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Abstract

Joint hypermobility syndrome/Ehlers—Danlos syndrome hypermobility type (JHS/EDS-HT),
is likely the most common systemic heritable connective tissue disorder, and is mostly recog-
nized by generalized joint hypermobility, joint instability complications, minor skin changes
and a wide range of satellite features. JHS/EDS-HT is considered an autosomal dominant
trait but is still without a defined molecular basis. The absence of (a) causative gene(s) for
JHS/EDS-HT is likely attributable to marked genetic heterogeneity and/or interaction of multi-
ple loci. In order to help in deciphering such a complex molecular background, we carried out
a comprehensive immunofluorescence analysis and gene expression profiling in cultured
skin fibroblasts from five women affected with JHS/EDS-HT. Protein study revealed disarray
of several matrix structural components such as fibrillins, tenascins, elastin, collagens, fibro-
nectin, and their integrin receptors. Transcriptome analysis indicated perturbation of different
signaling cascades that are required for homeostatic regulation either during development or
in adult tissues as well as altered expression of several genes involved in maintenance of
extracellular matrix architecture and homeostasis (e.g., SPON2, TGM2, MMP16, GPC4,
SULF1), cell-cell adhesion (e.g., CDH2, CHD10, PCDH9, CLDN11, FLG, DSP), immune/
inflammatory/pain responses (e.g., CFD, AQP9, COLEC12, KCNQ5, PRLR), and essential for
redox balance (e.g., ADH1C, AKR1C2, AKR1C3, MAOB, GSTMS5). Our findings provide a pic-
ture of the gene expression profile and dysregulated pathways in JHS/EDS-HT skin fibro-
blasts that correlate well with the systemic phenotype of the patients.

Introduction

Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue dis-
orders (HCTDs) sharing a variable combination of skin hyperextensibility, internal organ and

PLOS ONE | DOI:10.1371/journal.pone.0161347 August 12,2016

1/23


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0161347&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

JHS/EDS-HT Transcriptome Analysis

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: AD, Atopic Dermatitis; BS, Beighton
score; COLLs, collagens; COLLI, collagen type I;
COLLIII, collagen type lIl; COLLY, collagen type V;
DEGs, differentially expressed genes; EDS, Ehlers-
Danlos syndrome; EDS-HT, Ehlers-Danlos syndrome
hypermobility type; ELN, elastin; ECM, extracellular
matrix; FDR, false discovery rate; FBNs, fibrillins; FN,
fibronectin; GO, Gene Ontology; gJHM, generalized
joint hypermobility; HCTD, heritable connective tissue
disorder; IF, immunofluorescence microscopy; JHS/
EDS-HT, Joint Hypermobility syndrome/Ehlers-
Danlos syndrome hypermobility type; miRNA,
microRNA; Abs, monoclonal antibodies; NRS,
numerical rating scale; Ab, polyclonal antibody;
gPCR, quantitative real-time polymerase chain
reaction; TNs, tenascins.

vessel fragility and dysfunctions, and generalized joint hypermobility (gJHM) [1, 2]. Six major
EDS types are recognized by specific diagnostic criteria in the Villefranche nosology [3].
Among them, the EDS hypermobility type (EDS-HT, OMIM#130020) is likely the most com-
mon [4]. The genetic basis of EDS-HT is still unknown. Hence, EDS-HT is an exclusion diag-
nosis in presence of gJHM, joint instability complications, smooth, velvety, and/or mildly
hyperextensible skin, and positive family history. EDS-HT is considered clinically undistin-
guishable from the joint hypermobility syndrome (JHS), which was originally recognized by
the Brighton criteria [5]. Expert opinion and segregation studies confirm such a clinical
impression [6, 7] and the identification of a unified set of diagnostic criteria is underway.

The actual difficulties in recognizing JHS/EDS-HT are due to the low specificity of available
diagnostic criteria and the lack of any confirmatory test. Clinical variability is wide and now
includes functional gastrointestinal disorders, cardiovascular dysautonomia, and gynecological
manifestations, all not comprised in the available diagnostic criteria [8-10]. While tradition
defines JHS/EDS-HT as an autosomal dominant trait, incomplete penetrance, variable expres-
sivity and markedly skewed sex ratio lead to hypothesize a much more complex molecular
basis for JHS/EDS-HT. The recent identification of a locus on chromosome 8 linked to JHS/
EDS-HT in a Belgian multiplex family supports the existence of major Mendelian factors at
least in selected families [11]. However, marker locus heterogeneity and complex (i.e., non-
Mendelian) inheritance patterns are valid hypotheses that need to be explored in depth.

To gain insights into the pathogenesis of JHS/EDS-HT, we performed a transcriptome-wide
expression profiling in five skin fibroblast strains, derived from adult patients with full-blown
characteristics and which showed a common disarray of several extracellular matrix (ECM)
structural proteins. Our work adds insights into etiopathogenesis of JHS/EDS-HT for future
studies aimed at deciphering the molecular basis of such a protean disorder.

Materials and Methods
Clinical evaluation of JHS/EDS-HT patients

This study was approved by the local Ethical Committee “Comitato Etico Provincia di Brescia,
ASST Spedali Civili, Brescia, Italia”, registration number NP2378 and performed in accordance
with the Declaration of Helsinki Principles. Written informed consent was obtained from all
patients and controls to the study and for skin biopsy. Patients selected for this study were clin-
ically evaluated in the Centre of Heritable Connective tissue disorders and Ehlers-Danlos syn-
dromes of the Spedali Civili of Brescia. Criteria included in the Villefranche nosology for
EDS-HT and Brighton criteria for JHS were used for assessing JHS/EDS-HT patients. gJHM
was evaluated using the Beighton score (BS); patients with negative BS (< 5/9) were investi-
gated for historical JHM using the 5-point questionnaire [12]. Intensity of chronic pain was
evaluated using the numerical rating scale (NRS-11). The presence/absence of some additional
recurrent findings not included in the above mentioned sets of diagnostic criteria, i.e., chronic
fatigue, functional gastrointestinal disorders, dysautonomia, atopy, and neuropathic pain, was
also annotated. For this study, we recruited 5 adult female patients (P1-P5) with a comparably
full-blown phenotype.

Cell cultures and antibodies

Skin fibroblast cultures from five JHS/EDS-HT female patients, four positive both for the Ville-
franche and Brighton criteria and one for the Brighton criteria, and six unrelated sex-matched
healthy donors were established in our lab from skin biopsies by standard protocols. Controls
had a negative BS and did match neither the Villefranche nor the Brighton criteria, as well as
those for the other HCTDs. Dermal fibroblasts were grown in vitro at 37° C in a 5% CO,
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atmosphere in Earle’s Modified Eagle Medium (MEM) supplemented with 2 mM L-glutamine,
10% FBS, 100 pg/ml penicillin and streptomycin (Life Technologies, Carlsbad, CA, USA).
Fibroblasts were expanded until full confluency and then harvested by 0.25% trypsin/0.02%
EDTA treatment at the same passage number (from 3rd to 4th).

Goat anti-type I collagen (COLLI) polyclonal antibody (Ab), rabbit anti-type III collagen
(COLLIII) Ab, mouse anti-elastin (ELN) (clone 10B8), anti-a5B1 (clone JBS5), anti-avp3
(clone LM609), and anti-o281 (clone BHA.2) integrin monoclonal antibodies (mAbs) were
from Millipore-Chemicon Int. (Billerica, MA). Goat anti-type V collagen (COLLV) Ab was
purchased from LifeSpan BioSciences, Inc. (Seattle, WA). Anti-fibrillins (FBNs) (clone 11C1.3)
mAb was from NeoMarkers (Fremont, CA). The rabbit Ab against human fibronectin (FN)
and mAD against all of the human isoforms of tenascin (TNs) (clone BC-24) were from Sigma
Chemicals (St. Louis, MO). Rhodamine-conjugated anti-goat secondary Ab was obtained from
Calbiochem-Novabiochem INTL, Alexa Fluor 488 anti-rabbit and Alexa Fluor 594 anti-mouse
were from Life Technologies.

Immunofluorescence microscopy (IF)

To analyze the FN, COLLI, COLLIII, COLLV, and TNs ECM organization, JHS/EDS-HT
fibroblasts were immunoreacted as described previously [13, 14]. In brief, cold methanol fixed
fibroblasts were immunoreacted with 1:100 anti-FN, anti-COLLV, anti-COLLIII, anti-COLLI
Abs, or with 1 ug/ml anti-TNs mAb. For analysis of 021, 51, and ovB3 integrins, cells were
fixed in 3% PFA/60 mM sucrose and permeabilized in 0.5% Triton X-100 as reported in detail
previously [13]. In particular, controls and JHS/HT-EDS fibroblasts were reacted for 1 h at
room temperature with 4 ug/ml anti-a5p1, anti-ovB3, and anti-o:2p1 integrin mAbs. To ana-
lyze FBNs and ELN organization into ECM, cells were fixed immunoreacted as described pre-
viously [15]. In particular, the FBNs organization was monitored 48 h after seeding: cold
methanol fixed cells were reacted for 1 h with 1 ug/ml anti-FBNs mAb, which recognizes all
FBN isoforms. The ELN organization was investigated by fixing fibroblasts in 1% PFA for 20
min, treating 1 h at 37°C with 10 U/ml hyaluronidase and immunoreacting for 1 h with 1:50
diluted anti-ELN mAb.

Cells were then incubated for 1 h with anti-mouse or anti-rabbit secondary Abs conjugated
to Alexa Fluor 594 and 488, or with anti-goat IgG. IF signals were acquired by a CCD black-
and-white TV camera (SensiCam-PCO Computer Optics GmbH, Germany) mounted on a
Zeiss fluorescence Axiovert microscope and digitalized by Image Pro Plus software (Media
Cybernetics, Silver Spring, MD). All experiments were repeated three times.

Microarray procedures

Total RNA was extracted from skin fibroblasts of patients and controls using the Qiagen
RNeasy kit according to manufacturer’s instructions (Qiagen, Hilden, Germany). RNA quality
control was assessed on an Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA,
USA). Transcriptome-wide expression profiling was performed using the Affymetrix Gene 1.0
ST platform. Microarray analysis was performed starting from 250 ng of total RNA per sample;
labeled targets were prepared using Ambion Whole Transcript Expression Kit (Life Technolo-
gies) and GeneChip WT Terminal Labeling and Controls Kit (Affymetrix UK Ltd, Wycombe
La High Wycombe, UK) in accordance with manufacturers’ instructions. In brief, total RNA
was primed with synthetic primers containing a T7 promoter sequence, reverse transcribed
into first-strand cDNA and converted into double-stranded cDNA. Following the in vitro tran-
scription, cCRNA were reverse transcribed and the corresponding cDNA was fragmented, biotin
labeled, and hybridized over night at 45° C onto the arrays. The chips were then washed in the
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Fluidics station FS 450, scanned using the scanner 3000 7G system, and analyzed with the Affy-
metrix GeneChip Operating Software. Analysis of miRNA expression profile was performed
on patients’ and controls’ fibroblasts in accordance with manufacturer’s instructions, starting
from 250 ng of total RNA labeled with the Affymetrix Flash Tag Biotin Labeling Kit, followed
by the hybridization on the GeneChip miRNA 3.0 array. The resulting CEL files were analyzed
using Partek Genomics Suite software, version 6.6 Copyright; 2014 (Partek Inc., St. Louis, MO,
USA). One-way ANOVA analysis was conducted to identify the differentially expressed genes
(DEGs) between patients and controls by using a combination of fold change value greater
than 1.5 and a false discovery rate (FDR) <0.3, according to the Benjamini-Hochberg proce-
dure [16]. One-way ANOVA (1.5-fold and uncorrected p<0.05) was also applied to identify
differentially expressed miRNAs between the two groups. To identify significantly perturbed
biological processes and enriched pathways in JHS/EDS-HT cells, Partek Pathways algorithm
and DAVID functional annotation clustering were queried. In particular, the main Gene
Ontology (GO) terms were examined with a p-value <0.05 and FDR < 0.3 after Benjamini
Hochberg correction.

The miRNA target prediction databases miRWalk, TargetScan, and miRDB were queried to
correlate the differentially expressed miRNAs with the DEGs. All microarray data are MIAME
compliant, and the raw data have been deposited in the MIAME compliant GEO database with
the accession numbers GSE77753 and GSE77756.

Quantitative real-time PCR

Relative expression levels of a series of selected genes/miRNAs identified by array analysis were
confirmed by quantitative real-time PCR (qPCR) by using different RNA extractions. In partic-
ular, 3 pg of total RNA were reverse-transcribed with random primers by standard procedure.
qPCR were performed with SYBR Green qPCR Master Mix (Life Technologies), 10 ng of
cDNA, and with 10 uM of each primers set. qPCR were performed using the ABI PRISM 7500
Real-Time PCR System by standard thermal cycling conditions. HPRT, GAPDH, ATP5B,
CYC1, and RPLPO reference genes were also amplified for normalization of cDNA loading. Rel-
ative mRNA expression levels were normalized to the geometric mean of these reference genes
and analyzed using the 2"“*“" method. Expression of miRNA was assayed using stem-loop
RT-PCR starting from 50 ng of total RNA in a final volume of 15 pl followed by TagMan
based qPCR profiling in accordance with manufacturer’s instructions (Life Technologies). The
qPCR reaction contained 1.3 pl of reverse transcriptase product, 10 pl of TagMan 2x Universal
PCR Master Mix, and 1 pl of the appropriate TagMan MicroRNA assay containing primers
and probes for the target miRNA. Expression of selected miRNAs was based on the 2 44<V
method by using RNU66 as endogenous control, and gPCR reactions were run in triplicate.
Statistical analyses were performed with GraphPad Prism software (GraphPad Software, Inc,
LaJolla, CA, USA). Results were expressed as the mean value of relative quantification + SEM.
Statistical significance between groups was determined using one sample t test (*p < 0.05,

**p < 0.01,and ***p < 0.001).

Results
Clinical findings

Clinical findings of the five women are summarized in Table 1. All patients presented with typ-
ical multisystem manifestations also including neurologic, psychiatric, cardiovascular, gastro-
intestinal, pelvic/gynecologic and immunologic features. All individuals presented widespread
chronic musculoskeletal pain of high intensity (i.e., a NRS-11 always above 6/10) and refractory
to opioid use.
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Table 1. Clinical findings of JHS/EDS-HT patients.

P1

P2

P3

P4

P5

Sex/Age (years)

F/34

F/49

F/36

F/53

F/34

Family history

Villefranche criteria for EDS-HT

Brighton criteria

MUCOCUTANEOUS

Mildly hyperextensible skin

Velvety/silky/soft skin texture

Striae rubrae and/or distensae in young age

Small or post-surgical atrophic scars

Light blue sclerae

Easy bruising

+ |+ [+ |+ |+ [+

Resistance to local anaesthetics

+ [+ |+ [+ [+ |+ |+

+ o+ |+ |+ [+

+

+ o+ [+ |+ |+

OSTEOARTICULAR

Generalized joint hypermobility (BS>5/9)

Chronic generalized musculoskeletal pain

Recurrent dislocations

+ |+ |+

Recurrent inflammatory soft-tissue lesions

Temporomandibular joint dysfunction

Early osteoarthritis

+ o+ |+ |+ |+ |

+ |+ |+ |+ |+ |

+ o+ |+ |+ |+ |

+ |+ [+ |+ |+

ORTHOPEDIC

High arched/narrow palate

Flat foot

Mild scoliosis

Dorsal hyperkyphosis or lumbar hyperlordosis

Genua, halluces, or cubita valga

+ 4+ |+ [+ [+

+ |+ [+ |+

Minor asymmetry at lower limbs and other body areas

Premenopausal reduced bone mass

+ [+ |+ [+ [+ |+

+o+ |+ [+ [+ |+

+ o+ [+ [+ |+

MUSCULAR

Muscle hypotonia

+

+

+

Recurrent myalgias and cramps

+

+

GASTROINTESTINAL

Gastroesophageal reflux

Defecatory dysfunction

Unclassified food intolerances

+ |+ |+

Visceroptosis

+ |+ [+ |+

CARDIOVASCULAR

Valvular regurgitation with mild hemodynamic involvement

Mitral valve prolapse

Raynaud's phenomenon/acrocyanosis/livedo reticularis

+

NEUROPSYCHIATRIC

Chronic fatigue

Impaired memory and concentration

Headache

Cardiovascular dysautonomia/orthostatic intolerance

Paresthesias

Somatosensory amplification

Obsessive-compulsive trait

e

+ 4 |+ |+ |+ [+

+ o+ [+ |+

(Continued)
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Table 1. (Continued)

ALLERGIES

Asthma

Atopic dermatitis
UROGYNECOLOGICAL
Dysmenorrhea
Metrorrhagias

Urinary stress incontinence
Pelvic prolapse
OCULAR

Myopia

Dry eyes

P1 P2 P3 P4 P5
+ -

na + +
+ + +
+ + + +
+ + +
+ - + +

+

+ - +

BS, Beighton score; F, female; na, not available; +, present, -, absent.

doi:10.1371/journal.pone.0161347.t001

Extracellular matrix organization

To investigate the organization of different structural proteins into the ECM of JHS/EDS-HT and
control skin fibroblasts, expression of COLLI, COLLIII, COLLV, EN, TNs, FBNs and ELN, and
distribution of 021, ai5p1, and ovf3 integrin receptors were analyzed by IF. As shown in Fig 1,
COLLI was accumulated in the cytoplasm with a few thin fibrils into the ECM in control fibro-
blasts, whereas it was only detected in the cytoplasm at lower levels in patients’ cells. COLLIII and
COLLV were assembled into the ECM by control cells, but not by JHS/EDS-HT fibroblasts, in
which the proteins were only detected in the cytoplasm. FN, FBNs, and TNs were organized in
fibrillar and differently shaped networks covering the control fibroblasts, whereas these proteins
were not assembled into the ECM of JHS/EDS-HT cells. In particular, only a few FN and TN
fibrils were localized in the intercellular spaces and FBNs were undetectable in patients’ fibroblasts.
ELN was organized in a matrix covering 7-day-grown control fibroblasts, whereas it was not
assembled into the ECM of JHS/EDS-HT cells, which retained this protein in sparse cytoplasmic
spots. JHS/EDS-HT fibroblasts also showed lack of COLL- and FN-specific receptors, 0231 and
o051 integrins, respectively, on the cell surface, as compared to control cells. avp3 integrin was
almost undetectable in controls, whereas, it was organized in linear patches on the cell surface in
JHS/EDS-HT cells. IF analyses performed on all patients’ cells, either JHS or EDS-HT, showed the
same pattern and comparable disorganization of the ECM proteins and integrin receptors.

Gene expression profiling

In order to identify genes potentially involved in the molecular mechanisms underlying the
complex pathogenetic basis of JHS/EDS-HT, transcriptome-wide expression analysis was car-
ried out comparing gene expression pattern between patients’ and controls’ skin fibroblasts
and using the Benjamini-Hochberg procedure to control the false discovery rate [16].

A total of 208 DEGs were identified by applying a fold change threshold >1.5 with a FDR
<0.3. In particular, 46 genes were significantly up-regulated and 162 down-regulated (S1
Table). Panel A in S1 Fig represents the scatter plot of the whole microarray data, and Table 2
shows a selection of DEGs. To group transcripts with similar expression profiles between
patients and controls, hierarchical clustering of the DEGs was conducted (Panel B, S1 Fig).

To identify biological processes that are over- or under-represented in patients’ fibroblasts,
we classified all up- and down-regulated genes according to the GO categories. This analysis,
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COLLIII |}

Fig 1. Organization of collagens, other glycoproteins, and their integrin receptors in control and JHS/EDS-HT skin
fibroblasts. Left panel: Control and patients’ cells grown for 48 h were analyzed with specific Abs directed against COLLI,
COLLIIl, and COLLV. FN was investigated by labeling the cells with an Ab recognizing all of FN isoforms. Scale bar: 10 ym.
Experiments were repeated three times. The images are representative of three control and five JHS/EDS-HT cell strains.
Right panel: TNs were investigated by labeling the cells with a specific Ab recognizing all TN isoforms. The a2f1, a581, and
avB3 integrin receptors were analyzed with specific mAbs recognizing their ligand-binding sites. All of the proteins were
investigated 48 h after seeding. IF of ELN was performed on the control and patients’ fibroblasts 7 days after seeding using a
specific Ab. Scale bar: 10 ym. Experiments were repeated three times. The images are representative of three control and
five JHS/EDS-HT cell strains.

doi:10.1371/journal.pone.0161347.g001

performed on up-regulated genes, generated 4 distinct GO clusters (Table 3 and S2 Table). The
most enriched GO term, i.e., “immune response” and “defense response” processes comprised
APOL1, AQP9Y, PTGER4, ENPP2, PPARG, APOBEC3G, COLECI2, and CFD. A range of genes,
i.e.,, AKRIC3, AKRIC2, PHYHDI, MAOB, ADHIC, ND6, and GSTM5 were related to “oxida-
tion reduction process” and involved in different aspects of cellular metabolism, such as
“metabolism of xenobiotics by cytochrome P450”. Biological processes related to chemical
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Table 2. Selection of DEGs in JHS/EDS-HT skin fibroblasts.

Down-regulated genes

Gene symbol Gene description p-value Fold change
SFRP2 Secreted frizzled-related protein 2 0,0030 -14,57
NR4A2 Nuclear receptor subfamily 4, group A, member 2 0,0002 -8,25
HES1 Hes family bHLH transcription factor 1 8.99E-05 -5,48
PDE1C Phosphodiesterase 1C, calmodulin-dependent 70kDa 0,0212 -5,07
LHX9 LIM homeobox 9 0,0098 -4,49
NR4A1 Nuclear receptor subfamily 4, group A, member 1 0,0005 -4,19
FLG Filaggrin 0,0068 -3,94
KCNQ5 Potassium voltage-gated channel, KQT-like subfamily, member 5 0,0012 -3,91
NPR3 Natriuretic peptide receptor 3 0,0186 -3,90
TGM2 Transglutaminase 2 0,0005 -3,71
ID1 Inhibitor of DNA binding 1, dominant negative helix-loop-helix protein 7.7E°05 -3,43
INHBA Inhibin, beta A 0,0094 -3,41
CHRM2 Cholinergic receptor, muscarinic 2 0,0041 -3,37
PRICKLE1 Prickle homolog 1 (Drosophila) 0,0012 -3,26
FNDC1 Fibronectin type Ill domain containing 1 0,0079 -3,23
GPC4 Glypican 4 0,0122 -3,17
MALL Mal, T-cell differentiation protein-like 0,0052 -3,15
SULF1 Sulfatase 1 0,0016 -3,11
PRLR Prolactin receptor 0,0065 -3,09
ITGA2 Integrin, alpha 2 0,0071 -3,05
CDH2 Cadherin 2, type 1, N-cadherin (neuronal) 0,0006 -3,05
SNAI1 Snail homolog 1 (Drosophila) 0.0015 -2.96
TRIB1 Tribbles homolog 1 (Drosophila) 0.0019 -2.92
Up-regulated genes
IGSF10 Immunoglobulin superfamily, member 10 0,021 3,13
CLIC2 Chloride intracellular channel 2 0,002 3,12
MIR221 MicroRNA 221 0,001 2,99
MIR21 MicroRNA 21 0,009 2,95
GSTM5 Glutathione S-transferase mu 5 0,006 2,85
AQP9 Aquaporin 9 2.01E-04 2,82
AKR1C3 Aldo-keto reductase family 1, member C3 1.42E-04 2,80
CLEC2B C-type lectin domain family 2, member B 0,011 2,71
MIR503 MicroRNA 503 0,017 2,57
COLEC12 Collectin sub-family member 12 0,001 2,34
PARP8 Poly (ADP-ribose) polymerase family, member 8 0,004 2,21
CLDN11 Claudin 11 0,005 2,17
CFD Complement factor D (adipsin) 0,014 2,12
SELENBP1 Selenium binding protein 1 4.8E-05 2,03
ADH1C Alcohol dehydrogenase 1C (class 1), gamma polypeptide 0.017 2.02
SLC40A1 Solute carrier family 40 (iron-regulated transporter), member 1 0.021 1.97
PPARG Peroxisome proliferator-activated receptor gamma 0.011 1.93
MIR22 MicroRNA 222 0.001 1.87
UTS2D Urotensin 2 domain containing 0.002 1.86
LRCH2 Leucine rich repeats and calponin homology domain containing 2 0.0002 1.85
AKR1C2 Aldo-keto reductase family 1, member C2 0.02 1.81

doi:10.1371/journal.pone.0161347.1002
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Table 3. Selection of DAVID functional annotation clustering of up-regulated genes.

Cluster Enrichment Score Category Term p-value

1 3.08 GOTERM_BP_FAT GO0:0045087~innate immune response 1.75E-04
GOTERM_BP_FAT GO0:0006955~immune response 4.03E-04
GOTERM_BP_FAT GO0:0006952~defense response 0.007870

2 2.56 KEGG_PATHWAY hsa00980:Metabolism of xenobiotics by cytochrome P450 2.41E-04
SP_PIR_KEYWORDS oxidoreductase 0.004209
SP_PIR_KEYWORDS nad 0.005675
GOTERM_BP_FAT GO:0055114~oxidation reduction 0.009214

3 0.88 GOTERM_BP_FAT G0:0048878~chemical homeostasis 0.0201954

doi:10.1371/journal.pone.0161347.1003

homeostasis, including AQP9, ADM, PPARG, CLDN11, and SLC40A 1 were also over-repre-
sented in JHS/EDS-HT fibroblasts.

Functional analysis of down-regulated genes in JHS/EDS-HT cells yielded 20 different clus-
ters (Table 4 and S3 Table). The significantly under-represented processes included transcripts
with transcription regulator activity, i.e., IL6, SMAD7, KLF10, NR4A2, NFKBIA, NR4A1,
NR4A3, FOSB, JUNB, LIF, HES1, INHBA, GATA2, FOS, and involved in regulation of kinase
activity, i.e., SPRY2, ERCC6, PRLR, MET, SPHKI, TGFA, PDGFC, DGKI, GADD45B, TRIBI,
VLDLR, and CBS. Processes related to regulation of inflammatory and defense responses with
different involved transcripts, i.e., PVR, IL6, TGM2, NFKBIA, ITGA2, and IDO1, were also
under-represented in patients’ cells. Different down-regulated transcripts, such as PCDHBS,
PCDHBI6, TEK, PCDH9, ROR2, ITGA4, CDH2, CDH10, SHROOM3, CHRM2, SMAD7, FHL2,
DSP, OXTR, ITGA2, SSX2IP, and HOMERI, were involved in cell adhesion. This GO term was
particularly enriched in genes that encode either protocadherins, i.e., PCDHB8, PCDH9, and
PCDHBI6, or cadherins, i.e., CDH2, and CDHI0, a superfamily of Ca**-dependent transmem-

brane proteins that act as cell adhesion molecules involved in homophilic cell adhesion and
cell-cell junction organization (Table 4 and S3 Table).

Table 4. Selection of DAVID functional annotation clustering of down-regulated genes.

Cluster

Enrichment Score

Category Term p-value
1 4.29 GOTERM_BP_FAT G0:0006357~regulation of transcription from RNA polymerase |l promoter 2.26E-07
2 3.58 GOTERM_BP_FAT G0:0043549~regulation of kinase activity 9.52E-04
3 3.06 INTERPRO IPR001092:Basic helix-loop-helix dimerisation region bHLH 4.96E-05
4 2.98 GOTERM_BP_FAT G0:0003700~transcription factor activity 8.97E-04
5 2.97 INTERPRO IPR000837:Fos transforming protein 0.00189
6 2.89 UP_SEQ_FEATURE domain:Helix-loop-helix motif 3.12E-04
7 2.78 GOTERM_CC_FAT G0:0005913~cell-cell adherens junction 1.78E-04
GOTERM_CC_FAT GO:0005912~adherens junction 2.68E-04
8 2.34 GOTERM_BP_FAT G0:0051101~regulation of DNA binding 0.001380
KEGG_PATHWAY hsa04350:TGF-beta signaling pathway 0.015857
9 2.26 INTERPRO IPR001781:Zinc finger, LIM-type 0.003321
10 2.04 GOTERM_BP_FAT GO0:0031349~positive regulation of defense response 8.29E-04
11 1.89 INTERPRO IPR002126:Cadherin 0.013062
GOTERM_BP_FAT G0:0007156~homophilic cell adhesion 0.043110
12 1.87 GOTERM_BP_FAT G0:0042981 ~regulation of apoptosis 0.002879
13 1.85 GOTERM_BP_FAT G0:0043408~regulation of MAPKKK cascade 0.004836
KEGG_PATHWAY hsa04630:Jak-STAT signaling pathway 0.007322
14 1.78 GOTERM_BP_FAT G0:0048660~regulation of smooth muscle cell proliferation 0.001149
15 1.77 INTERPRO IPR003070:Orphan nuclear receptor 2.09E-04
doi:10.1371/journal.pone.0161347.t004
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We also analyzed the global expression levels of miRNAs. By selecting a >1.5-fold change
threshold, 19 miRNAs showed a differential expression relative to controls: 5 were up-regu-
lated and 14 down-regulated (S4 Table). We compared the DEGs list with the differentially
expressed miRNAs to investigate a possible correlation between the expressed miRNA and
mRNA in JHS/EDS-HT cells (S5 Table). This analysis showed that the up-regulated hsa-miR-
378a-3p, hsa-miR-224-5p, hsa-let-7f-5p, and hsa-miR-3609 miRNAs might regulate the tran-
scriptional levels of many down-regulated ECM-related genes and transcription factors, i.e.,
SULFI1, GPC4, ITGA4, SIK1, FOSB, NR4A1, NR4A2, and NR4A3. The down-regulated hsa-
miR-99b-5p, hsa-miR-214-3p, hsa-miR-125a-3p, hsa-miR-664-5p, and hsa-miR-324-5p miR-
NAs have as potential targets several up-regulated DEGs related to cell adhesion and signal
transduction, i.e., CLDN11, AQP9, DCLK1, FKBP5, and FZD3 (S5 Table).

Pathways enrichment analysis

To identify differentially expressed pathways, enrichment analysis was carried out on all DEGs by
using both Partek pathways algorithm and DAVID database with a significance threshold of p-
value <0.05. This analysis showed perturbation of several signaling transduction pathways that are
crucial for correct architecture and homeostasis of various connective tissues (S6 Table). In particu-
lar, the PI3K-AKT pathway was under-represented in JHS/EDS-HT cells. This was indicated by
the decreased expression of interleukin 6 (IL6, -2.03), prolactin receptor (PRLR, -3.08), integrin
receptors alpha 2 (ITGA2, -3.05), and alpha 4 (ITGA4, -2.74), G protein-coupled receptor CHRM2
(-3.36), transcription factor NR4AI (-4.19), v-myc avian myelocytomatosis viral oncogene homolog
(MYC, -1.60), and by different members of receptor tyrosine kinases including MET proto-onco-
gene-receptor tyrosine kinase (MET, -2.11), and TEK tyrosine kinase (TEK, -1.63).

Concerning TGFp signaling, patients’ cells showed decreased expression of genes encoding
cytokines, such as inhibin beta A (INHBA, -3.40), and intracellular effectors, such as SMAD fam-
ily member 7 (SMAD?, -2.66), and inhibitor of DNA binding 1 (IDI, -3.43), and 3 (ID3, -2.24).

Pathway analysis also revealed perturbation of JAK-STAT signaling. Different related genes
encoding cytokines and receptors, such as IL6, leukemia inhibitory factor (LIF, -2.26), suppres-
sor of cytokine signaling 3 (SOCS3, -1.89), sprouty RTK signaling antagonist 2 (SPRY2, -1.63),
PRLR, and MYC mentioned above, were down-regulated.

Pathways analysis also identified perturbation of osteoclast differentiation, as shown by the
down-regulation of Fos/activator protein-1 osteoclastogenic transcription factors including
Fos (FOS, -2.25; and FOSB, -2.07) and jun B proto-oncogene (JUNB, -1.78). Other dysregulated
genes that participate in this pathway were four and a half LIM domains 2 (FHL2, -1.59), inhib-
itor of NFKkB signaling (NFKBIA, -1.63), and peroxisome proliferator activated receptor y
(PPARG, +1.93).

Pathways enrichment analysis also highlighted that the signaling calcium pathways seems
to be altered in patients’ fibroblasts. Indeed, different members of this signaling cascade
showed a decreased expression including calcium exchanger solute carrier family 8 (Na*/Ca**
exchanger), member 1 (SLC8A1, -2.16), oxytocin receptor (OXTR, -2.72), and different second
messengers i.e., cholinergic receptor muscarinic 2 (CHRM2, -3.36), sphingosine kinase 1
(SPHK1, -1.90), and calcium-dependent enzymes such as phosphodiesterase 1C, calmodulin-
dependent 70 kDa (PDEIC, -5.07), and myosin light chain kinase (MYLK, -1.85).

Enrichment analyses further revealed perturbation of pathways involved in regulation of
redox homeostasis and xenobiotics metabolism mediated by cytochrome P450 contained only
up-regulated genes, such as members of the alcohol dehydrogenase family (ADHIC, +2.02),
glutathione S-transferase (GSTMS5, +2.85), flavin monoamine oxidase (MAOB, +1.72), and
aldo/keto reductase (AKR1C2, +1.81; AKRIC3, +2.80).
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Quantitative real-time PCR validation

We verified the differential expression of a selection of DEGs/miRNAs by qPCR. Genes were
prioritized based on their fold change, GO enrichment analysis, and biological processes signif-
icantly perturbed in JHS/EDS-HT cells. We focused on genes involved in maintenance of ECM
homeostasis (Fig 2), immune and inflammatory responses, signal transduction and energetic/
redox homeostasis (Fig 3), and in regulation of gene transcription and Wnt signaling (Fig 4).
qPCR confirmed the marked transcriptional decrease of FNDC1, GPC4, MMP16, SULFI, and
TGM2 (Fig 2A). Microarray analysis had indicated a differential expression, although not sta-
tistically significant, of SPON2, a member of the mindin-F-spondin family of secreted ECM
protein. Based on recent evidences that the SPON2 might be a biomarker of osteoarthritis and
contribute to activation of innate immunity in allergic airways diseases, we validated its expres-
sion by qPCR that demonstrated an approximately 4-fold increase (p<0.001). Differential
expression of CLDN11, DSP, FLG, ITGA2, and ITGA4 all playing a pivotal role in ECM-cell
interaction and cell adhesion, were also confirmed (Fig 2B). qPCR showed decreased expres-
sion of transcripts encoding members of the cadherin superfamily, including CDH10, CDH?2,
PCDHY, PCDHBI16, and PCDHBS (Fig 2C). The expression changes of a range of transcripts
implicated in immune and inflammatory responses, including CFD, COLEC12, IGSF10, IL11,
IL6, and NFKBIA were confirmed (Fig 3A). We also confirmed significant variations in the
expression pattern of transcripts involved in signal transduction and with functions related to
transport activity that are AQP9, CHRM2, CLIC2, KCNQ5, OPCML, PRLR, SLCO2A1, and
NPR3 (Fig 3B). All were down-regulated except for AQP9 and CLIC2 that were up-regulated.
qPCR also showed up-regulation of transcripts involved in cellular metabolism and detoxifica-
tion processes, including ADHIB, ADHIC, AKR1C3, and GSTMS5 (Fig 3C), down-regulation of
HESI1, LHX9, NR4A1, NR4A2, and NR4A3 transcription factors (Fig 4A), and perturbation of
Wnt signaling pathway, as shown by the expression changes of FZD3, PRICKLEI, and SFRP2
(Fig 4B).

Finally, qPCR confirmed the differential expression of the most up- and down-regulated
miRNAs, comprising hsa-miR-378a, hsa-miR-224, hsa-miR-let-7f, hsa-miR-23a, hsa-miR-27a,
and hsa-miR-21 (S2 Fig). The modulation of expression of several miRNAs and the compelling
correlation between miRNA-DEGs levels (S5 Table) suggests that epigenetic mechanisms may
be involved in the altered gene expression observed in JHS/EDS-HT cells, which merits future
studies.

Discussion

This is the first work that reports on gene expression abnormalities in JHS/HT-EDS skin fibro-
blasts. Although the sample size is small and findings will therefore need to be confirmed in
other patients, our results provide a step forward towards understanding of the complex patho-
genetic basis of this condition. Clinical presentation of the present patients reflects the multi-
system phenotype of many adults with JHS/EDS-HT [7, 17, 18], since they share a myriad of
features affecting connective tissue that range from skin hyperextensibility, gJHM, muscle
hypotonia, recurrent myalgia and cramps, chronic pain, pelvic prolapse, gastrointestinal dys-
function, together with still poorly defined inflammatory soft-tissue lesions and atopic signs.

Protein studies revealed a widespread disarray of different ECM structural proteins and
marked disorganization of COLLs and FN ECMs, and their specific integrin receptors in
patients’ fibroblasts. These findings are consistent with our previous results obtained in classic
and vascular EDS patients’ fibroblasts. In particular, the abundant expression of oavp3 in JHS/
EDS-HT fibroblasts further supports the cell survival role of this integrin, which rescues cells
from anoikis induced by ECM disassembly due to COL5A1 and COL3A1 mutations,
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Fig 2. qPCR validation of genes involved in the maintenance of ECM homeostasis. (A) The relative
mRNA expression levels of selected genes related to ECM organization, (B) ECM-cell interaction, and (C)
genes belonging to cadherins superfamily, were determined with the 2 “2°Y method normalized with the
geometric mean of the HPRT, GAPDH, ATP5B, CYC1, and RPLPO reference genes. Bars represent the
mean ratio of target gene expression in five patients’ fibroblasts compared to five unrelated healthy
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individuals. qPCR was performed in triplicate, and the results are expressed as mean + SEM. Statistical
significance was calculated with one sample t test (*p<0.05, **p<0.01 and ***p<0.001).

doi:10.1371/journal.pone.0161347.g002

respectively [13, 19]. Analogous ECM anomalies were reported in other rare EDS types [14,
20-23], suggesting that defective ECM organization is a common feature of EDS skin fibro-
blasts, irrespective of the underlining molecular defects. Altered ECM assembly shown in this
in vitro model should reproduce both dermal ultrastructural anomalies, such as irregular and
loosely packed collagen fibrils identified in diverse EDSs [24, 25], and structural impairment of
different affected connective tissues in JHS/EDS-HT patients including joints, ligaments, ten-
don, skin, mucosae, muscle, and bone [17, 26-29].

In the attempt to identify significant gene expression changes and molecular processes that
may be involved in the pathomechanisms of JHS/EDS-HT, a transcriptome-wide expression
profiling was performed. Describing a global mRNA status in a single article is an impossible
goal, thus we report only on a selection of DEGs/molecular processes implicated in ECM archi-
tecture, skin barrier function, inflammatory/immune and pain responses, and maintenance of
homeostasis, correlating well with the systemic manifestations of JHS/EDS-HT patients.

ECM organization, cell adhesion, and connective tissue integrity

Patients’ cells showed a decreased expression of TGM2 that encodes transglutaminase 2, a mul-
tifunctional enzyme that plays a key role in ECM remodeling, cell adhesion, stabilization of
dermal microfibrils, and formation of the basement membrane laminin-nidogen complex
[30]. On the other hand, we found increased expression of spondin 2 (SPON2) that encodes an
ECM protein that functions as a regulator of cellular growth, differentiation, and apoptosis,
and plays a critical role in innate immune response by acting as an opsonin to direct macro-
phage phagocytosis [31, 32]. Accumulated evidences support the role of SPON2 in production
of pro-inflammatory cytokines, and development of airway hyper-responsiveness, which may
contribute to the severity of allergic airways disease including asthma [33-36]. SPON2 is con-
sidered a biomarker of osteoarthritis, since its expression was increased in synovial fluid of
patients [37]. In this regard, while in the general population the link between congenital joint
laxity and premature joint damage is unclear, this association seems likely in JHS/EDS-HT, as
recurrent joint macro- and microtraumatisms are more common in these patients [4]. More-
over, the ensuing early and polyarticular chondral damage is probably one of the very first
steps acting in the evolution of musculoskeletal pain [18].

The disarray of different ECM structural proteins and the altered expression of genes
involved in ECM remodeling should play a role not only in the generation of inflammation,
but also in the neuronal plasticity and hyperexcitability of nociceptive neurons and in the
chronification of pain observed in JHS/EDS-HT patients [38]. It is well established that ECM
molecules or fragments released by matrix metallopeptidases activating in response to injury
and integrin-mediated responses, could modulate inflammatory pathways and hyperalgesic
signaling [39, 40].

Cell adhesion, a fundamental process for formation and maintenance of tissues morphogen-
esis, seems to be altered in JHS/EDS-HT fibroblasts. In particular, we observed an increased
expression of CLDN11, which encodes a member of the claudin family that are molecules
related to tight junctions, which are fundamental for maintenance of tissues architecture and
morphogenesis [41]. On the other side, DSP that encodes desmoplakin, a member of cytolinker
proteins family, showed decreased expression in patients’ cells. Desmoplakin is essential in epi-
dermal sheet formation and is required for assembly of functional desmosomes, maintaining
cytoskeletal architecture and reinforcing membrane attachments allowing for stable
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individuals. gPCR was performed in triplicate, and the results are expressed as mean + SEM. Statistical
significance was calculated with one sample t test (*p<0.05, **p<0.01 and ***p<0.001).

doi:10.1371/journal.pone.0161347.9003

intercellular adhesion [42]. As a further clue for cell adhesion perturbation, we observed down-
regulation of many genes belonging to the cadherin superfamily including CDH2, CHDI0,
PCDHY, PCDHBI16, and PCDHBI8. During embryonic development, cadherins control separa-
tion of distinct tissue layers, formation of tissue boundaries, and synapses between neurons. In
adult tissues, they are involved in orderly turnover of rapidly growing tissues, such as lining of
the gut and the epidermis, regulation of epithelial and endothelial cell junctions, and mainte-
nance of the stable tissue organization [43]. Cadherins also affect numerous signaling path-
ways, including Wnt-, receptor tyrosine kinases-, NFkB-, and JAK-STAT-signaling [44].
Notably, our findings indicated that dysregulation of different cadherins-related pathways,
including JAK-STAT, PI3K-AKT and Wnt signaling cascades, might occur in JHS/EDS-HT
cells. This suggests that defective cadherins function may reflect on signaling cascades required
for homeostatic regulation of cell survival, differentiation, and proliferation during tissue
development and organogenesis.

Skin barrier function

Microarray revealed differential expression of several genes involved in epidermal development
and keratinocyte differentiation, such as FLG, AQP9, and AKRIC3. JHS/EDS-HT cells showed
decreased expression of FLG that encodes filaggrin, a key protein that plays a central role in the
formation of cornified cell envelope, which is critical for an effective skin barrier [45]. Filaggrin
aggregates the keratin cytoskeleton to facilitate flattening of keratinocytes in the outermost
skin layer [46]. Mutations in FLG confer risk for associated allergic diseases including food
allergy, and atopic asthma and are the most significant known genetic risk factor for the atopic
dermatitis (AD) development, a common chronic inflammatory skin disease characterized by
epidermal barrier dysfunction and immunological alterations [47, 48]. Multiple transcriptome
data indicated among the AD-related genes the marked down-regulation of FLG, suggesting
that dysfunction of pathways involved in skin barrier integrity, including keratinocyte differen-
tiation may contribute to the AD pathogenesis [49]. Consistent with these findings, decreased
expression of FLG, together with other unrecognized genetic and environmental factors, may
contribute to a defective epidermal barrier increasing risk of atopic asthma and AD in JHS/
EDS-HT patients. In this regard, earlier studies suggested increased prevalence of atopy and
asthmatic symptoms in patients with different EDS types also comprising JHS/EDS-HT, in
association with various pulmonary physiological abnormalities [50]. On the other hand,
patients’ cells showed increased expression of AKRIC3 and AQP9: AKRIC3 encodes an
enzyme of aldo-keto reductase family that promotes inflammation in skin lesions of AD
patients [51], while AQP9 codes for a member of the aquaporins that enhances skin barrier
function and antimicrobial defenses [52]. Furthermore, a microarray study on peripheral
blood mononuclear cells of patients with irritable bowel syndrome, psoriasis, and rheumatoid
arthritis, identified AQP9 as a novel marker of chronic inflammation underlying these diseases
[53].

Inflammatory, immune and pain responses

Transcriptome data also highlighted significant expression changes of several genes related to
inflammatory and immune responses that include CFD, COLEC12, NR4A1, NR4A2, NR4A3,
and HESI1. JHS/EDS-HT cells displayed an increased expression of complement factor D
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(CFD), a component of the alternative complement pathway that has a role in the inflamma-
tory response and tissue injury [54]. This serine protease was recently found up-regulated in
muscle biopsies of patients with Ullrich congenital muscular dystrophy, as a consequence of
inflammatory processes [55]. In agreement with our expression data, a recent proteomic analy-
sis showed in JHS/EDS-HT patients’ sera increased levels of different proteins of the comple-
ment system, including C9, C1R, and vitronectin, thereby suggesting the possibility of a locally
occurring inflammatory process in JHS/EDS-HT patients [56]. CED and other adipokines are
also involved in pathophysiological mechanisms related to osteoarthritis progression and out-
come. Regarding this aspect, Martel-Pelletier et al. [57] demonstrated in patients with osteoar-
thritis a meaningful correlation between high serum levels of CFD and leptin with more
cartilage damage, knee osteoarthritis progression and higher incidence of total knee replace-
ment. COLECI2 codes for a cell surface glycoprotein that acts as a scavenger receptor that is
involved in the clearance of glycoproteins released by degranulation of neutrophils at sites of
inflammation [58]. NR4A 1, NR4A2, and NR4A3 are ligand-dependent transcription factors
that modulate NF-kB activity in a dynamic fashion, either repressing or enhancing target gene
expression leading to altered inflammatory outcome [59]. HES! is an early marker of differen-
tiation of multiple endocrine cell types in the developing stomach and gut, which transcrip-
tional activity is regulated by SFRP2, a member of the secreted frizzled-related proteins that
can modulate Wnt signaling [60]. In JHS/EDS-HT patients’ cells some negative regulators of
the Wnt pathway including SFRP2, and PRICKLEI were down-regulated, whereas receptor
frizzled 3 (FZD3), required for the Wnt signaling cascade, showed an increased expression.
These findings suggest that a perturbation of this transduction pathway, which is known to be
involved in the development and renewal of the intestinal epithelium [61], might also partici-
pate in the pathomechanisms underlying the different gastrointestinal dysfunctions, i.e., gas-
troesophageal reflux, recurrent abdominal pain, defecatory dysfunction, and unclassified food
intolerances of JHS/EDS-HT patients [18].

Concerning pain, PRLR encodes prolactin receptor, a member of the cytokine receptor
superfamily that is expressed in a variety of immune cells, in which this hormone can be pro-
inflammatory or anti-inflammatory by regulating proliferation, survival, and release of inflam-
matory mediators [62]. Serum elevated prolactin (PRL) levels were associated with a variety of
pain conditions as migraine, burning, rheumatoid arthritis, and osteoarthritis [63]. PRL can
also be released by stimulated sensory neurons and can modulate the activity of nociceptors,
thus playing an important role in pain responses and inflammation [63]. Thus, it is reasonable
to suppose that the PRL/PRLR system might be involved in the complex mechanisms impli-
cated in the nociceptive and neuropathic pain that, in turn, likely contributes to the widespread
chronic pain observed in JHS/EDS-HT patients [4]. About this, in the last years different clini-
cal research attempted to explain the type of chronic pain in JHS/EDS-HT patients and, in par-
ticular, the presence of neuropathic pain. Rombaut et al. [64] showed that approximately half
of the JHS/EDS-HT patients most likely suffer from neuropathic pain, in accordance with
Camerota et al. [65]. In addition, cutaneous innervation involvement associated with a small
fiber neuropathy has been recently demonstrated in JHS/EDS-HT patients [66, 67], in line with
earlier studies that showed higher prevalence of neuropathic symptoms, such as paresthesias/
numbness in hands and/or feet [68, 69]. KCNQ5 is a member of the K channels family
involved in attenuation of the thermal hyperalgesia-induced inflammatory pain [70]. ADM
codes for adrenomedullin that is an important mediator for pathological pain, as its expression
is enhanced both in acute and chronic inflammation, which triggers up-regulation of pronoci-
ceptive mediators and down-regulation of pain-inhibiting molecule in a cascade contributing
to the development of morphine tolerance [71]. Of note, all analyzed JHS/EDS-HT patients
suffer from chronic generalized musculoskeletal pain and are refractory to opioid use.
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Maintenance of homeostasis

Our results showed up-regulation of several metabolic genes related to oxidant/antioxidant bal-
ance, i.e., GSTM5, ADHI1B, ADHIC, SELENBP1, and MAOB. GSTM5, encoding glutathione S-
transferase mu 5, plays a role in detoxification of drugs and products of oxidative stress [46].
Likewise, ADH1B, and ADHIC, encode enzymes of alcohol dehydrogenase family that metabo-
lize a wide variety of substrates, including lipid peroxidation products [72]. Selenium-binding
protein-1 (SELENBP]I) is involved in selenium transport, an essential nutrient which displays
neuroprotective and antioxidant activities in preventing certain neurologic diseases, such as
schizophrenia and bipolar disorder. In this regard, up-regulated expression of SELENBPI has
been reported in both blood and brain of schizophrenic patients resulting a strong candidate
biomarker for schizophrenia [73]. Of note, many JHS/EDS-HT patients show several neuro-
psychiatric manifestations including mood disorder, reactive depression, maniac depressive ill-
ness, anxiety and, perhaps, obsessive-compulsive traits [74, 75]. MAOB encodes a monoamine
oxidase responsible for the oxidative deamination of different neurotransmitters, such as sero-
tonin, melatonin and dopamine. Increased expression of this enzyme was reported in age-
related neurodegenerative diseases wherein it is associated with oxidative stress and vulnerabil-
ity of the brain dopamine system [76].

In conclusion, although our data were obtained in a connective tissue cell model, this study
pointed out significant gene expression changes that should perturb numerous biological pro-
cesses, finally leading to the systemic clinical manifestations of JHS/EDS-HT patients. Future
investigations on a larger cohort of patients are needed to corroborate the present results and
also to identify potential biomarkers that may be supportive to the clinical diagnosis of this
neglected disorder.
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