing smartphone apps can call the emergency 
number and provide for example global positioning system (GPS) location like Hjelp 
113-GPS App by the Norwegian air ambulance. We propose to extend functionality 
of such apps by using the built in camera in a smartphone to capture video of the 
CPR performed, primarily to estimate the duration and rate of the chest compression 
executed, if any.

Methods:  All calculations are done in real time, and both the caller and the dispatcher 
will receive the compression rate feedback when detected. The proposed algorithm is 
based on finding a dynamic region of interest in the video frames, and thereafter evalu-
ating the power spectral density by computing the fast fourier transform over sliding 
windows. The power of the dominating frequencies is compared to the power of the 
frequency area of interest. The system is tested on different persons, male and female, 
in different scenarios addressing target compression rates, background disturbances, 
compression with mouth-to-mouth ventilation, various background illuminations and 
phone placements. All tests were done on a recording Laerdal manikin, providing true 
compression rates for comparison.

Results:  Overall, the algorithm is seen to be promising, and it manages a number of 
disturbances and light situations. For target rates at 110 cpm, as recommended dur-
ing CPR, the mean error in compression rate (Standard dev. over tests in parentheses) 
is 3.6 (0.8) for short hair bystanders, and 8.7 (6.0) including medium and long haired 
bystanders.

Conclusions:  The presented method shows that it is feasible to detect the compres-
sion rate of chest compressions performed by a bystander by placing the smartphone 
close to the patient, and using the built-in camera combined with a video processing 
algorithm performed real-time on the device.
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survive1. Most of these cardiac arrest situations will happen without the presence of med-
ical professionals. Often the bystanders are friends or family of the patient, and are likely 
to get stressed by the situation. In case of OHCA, time to cardiopulmonary resuscitation 
(CPR) should be as short as possible and should continue with high quality until return of 
spontanous circulation. When bystanders perform CPR, quality can be variable and 
sometimes ineffective, even for health care professionals. In a study where ambulance 
performed the CPR, chest compressions were not delivered half of the time during CPR 
[2]. CPR feedback can improve CPR quality for both lay people and professionals [3–6]. 
Continuous coaching by a dispatcher can also improve CPR quality [7, 8] and is now 
widely available as most callers carry phones with a speaker function. Today almost eve-
rybody have a smartphone, permitting apps with functionality beyond hands-free verbal 
communication. Many apps are made to support the caller or dispatcher in case of car-
diac arrest. Some provide GPS location and hands-free and simple dialing of the emer-
gency number, like Hjelp 113-GPS App by the Norwegian air ambulance2 and 
Emergency+ available on App store and Google play. Others, like PulsePoint, are carried 
by CPR volunteers, who will receive a notification from the dispatcher in case of nearby 
emergency and help the volunteer reach the victim [9], and can locate automated external 
defibrillators (AEDs) which can be dispatched to the scene. Other apps provide audio and 
visual coaching to help the bystander, and some uses the build-in accelerometer to guide 
CPR performance. The most recent guidelines on cardiopulmonary resuscitation state 
that the dispatcher plays a critical role in the provision of CPR. Currently, the dispatcher 
has no objective information about how CPR is performed [10].

The aim of this work is to present an algorithm that can be embedded in such apps 
utilizing the built in camera in the smartphone for doing automatic detection of chest 
compression rate, and communicating the chest compression rate to a dispatcher.

Previous work

There are some studies and attempts on using the accelerometer in the phone to perform 
both compression rate and compression depth measurements [11–14]. One example is 
the Zoll PocketCPR app for Android and iOS3, a publicly available app. Using such an 
approach, the bystander has to hold the phone in the hand while doing compression. The 
phone needs to be held correctly, and it can possibly block the microphone and the loud-
speaker. The bystander wastes time putting down and picking up phone when doing CPR 
30:2 (30 compressions followed by two ventilations). The Zoll PocketCPR app is only in 
use for training CPR for the moment, and is not embedded in any emergency app.

A short correspondence by Frisch et al. [15] is presenting a trial performed on mani-
kins using the camera in the smartphone for the detection of compression rate, show-
ing some encouraging results. The correspondence lacks details, but suggests a method 
based on finding the difference between consecutive frames and extracting the repetitive 
motion as the compression rate. All data has ongoing compression activities with rates 
between 60 and 144 pr. minute, and the same placement of the camera. The detection 
algorithm was performed off-line in MATLAB.

1  URL: http://www.heart.org/idc/groups/heartpublic/@wcm/@adv/documents/downloadable/ucm_461797.pdf.
2  URL: https://www.itunes.apple.com/no/app/hjelp-113-gps/id363739748?l=no&mt=8.
3  URL: https://www.play.google.com/store/apps/details?id=com.pocketcpr.poccpr.

http://www.heart.org/idc/groups/heartpublic/@wcm/@adv/documents/downloadable/ucm_461797.pdf
https://www.itunes.apple.com/no/app/hjelp-113-gps/id363739748?l=no&mt=8.
https://www.play.google.com/store/apps/details?id=com.pocketcpr.poccpr
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To our knowledge there are no references where the smartphone camera has been 
used for detection of compression rate, where the calculation has been done in real time 
on the phone, which will be presented in this work. Also, our algorithm is tested in more 
situations and with more disturbances than in [15].

Methods
In this paper, we present a method where the camera in a smartphone is activated by 
an emergency app, to provide the caller and dispatcher with information on the com-
pression performance of the bystander. The dispatcher will first instruct the bystander 
to place the phone on the floor next to the head/chest of the patient, as illustrated in 
Fig. 1, and to start chest compressions. The recorded video is fed through an algorithm 
extracting the main frequency of a repetitive ongoing motion in the scope of the camera, 
and the detected compression rate is sent to the dispatcher in real time as extra informa-
tion throughout the conversation. The algorithm takes into account that only part of the 
bystander motion will be captured on video, like just the shoulder moving in the corner 
of the display, or it can cover most of the frame. The bystander might stop doing com-
pressions, other people moving in the background, the phone itself can be moved, or the 
bystander might change position.

Figure 2 illustrates an example of the live feedback received by the dispatcher, where 
the GPS location of the phone is shown on a map, and the live feedback curve at the top 
shows the estimated compression rate as a function of time. The European Resuscita-
tion Council (ERC) guidelines [10] states that the desired compression rate is 100–120 
cpm. This desirable compression rate area is marked as a gray area on the generally black 
background of the compression plot, as seen in Fig.  2. In the example shown, we see 
there are pauses between periods of chest compression.

Compression rate detection

In this section we will present the core ideas of the proposed algorithm, whereas in the 
next section some details of the implementation of the real time smartphone app is pre-
sented. In Fig. 3 a simplified block scheme of the proposed system is depicted. This will 
be described in the following.

Fig. 1  Illustration of CPR and placement of smartphone
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Let fl(i, j) represent video frame number l, where (i, j) corresponds to row index i and 
column index j. For two consecutive image frames, define the difference image gl as:

where ε is a chosen threshold. The core idea is to use fast fourier transform (FFT) on the 
sum of the pixels in the difference image since the repetitive movement of chest com-
pression should provide a peak in the FFT at the right frequency. Based on the place-
ment of the phone relative to the bystander and patient the movement of the bystander 
might cover most of the video frame, or it might be that only a part of the shoulder is 
visible in a corner of it. To make the algorithm robust, a dynamic region of interest (ROI) 
scheme must be included. The algorithm has to be able to run in real time, thus accurate 
segmentation of the bystander is to computationally demanding to consider.

(1)gl(i, j) =

{

0, if |fl(i, j)− fl−1(i, j)| ≤ ε

|fl(i, j)− fl−1(i, j)|, otherwise

Fig. 2  Example of live feedback given to the dispatcher. The upper plot shows the detected compression rate. 
The grey field of 100–120 cpm indicates the recommended compression rate. At the bottom, the GPS informa-
tion from the phone is displayed

Fig. 3  Simplified block scheme of the proposed system
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The difference image gl(i, j) is divided into non-overlapping blocks of size 50 × 50 pix-
els, Rk ordered row by row.

gives the sum of change in region block Rk for time-point (frame number) l. When 
deciding which block should be part of the dynamic ROI, the changes over the last 15 
frames, i.e. times step of 0.5 s when video rate is 30 fps, are considered at the time. When 
establishing a new ROI, four such consecutive time-steps are studied, i.e. 60 frames. Let

denote the sum of changes for block Rk summed over the last L = 15 difference frames, 
at time point t, where l = t · L. Let S̄LR(t) denote the average of all the sums of the differ-
ent region blocks.

For all blocks, Rk, and L = 15, an indicator function is defined:

When establishing a new ROI, a specific block, Rk, is included in the ROI if at least three 
of the last four indicator values were one:

After this the ROI is not necessarily one connected object, as we want it to be. A three-
step procedure is followed: (1) Gaps in the ROI is filled. This might add some regions 
that should not have been added. (2) All blocks in the ROI with 

∑t
n=t−4 IRk (n) = 0 is 

removed. This might break the ROI up to multiple objects again. (3) Finally the largest of 
the connected objects (groups of blocks) in the ROI is chosen as ROI.

After the ROI is established, it can be updated and will be changed over time. If there 
at some point in time are no blocks in the ROI, it is re-established. During ROI updat-
ing, all blocks at the boundaries of the ROI are checked. Let Rboi denote block i on the 
outside of the boundary, i.e. not already in the ROI, and Rbii denote block i on the inside 
of the boundary, i.e. already inside ROI.

One exception is if a Rboi is at a corner, then it will be included when 
∑t

n=t−2 IRboi
(n) = 2 .

(2)
SRk (l) =

∑

(i,j)∈Rk

gl(i, j)

(3)SLRk (t) =

tL
∑

m=(t−1)L

SRk (m) =

tL
∑

m=(t−1)L

∑

(i,j)∈Rk

gm(i, j)

(4)IRk (t) =

{

1, SLRk (t) > S̄LR(t)

0, else

(5)Rk ∈ { ROI } if

t
∑

n=t−3

IRk (n) ≥ 3

(6)Rboi ∈ { ROI } if

t
∑

n=t−2

IRboi
(n) = 3

(7)Rbii /∈ { ROI } if

t
∑

n=t−1

IRbii
(n) = 0



Page 6 of 19Engan et al. BioMed Eng OnLine  (2016) 15:95 

When an ROI is established the difference signal at time point l is found using the 
sums defined in Eq. 2:

Now we have a time signal d(l), calculated over a dynamic sized ROI. The number of 
blocks in the ROI is kept as Nb(l). The ratio : dROI = d(l)

Nb(l)
 is found and compared to a 

threshold; if dROI < Th1 there is no/very litle activity going on and the compression rate, 
CR(l) is set to 0.

If dROI > Th1, the FFT is performed on each block of Lf = 90 values of the d(l) time 
signal, and Nb(t) is constant for each block. The power spectrum density is estimated by 
the periodogram [16]:

We wish to find the most dominant frequency in the video segment, but have to take 
into account that there might not be any compression activity, and that there might be 
other movements in the image frame. Thus all frequencies outside the area of 60–140 
compressions pr. minute (cpm), are discarded, and let wint denote this frequency area of 
interest. Firstly the total energy of this frequency band over the number of blocks in ROI 
is found:

If DROI < Th2 then CR(t) = −1. The label −1 for the compression rate is used to label 
the rate as uncertain. If DROI > Th2 the algorithms proceeds by finding the most domi-
nating frequencies within wint. The frequency corresponding to the maximum energy is 
found:

and all frequencies {wset} = w > (wm · Th3), w ∈ wint , are investigated further. 
Th3 is empirically set to 0.18. The prominence/distinction of Dt(ws) with respect 
to it’s neighbors are evaluated: Pws = promDt(ws) ws ∈ {wset}, and if Pws < Th4 , 
ws /∈ {wset}, i.e. the frequencies where the energy does not stand out from its neighbor-
ing frequencies are removed from the set wset → wset1. If the set becomes empty, i.e. 
wset1 = ∅,→ CR(t) = −1.

For all ws ∈ wset1 check if also 2ws ∈ wset1 → ws = ws
′. This is because for a given com-

pression rate we will often find a dominant peak at double the frequency as well. Thus 
the energy of these two frequencies are added together. Thereafter the values Dt(ws) are 
compared to DROI, the energy in the interesting frequency band. If

(8)
d (l) =

∑

Rk∈ ROI

SRk (l)

(9)Dt(w) =
1

Lf
|F(d(j))|2 j = (t − 1)Lf : tLf

(10)DROI =
∑

w∈wint

(Dt(w))
2/Nb(t)

(11)wm = argmaxwDt(w), w ∈ wint ,

(12)
Dt(ws)

DROI
> Th4 + δ
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ws ∈ {wset2}, if not it is removed. For ws = ws
′
, δ �= 0. Else δ = 0. Now the final set wset2 

is checked. If wset2 = ∅,→ CR(t) = −1. If wset2 has only one frequency, wfinal this corre-
sponds to the compression rate:

If wset2 has more than one frequency, they are compared to a frequency estimation using 
an alternative approach where the number of direction changes is estimated by look-
ing at the difference images. If one of the frequencies from the different methods are 
(almost) the same, this frequency is chosen as wfinal. If none of the potential frequencies 
corresponds to the alternative method; CR(t) = −1.

Implementation

The proposed system is implemented and tested on a smartphone, and this section 
describes some of the implementation details. The algorithm is implemented as an 
Android application. It has primarily been tested on a LG Nexus 5, but short tests has 
also been done on a few other phones/tablets. It is built to support Android 4.1 (SDK 
version 16) and newer. A flowchart describing the algorithm can be seen in Fig. 4. All 
thresholds mentioned in the previous section, ε, Thi i = 1 . . . 4, are chosen empirically 
during pre-tests and are thereafter kept constant.

Getting the camera frames

The camera is instantiated with a resolution of 640 × 480 pixels and a frame rate of 30 
fps (frames per second). This is done by getting a list of supported frame rates and reso-
lutions from the camera and selecting the closest to the desired ones. This desired reso-
lution and frame rate should be supported by most smartphones available today. Image 
data from the camera are available via the camera preview, the live camera feed usually 
displayed on the screen. A preview callback is attached to the camera instance to pro-
vide a callback every time a new frame is available. Each new frame is delivered in a 
byte array, in YCbCr color format. Only luminance value is used, i.e. color information is 
discarded to save computation time. Preliminary tests indicated that the results with or 
without color information was virtually identical.

Algorithm overview

Every time a new frame from the camera is available, the difference image between the 
new frame and the previous frame is calculated. When 15 difference images (every 0.5 s 
with 30 fps) has been calculated, an asynchronous task is started to estimate the com-
pression rate, if compression is detected. An asynchronous task is a task that runs in the 
background. Here it is used to avoid lag in the user interface and to prevent frame drops. 
This task has the biggest workload of the algorithm. It uses the 15 new difference images 
provided, as well as up to 75 of the previously used (making it a total of up to 90 images, 
equal to 3 s with 30 fps). First, the task tries to establish an ROI. If an ROI can not be 
established yet, the whole frame is used as ROI. The sum of changes is calculated inside 
the ROI, using up to 90 of the previous images. We use FFT and some other techniques 
to estimate the dominating frequency in the window we are examining. This dominating 
frequency has to pass several tests before being trusted. If the frequency is not trusted 

(13)CR(t) = f (wfinal , fps, Lf ).
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Fig. 4  Algorithm flowchart
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it means the algorithm does not believe that it is caused by chest compressions, but by 
some other movement. If trusted, a weighted moving average filter is applied to the fre-
quency, and thereafter it is transmitted and displayed as compression rate in cpm.

User interface

Figure 5 displays an example screenshot of the smartphone during use of the proposed 
app. The compression rate is displayed on the phone (here; the number 136) as well as 
transmitted to the dispatcher. The left image shows the video frames as captured by the 
phone, so that the bystander can see if the camera is catching his or her movement. The 
right image shows the dynamic ROI as the red squares. This will change and be updated 
over time.

Experiments

A set of testing scenarios has been executed to test the performance of the implemented 
Android algorithm. The tests include consecutive compressions with various rates, CPR 
30:2, background disturbances, suboptimal phone placement, variations in light condi-
tions and a test for false positives. In total, there were nine different tests, which were all 
performed by seven test persons. The duration of each test is in the range of 60–120 s. 
The test persons were selected based on their hair length, to test the algorithm using 
various hair types. Long and loose hair will move a lot during compression, and the 
movement is more chaotic. Thus long and loose hair introduces substantial noise. A 
short description of each test person is seen in Table 1.

The experiments were performed by doing compression and CPR 30:2 on a Resusci 
Anne QCPR training manikin (Laerdal Medical, Norway).4 The Resusci Anne training 
device records the depth of compressions and the rate of compression as a function of 

4  URL: http://www.laerdal.com/gb/ResusciAnne.

Fig. 5  Screenshot of smartphone during use of the proposed app. Number corresponds to detected com-
pression rate. Left image shows video frame, red squares in right image indicates region of interest

http://www.laerdal.com/gb/ResusciAnne.
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time, and this rate is stored and considered reference data in these experiments. The 
smartphone app was running simultaneously recording the detected compression rates 
on the smartphone. All performance measures are found by comparing the detected 
compression rate from the smartphone app with the reference rate from the Resusci 
Anne manikin. All tests were performed with an audible metronome running in the 
background to be sure to target the compression rates at the appropriate levels. The 
smartphone was lying on the floor next to the test manikin, along with a tablet used to 
record videos of the tests from approximately the same viewpoint as the phone. These 
videos could later be analyzed to see what was going on in the test. All tests were per-
formed at Laerdal Medical.5 Average error and standard deviation was calculated over 
the timespan of the individual tests. There will be a given lag (approx. 0.5 s) between the 
reference rate and the detected compression rate since all compression rate methods has 
to be performed over a time window. The results have been corrected for this lag to 
make the comparison as fair as possible.

Experiment 1—different target frequencies

An experiment was done without background disturbances and with target compres-
sion rates at both 60 and 110 cpm for all test persons. Each test is one minute long, and 
an example is seen in Fig. 6a. CPR according to the guidelines, is recommended to fol-
low a 30:2 pattern, i.e. 30 compressions followed by two rescue breaths when performed 
by a single bystander, and the recommended compression rate is 110 cpm. Thus in this 
experiment without disturbances a 30:2 pattern with target compression rate at 110 cpm 
is also tested. These tests are performed over approximately 2 min for all test persons, 
and an example is seen in Fig. 6c.

Experiment 2—different disturbances

The algorithm was tested under different situations designed to test the algorithms per-
formance in situations that involved more than just consecutive compressions. The situ-
ations tested were the following:

• • Background disturbances by other people being visible in the video frame, possibly 
moving around.

5  URL: http://www.laerdal.com/.

Table 1  Test persons used in the experiments

Test person Description Group

1 Man with short hair Short

2 Woman with long and loose hair Long

3 Woman with her hair up Short

4 Man with short hair Short

5 Woman with long and loose hair Long

6 Woman with chin length hair Medium

7 Woman with shoulder length hair Medium

http://www.laerdal.com/.
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• • Suboptimal placement of the phone so that only a fraction of the video frame cap-
tures the bystander.

• • A combination of suboptimal phone placement and background disturbances.
• • CPR 30:2 in combination with background disturbances.
• • Varying background illumination.
• • Random movement of a person not performing compressions.

The amount of illumination or the disturbances is not controlled or measured in a quan-
tifiable way in this experiment. The illumination test is done by changing from (i) indoor 
light in ceiling and daylight through windows, (ii) indoor light of, just some daylight 
through partly occluded windows. During optimal placement, the head of the bystander 

Fig. 6  Three test examples, time in seconds, and compression rate in cpm. Blue line corresponds to compres-
sion rate from smartphone app, and red line corresponds to reference rate recorded from the manikin. a Test 
person 2 (long loose hair), target compression rate 110 cpm. Ē = 11.3, P = 80.2. b Test person 5 (long loose 
hair), bad phone placement AND background disturbances. Target rate = 110 cpm. Ē = 34.8, P = 49.4. c Test 
person 5 (long loose hair), CPR 30:2. Ē = 7.9, P = 82.7
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is approximately in the middle of the camera frame. For the suboptimal placement, the 
phone is placed so that only a small part of the head or shoulder is visible in an edge of 
the camera frame. The background disturbance is added by letting other people be vis-
ible in the videoframe, moving and walking around in the background.

The target compression rate was 110 cpm, except in the random movement test where 
there is no target rate. The duration of the CPR 30:2 tests are approximately 2  min, 
whereas all the other tests are approximately 1 min. In the random movement test, the 
test person performed other possible activities a bystander might be doing, i.e. checking 
for pulse or breath, looking around (for help), sitting by the manikin but not performing 
compression, thus the reference compression rate is 0.

Results
Some examples of tests with different test persons are seen in Fig. 7. The blue line shows 
the estimated compression rate as the output of the proposed system implemented as 
a smartphone app, and the red lines show the reference compression rate recorded by 
the manikin. The figure shows one example of a test where the target compression rate 
is held constant, another where the target rate varies, and a third plot showing a CPR 
30:2 test. To evaluate the quality of the proposed system, two measures are defined. 
Let xapp(n) correspond to the time series signal giving the estimated compression rate 
at a given time, i.e. the blue lines in Fig. 7. Let xmanikin(n) denote the compression rate 
recorded from the manikin as a function of time, corresponding to the red signals. The 
average error, Ē [cpm], is found as:

where N is the number of samples in the test, corresponding to:

where TestD is the duration of the test in seconds. 15 corresponds to the choice of 
L = 15 in Eq. 3. The reported average error, µĒ = mean (Ē) and σĒ = std (Ē), is found 
as the mean and standard deviation of the Ē over the different tests (i.e. different test 
persons):

where Ēi is the average error according to Eq. 14 for test number i, and No is the number 
of tests.

The performance, P, is defined as percentage of time where the difference between the 
algorithm rate and manikin rate is less than 10 cpm:

(14)Ē =
1

N

N
∑

n=1

E(n) =
1

N

N−1
∑

n=0

|xapp(n)− xmanikin(n)|

(15)N = TestD [s] ×
video rate [fps]

15 frames/sample

(16)µĒ = mean(Ē) =
1

No

No
∑

i=1

Ēi,

(17)σĒ = std(Ē) =

√

√

√

√

1

No− 1

No
∑

i=1

(Ēi − µĒ)
2
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s(n) is an indicator function defining if the app rate is close enough to the reference rate 
from the manikin, where this is defined to be a difference less than 10 cpm:

The reported average performance, µP = mean (P) and σP = std (P), is found as the 
mean and standard deviation of the P over the different tests (i.e. different test persons):

(18)P =
100

N

N−1
∑

n=0

s(n).

(19)s(n) =

{

1, |xapp(n)− xmanikin(n)| < 10 cpm
0, otherwise

Fig. 7  Three test examples, time in seconds, and compression rate in cpm. Blue line corresponds to compres-
sion rate from smartphone app, and red line corresponds to reference rate recorded from the manikin. a Test 
person 6 (medium length hair), target compression rate 110 cpm. Ē = 6.4, P = 90.4. b Test person 4 (short 
hair), different target compression rates. Ē = 5.0, P = 85.2. c Test person 3 (long hair in topknot, considered 
short hair), CPR 30:2. Ē = 3.3, P = 89.8
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where Pi is the performance measure according to Eqs. 16 and 17 for test number i.

Experiment 1—different target frequencies

The results of experiment 1 are shown in Tables 2 and 3. For a target rate of the rec-
ommended 110 cpm, the main results reported as mean (Ē)( std (Ē)) [cpm] is 3.6 (0.77) 
for short hair, 6.8 (5.9) including medium length hair, and 8.7 (6.0) including long hair 
bystanders.

Experiment 2—different disturbances

From preliminary off-line experiments and use of the app in real-time visual tests, as 
well as in the presented experiments, we have seen that long and loose hair is the dis-
turbance with most impact on the result measures. Therefore the results are presented 
on groups according to hair-length. The results of experiment 2 are shown in Tables 4 
and 5. Table 5 depicts the % of time that the algorithm detects a rate that corresponds 
to the recorded true rate within a limit of ±10 cpm. It can be observed that even with 
disturbances the algorithm provides a correct (±10 cpm) compression rate between 73 
and 97 % of the time for short hair (or topknot) bystanders and between 66 and 92 % 
of the time when including medium haired bystanders. The worst results is combining 
CPR 30:2 pattern with disturbances in the form of another person walking around in the 
video background.

(20)µP = mean(P) =
1

No

No
∑

i=1

Pi,

(21)σP = std(P) =

√

√

√

√

1

No− 1

No
∑

i=1

(Pi − µP)2

Table 2  Average error [cpm], µ
Ē

 with σ
Ē

 in parentheses, for the different target rates and  
CPR 30:2 for groups of test persons

Test Short hair/topknot Short + med. hair All test persons Long loose hair

60 cpm 3.9 (1.77) 4.6 (1.6) 10.0 (11.0) 13.5 (3.1)

110 cpm 3.6 (0.77) 6.8 (5.9) 8.7 (6.0) 23.5 (14.1)

CPR 30:2 3.9 (1.55) 13.4 (13.5) 18.6 (19.6) 31.5 (33.4)

Table 3  Performance, µP and σP where P is defined in Eq. 18, for the different target rates 
and CPR 30:2 for groups of test persons

P gives the % of time throughout the test where the detected rate is within a ±10 cpm limit compared to the recorded true 
compression rate

Test Short hair/topknot Short + med. hair All test persons Long loose hair

60 cpm 87 (11) 86 (9.1) 68 (33) 25.1 (33.5)

110 cpm 94 (2.8) 87 (13) 86 (11) 81.7 (2.1)

CPR 30:2 87 (3.4) 74 (19) 69 (24) 55.6 (38.3)
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Discussion
In all experiments a metronome was used to target a compression rate. Our reference for 
calculated error and performance measurements is the recorded chest compression rate 
from the manikin, i.e not the target rate. A metronome could easily be built in the app 
to provide a target rate of 110 cpm. to achieve sound guidance as demonstrated by Park 
et al. [17].

Discussion, experiment 1

For bystanders with short hair, the algorithm performs very well. Including test persons 
with medium length hair and thereafter with long hair gives a drop in the performance, 
but still for compression at 110 cpm (recommended target rate) the performance is very 
good. For CPR 30:2 pattern, the performance drop is more significant from short hair, 
to including long and medium hair. A possible explanation is the random movement of 
long hair when the bystander changes between providing chest compression and giving 
breaths.

Examples of captured video frames during tests of person with long hair and another 
with short hair are seen in Fig. 8, indicating why long hair can be a problem for the detec-
tion algorithm. Long hair will move somehow more chaotic than short hair, causing a lot of 
different frequencies in the FFT of the difference signal. Thus the frequency corresponding 
to the actual compression rate might be hidden, and another frequency might mistakenly 
be detected and displayed as the compression rate. Figure 6 shows that in some cases of 
long and loose hair, like in (a) and (c), the detected rate is correct in large parts of the time, 

Table 4  Average error [cpm], µ
Ē

 with  σ
Ē

in paranthesis, for  different disturbances for   
groups of test persons

The target rate is 110 cpm, except in the “other activities” test where there is no target compression rate

Disturbances Short hair/hair up Short + medium hair Short, medium + long hair

Backgr. dist. 5.1 (0.43) 8.2 (4.2) 18.4 (20.8)

Bad pos. 3.8 (2.65) 4.3 (2.0) 17.1 (29.1)

Dist + bas pos. 7.5 (2.77) 12.5 (9.0) 24.6 (24.8)

30:2 + dist. 18.5 (5.25) 23.6 (7.9) 28.6 (13.7)

Var. light 2.9 (0.96) 12.2 (16.8) 15.0 (17.7)

Other activities 38.1 (13.6) 26.7 (18.7) 28.5 (18.3)

Table 5  Performance, µP and σP where P is defined in  Eq.  18, for  different disturbances 
for groups of test persons

P gives the % of time throughout the test where the detected rate is within a ±10 cpm limit compared to the recorded true 
compression rate. The target rate is 110 cpm, except in the “other activities” test where there is no target compression rate

Disturbances Short hair/hair up Short + medium hair Short, medium + long hair

Backgr. dist. 85 (4.6) 82 (8.9) 71 (21)

Bad pos. 91 (10) 92 (7.2) 77 (34)

Dist + bas pos. 80 (10) 76 (14) 63 (26)

30:2 + dist. 73 (6.3) 66 (11) 59 (19)

Var. light 97 (1.3) 84 (22) 80 (21)

Other activities 53 (19) 67 (23) 62 (24)
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but in the example (b) the detected rate is changing all the time. This is a topic of further 
research, where we will try to improve the detected rate for long and loose hair. It is also 
possible to incorporate feedback on when the detected rate is trustworthy or not. A trust-
worthy feedback signal would usually quickly become quite stable, with the exception of 
the occasional missed detection, as seen as blue line drops in Fig. 7. The missed detection 
rate time points is seen as a drop to zero in a very short time interval.

Discussion, experiment 2

As seen from Table 4, the algorithm handles most disturbances in the background well. 
For short hair it is not important where the phone is placed as long as something of 
the bystander is visible, and background disturbances and variable lights gives only 
very small degradations of the algorithm performance. For long hair bystanders the dis-
turbances had somewhat more negative effect. It was observed during testing that the 
dynamic ROI finder was an important part of the algorithm to make it robust to dis-
turbances. Movements outside the ROI did not affect the reported compression rate 
at all (as expected). Small background movements inside the ROI seems to be handled 
well, for the most part it did not affect the detected compression rate. However, large 
movements inside the ROI would in some cases cause drops or spikes in the detected 
compression rate, depending on how large the movements were in relation to the com-
pression movements, and how they interfered with each other.

Fig. 8  Examples of video frames during compression. Top bystander with long hair, bottom bystander with 
short hair
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The CPR 30:2 with disturbances, however, shows a more significant degraded perfor-
mance than the other disturbances. During this test it became clear that it was possi-
ble for the disturbance person in the background to firstly infiltrate and thereafter take 
over the ROI when the test person were performing rescue breaths. In this situation, the 
results are unpredictable. If the bystander performing compressions ends up being out-
side the ROI, none of the compressions will be registered. If the compressions are inside 
the ROI, the compressions might be picked up, depending on how large the compres-
sion movements are in comparison with the background movements. If the test person 
got back into the ROI, or if the person in the background disappeared out of the video 
frame, the correct rate was quickly recovered. This might, however, be a rare situation 
since when there are multiple bystanders it is recommended that one of them is doing 
compression and another rescue breaths.

The other activities test can be seen as a specificity test, and it performs apparently 
significantly worse than the other disturbance tests. However, the “true signal” is here 
always considered to be 0 [cpm], thus when the performance is tested is measuring in 
practice how often the algorithm produces 0, since {−10, 10} is not within valid com-
pression rates. The compression rate displayed to the dispatcher will usually vary a lot 
in this situation, and should make the dispatcher questioning if there are compressions 
being performed. However we consider to improve the specificity as well as working on 
improving the algorithm for when the bystander has long hair, to be the two main goals 
for our future research.

Conclusions
A smartphone app for estimating compression rate during chest compression and CPR 
using the built-in camera, and performing all calculations in real time, has been pro-
posed, implemented and tested. For target compression rates at around 100–110 cpm, 
which is the desired compression rate during CPR, the algorithm performs very well 
even with variations in illumination, disturbances in the background, CPR 30:2, and sub-
optimally placed phone. However, there is one factor that influences a lot, and that is if 
the bystander has long and loose hair. In that case, the algorithm is far less reliable due to 
the noise from the fluttering hair. In future work we hope to improve the algorithm for 
the case of the bystander having long and loose hair, as well as improve the specificity to 
detect the absence of repetetive compression even if there are a lot of movements in the 
video frame. In future research we will try to add disturbances in a quantifiable and con-
sistent manner, and we will also include outdoor testing.
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