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This study aims at the effects of traumatic brachial plexus lesion with root avulsions (BPA) upon the organization
of the primary motor cortex (M1). Nine right-handed patients with a right BPA in whom an intercostal to
musculocutaneous (ICN-MC) nerve transfer was performed had post-operative resting state fMRI scanning.
The analysis of empirical functional correlations between neighboring voxels revealed faster correlation decay
as a function of distance in the M1 region corresponding to the arm in BPA patients as compared to the control
group. No differences between the two groups were found in the face area. We also investigated whether such
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Resting state larger decay in patients could be attributed to a gray matter diminution in M1. Structural imaging analysis
Gray matter showed no difference in gray matter density between groups. Our findings suggest that the faster decay in neigh-
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reduced activity in intrinsic horizontal connections in M1 responsible for upper limb motor synergies.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Brain plasticity consists in the ability of the central nervous system
(CNS) to modify in response to changes in behavior, as a consequence
of skill acquisition or following central/peripheral injury (Buonomano
and Merzenich, 1998; Kaas, 1991; Garraghty and Kaas, 1992). Although
a growing body of studies shows that plasticity correlates positively
with functional recovery following brain injury (review in Cramer et
al.,, 2011), less is known about the mechanisms underlying functional
recovery following peripheral lesion and surgical reconstruction.

Severe traumatic brachial plexus lesions with root avulsion (BPA)
leads to motor and sensory function loss of the arm. Although the recon-
struction of the original peripheral nerve pathways is not possible,
nerve transfer can be performed to regain function. For instance, by
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connecting the distal denervated musculocutaneous (MC) nerve to the
third to sixth thoracic intercostal (IC) nerves (Midha, 2004). Normally
the IC nerves are connected to intercostal muscles, which are involved
in volitional breathing and postural control. After successful reinnerva-
tion of the biceps muscle following intercostal-musculocutaneous (ICN-
MC) nerve transfer, the ICN now innervates the biceps muscle. Initially,
elbow flexion by biceps contraction can only be effected by respiratory
effort, for instance sustained inspiration. In time however, volitional
control becomes possible, implying a change in control. Following this
surgical procedure, about two-thirds of patients regain biceps function
with at least Grade 3 out of 5 according to the Medical Research Council
scale (Seddon; Narakas and Hentz, 1988; Malessy et al., 1993; Malessy
and Thomeer, 1998; Midha, 2004).

Applying transcranial magnetic stimulation (TMS) to the primary
motor cortex (M1), Mano et al. (1995) and Malessy and Thomeer
(1998) studied the change in control over the reinnervated biceps mus-
cle some years after ICN-MC transfer performed in patients with BPA.
M1 contains a map of movements organized somatotopically
(Rasmussen and Penfield, 1950) with gross and largely separated

2213-1582/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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body part subdivisions represented sequentially from lateral to medial
precentral gyrus. Mano et al. (1995) and Malessy and Thomeer (1998)
found in these operated patients that the biceps representation shifted
from medial to a more lateral position (i.e a shift from the trunk area
to the arm area) in M1. Although plausible hypotheses have been put
forward to understand the role of brain plasticity in recovery of BPA pa-
tients after ICN-MC nerve transfer (Mano et al., 1995; Malessy and
Thomeer, 1998; Malessy et al., 2003), it remains unclear which mecha-
nisms underlie the shift from respiratory dependent biceps control to
volitional biceps control and to what extent this functional change is a
result of plastic changes in the brain.

Horizontal intrinsic connections between spatially distant and func-
tionally different parts of M1 have been consistently revealed in animal
models (Huntley and Jones, 1991; Jacobs and Donoghue, 1991; Sanes
and Donoghue, 2000; Ziemann, 2004). These long-range horizontal
connections were proposed to be involved in activity synchronization
beyond cortical modules (Boucsein et al., 2011), fine motor synergy co-
ordination (review in Schieber, 2001) and use-dependent motor learn-
ing (review in Sanes and Donoghue, 2000). Such horizontal network
within M1 might also underlie plastic modifications induced by BPA
and nerve transfer.

Resting-state fMRI has already been used to investigate how the
human brain's functional organization is affected by BPA (Liu et al.,
2013; Qiu et al., 2014). Herein we aim at the effects of BPA on local func-
tional connectivity by exploring the decay of the functional correlations
between neighboring voxels within M1. We find evidence that these
correlations decay faster as a function of distance in BPA patients as
compared to the control group in the M1 region corresponding to the
arm but not to the face area. We also investigate whether such larger
correlation decay in patients can be attributed to a gray matter diminu-
tion in M1 by means of structural imaging analysis. The lack of differ-
ence in gray matter density between BPA group and control together
with the faster correlation decay in neighboring functional correlations
in BPA patients suggests a reduced activity in intrinsic functional con-
nections responsible for upper limb motor synergies in M1.

2. Material and methods
2.1. Subjects

Nine right-handed patients with a brachial plexus lesion (mean age
34.6,SD = 4.8; mean age at lesion: 18.8 & 2.2) and eleven right-handed
control subjects (mean age 35.4 + 8 years), matched in age and sex
with the patient's group participated in the study. All patients suffered
a brachial plexus traction lesion with root avulsion on the right side.
They were included in the study only if they had undergone successful
Intercostal to Musculocutaneous (ICN-MC) nerve transfer, meaning
there was at least some recovery of biceps function (grade of 1 or higher
as measured with the Medical Research Council grade). At the time of
the study they showed variable degrees of biceps function recovery
(Mean: 3.0, SD 1-4, as measured with the Medical Research Council
grade). The exclusion criteria were history of neurological trauma and
additional surgical procedures aimed at regaining elbow flexion (e.g.
Steindler flexorplasty), and general exclusion criteria for MRI scanning
(such as claustrophobia, pacemaker, and metallic implants). The local
ethics committee approved the study and the patients gave written in-
formed consent in accordance with the declaration of Helsinki. Informa-
tion about patients and controls are presented in Tables 1 and 2.

2.2. Experimental procedure

The volunteers were comfortably positioned inside the scanner dur-
ing the experiment. Pillows were placed between the forehead of the
subject and the coil to minimize head movement. Lower arms were po-
sitioned next to the body at a comfortable angle between 10° and 30° by
using cushions. The palm of subjects' hands faced up to the extent that

Table 1

Information of the patients with braquial plexus lesion. Injury type classification includes
Avulsion (Av.) and Neurotmesis (Nt.) types. I1 is the time interval in months between le-
sion and surgery. 12 is the time interval in years between surgery and fMRI scan.

Id Ageatscan Gender Injury type Age at lesion 11 12 Location
PO1 35 M Av. C5-T1 16 2 19 Leiden
P02 40 M Av. C5-C7 35 112 5 Leiden
P03 36 M Av. C5-T1 18 4 18 Leiden
P04 38 F Av. C5-C7 22 2.8 16 FCDC
P05 33 F Av. C5-C7 19 2 14 Leiden
P06 32 M Av. C5-C7 26 51 6 FCDC
P07 40 M Av.C6-C7 Nt.C5 23 3 17 Leiden
P08 40 M Av.C6-T1 Nt.C5 26 1 14 FCDC
P09 26 M Av. C5-T1 19 5 7  FCDC

this was possible without causing discomfort. Subjects were instructed
to keep their eyes closed, and not to think of anything in particular dur-
ing resting-state scanning. The scanning time lasted for 5 min.

2.3. Data acquisition

To reduce travel time and thereby maximize the willingness of the
patients to participate in the study, data from control participants and
from patients were acquired at two centers in the Netherlands. Six con-
trol and four patients underwent scanning at Donders Institute (DI) in
Nijmegen and five controls and five patients, at the Leiden University
Medical Center (LUMC). At the Donders Institute (DI) in Nijmegen,
measurements were performed on a 3 T TIM Trio MR scanner (Siemens
Medical Solutions, Erlangen, Germany). At the Leiden University Medi-
cal Center (LUMC), a 3 T Achieva scanner (Philips Medical Systems, Best,
The Netherlands) was used. On both systems an eight-channel head
coil, which was produced by the same vendor, was used for all data col-
lection. Acquisition parameters were adjusted to be as equal as possible
between the two scanners, while still having near optimal settings for
each system.

Resting-state fMRI data were acquired with a 2D single-shot EPI se-
quence. The whole brain was covered by acquiring 38 axial slices
(3.5 mm isotropic voxels, 0.35 mm interslice gap, 64 x 64 matrix). Flip
angle = 85°, volume repetition time = 2180 ms, echo time = 30 ms.
An in-plane parallel imaging acceleration factor of 2 was used. Online
image reconstruction was performed using the GRAPPA [REF 37] and
SENSE algorithms [REF 38] on the Siemens and Philips systems, respec-
tively. A number of 220 volumes were acquired for a total acquisition
time of 8 min.

2.4. Data analysis

2.4.1. Resting state fMRI data pre-processing
The statistical parametric mapping software package (SPMS,
Wellcome Department of Cognitive Neurology, London) was used for

Table 2

Information of the control group. Control group and patients group match in age (p-value
for unpaired t-test is 0.7996) and proportion of each gender (p-value for proportion z-test
is 0.4132).

Id Age Gender Location
Co1 50 M FCDC
Cc02 31 M FCDC
o3 34 M FCDC
Co4 31 M Leiden
C05 31 M Leiden
C06 39 M FCDC
co7 40 M FCDC
o8 28 M FCDC
C09 33 F Leiden
C10 31 M Leiden
C11 36 M Leiden
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part of the pre-processing of resting state fMRI data. The first three func-
tional volumes of each run were removed to eliminate non-equilibrium
magnetization effects. The remaining images were corrected for head
movement by realigning them to the mean image via rigid body trans-
formations. They were subsequently band-pass filtered (0.01-0.05 Hz)
to remove physiological noise. Functional images were co-registered
to anatomical images for every subject. Finally, brain images were nor-
malized to standard MNI 152 template using FLIRT (from FSL software,
(Smith et al., 2009)) and data was resampled to 2 mm x 2 mm x 2 mm
resolution. Masks from both the right and the left primary motor corti-
ces (M1) were taken from Geyer et al. (1996). These masks had MNI co-
ordinates equivalent to those of the functional brain images employed
herein. To compare control subjects and patients within the body map
representation the mask was segmented in five sub-regions delimited
by four saggital planes (Fig. 1A). These saggital planes are located in
each color change in Fig. 1A. Since our main interest was to investigate
the functional relationship between neighboring voxels, these sub-re-
gions were constructed so that the number of voxels should be roughly
the same (Fig. 1B). Due to the natural irregularity in M1 cortical thick-
ness, this choice led to a different number of slices in the sagittal dimen-
sion (Fig. 1C) as well as some variability in the maximum distance
between voxels (Fig. 1D).

We designed an analysis to investigate local interactions between
voxels within the sub-masks of M1. Our goal was is to understand
how interactions decay as a function of the distance between voxels,
and most importantly, to compare the correlation behavior between
BPA's and controls. The degree of functional interaction between two
voxels was calculated using the Spearman (rank) correlation. This is a
non-linear measure of correlation, and it is equal to the Pearson correla-
tion between the rank values of the two variables studied. It assesses
how well the relationship between two variables can be described
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using a monotonic function, while Pearson correlation assesses linear
relationships. Moreover, the Spearman correlation has the advantage
to be hardly affected by an outlier whereas the Pearson correlation
will be greatly affected. For each sub-region of M1 we proceeded as fol-
lows. For every voxel on the sub-region, we computed its correlation
with all other voxels. Precisely, let X,(1’) represent the value of the rest-
ing state BOLD response in voxel v at time t, for t€{1,2, ...,T}, and let
R¢(v) be the rank of X,(v). Given two voxels v and v/, the Spearman cor-
relation between (X;(v), ..., Xy(v)) and (X;(v'), ... ,X7(v")) is defined as
the Pearson correlation between the ranked time series
(R1(v), ... ,Rr(v)) and (Ry(Vv’), ... ,Rr(v")). After all the computations
were performed, we had for each voxel two associated quantities: 1)
the estimated Spearman correlation coefficient computed between
that voxel and remaining ones (one quantity for each pair), and 2) the
Euclidean distance between each pair of voxels (Garcia-Cordero et al.,
2015). In the next paragraph we describe in detail how the computa-
tions were performed.

Following the aforementioned computations, we calculated for each
obtained distance: 1) the average of the correlation coefficient, and 2)
the corresponding 95% confidence interval. These calculations were per-
formed for each sub-regions and for both groups, controls and BPA's
(Fig. 2A-E). Further, for each distance, we compared the correlations be-
tween the two groups (control versus BPA's), using a Wilcoxon rank-
sum test. The goal was to identify if these correlations have a different
behavior in the two groups (Fig. 2F).

Since we were performing one hypothesis tests for each point in dis-
tance (total of 70 points of distance that range from 1 to 10 in voxels),
we applied a multiple comparisons correction. The corrected threshold
was obtained based on the Benjamini-Hochberg procedure (Benjamini
and Hochberg, 1995), that controls the false discovery rate « = 0.05
for the 70 tests performed in each submask. Let us call H(m) the m-th
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Fig. 1. Masks in the primary motor cortex (M1). A) Pictorial representation of the human body map in the right M1 (obtained from http://www.grandesimagenes.com/homunculo/). Each
color indicates a mask within M1. B) Number of voxels per mask is roughly equivalent; C) Number of slices in the sagittal plane within the masks; D) Maximum distance between the
voxels per mask. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 2. Left hemisphere, contralateral to BPA — Pairwise Spearman'’s rank correlation coefficient between voxels as a function of distance in voxels. A-E: Average correlations per mask as a
function of distance between voxels plotted for control subjects and BPA patients. The bars represent the 95% confidence interval. F) Chart representing the level of statistical significance
(p-value) resulting from the comparison of the average correlations between groups within masks A, B, and C as a function of distance. Masks D and E did not show any significant
difference between the two groups. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

null hypotheses, for m=1, ...,70. The procedure consisted on the fol-
lowing steps: 1) we ordered the p-values and let p(k) denote the k-th
ordered p-value; 2) for « = 0.05, we found the largest k such that
p(k)<ka/m, where m is the number of multiple tests (in our case
m = 70); 3) we rejected all H(j) forj=1, ... ,k.

2.5. Structural MRI

The original T1-weighted images of size 198 x 256 x 256 mm3
(voxel size: 1x1x1 mm?) were analyzed. These anatomical images
were obtained using the MP RAGE sequence at the FCDC (TR/TE =
2300 / 3.03 ms, 192 sagittal slices, 1.0 x 1.0 x 1.0 mm voxels, FOV =
256 mm, 256 x 256 matrix, acceleration factor = 2, GRAPPA reconstruc-
tion) and at the LUMC (TR/TE = 1935 / 5.59 ms, 140 transverse slices,
0.875 x 0.875 x 1.2 mm voxels, FOV = 224 mm, 256 x 256 matrix).
The images were pre-processed using FSL (FMRIB Software Library)
and the steps included brain extraction (using BET), linear registration
into the MNI152 space (using FLIRT library), and finally the images
were segmented into white matter, gray matter and cerebrospinal
fluid (using FAST with main MRF parameter equal to zero). The same
M1 mask employed to extract pairwise correlations described above
(Geyer et al., 1996) was employed to test whether the gray matter tis-
sue on the motor cortex differs among subjects with brachial plexus in-
jury and the control group. After the pre-processing steps, each voxel on
the gray matter tissue map contained a value in the range 0-1 that

represents the proportion of that tissue present in that voxel. To identify
morphological differences in M1 associated with brachial plexus injury,
a Bayesian Spatial Transformation Model (STM) (Miranda et al., 2013)
was fitted with the gray matter as the response variable and a covariate
vector containing the intercept and diagnostic status (1 for brachial
plexus injury and — 1 for control). Common voxel-wise methods such
as VBM treat voxels as independent units, ignoring important spatial
smoothness during the estimation procedure. The STM method used
to analyze the structural images is a Bayesian hierarchical model that si-
multaneously accounts for the varying amount of smoothness across
the imaging space and the normality assumption in the model. For
each voxel vin M1, the model estimates the posterior probability distri-
bution of B(v), the coefficient associated with diagnostic status
(Miranda et al.,, 2013). Based on the posterior probability, we compute
a 95% interval for B(v) by considering the quantiles of its posterior dis-
tribution. This interval is known as a credible interval and its interpreta-
tion is different than that of a confidence interval. As an example,
suppose that the 95% credible interval for B3(v) is [a,b]. We can say
that the probability of the coefficient 3(v) be in the interval [a,b] is
0.95. We can further use these intervals to make a decision. If the inter-
val contains 0 and since 3(v) represents the difference between controls
and BPAs for a particular voxels v, we conclude that there is no differ-
ence in the gray mater tissue proportion when we compare patients
with brachial plexus injury and controls. We repeat the same procedure
for all voxels v in M1.
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3. Results

For each sub-region within M1, we were interested in investigating
whether correlation behavior was different for BPA patients and con-
trols. Our assumption was that for BPA patients the long-range correla-
tions, i.e. correlation between far away voxels, would lose strength.

To investigate this assumption, we computed the Pairwise
Spearman's rank correlation between voxels as described in the previ-
ous section. We then plotted the correlation as a function of distance
(in voxels units) for each M1 submask contralateral to the affected
limb (left hemisphere) for controls and BPA patients. Results are
shown in Fig. 2. Panels A-E exhibit that the correlation function decays
from high values for closer voxels to low levels at relatively large dis-
tance. This happened in all five regions and for both groups. A closer in-
spection shows a difference among groups (non-overlapping
confidence intervals) for the red (panel A), green (panel B) and dark
blue (panel C) masks. These medial regions correspond roughly to the
trunk, upper body and hand, as depicted in the homunculus (Fig. 1).
These differences are statistically significant as confirmed by the
Wilcoxon rank-sum test performed (see Section 2.4). The statistical re-
sults are shown in Fig. 2F and Fig. A.5 in Appendix A. After correction for
multiple comparisons, the threshold values for masks A, B and C is 0.04.
The highest differences among controls and BPA patients are observed
at the green mask at distances of approximately 6 to 10 mm (3 to 5
voxels). No difference between groups is evident in the D and E masks
(orange and light blue areas), which corresponds roughly to the neck/
face representation in M1.

281

We also compared the subsamples of patients with low (n = 4, MRC
grade 0, 1,2) and high (n = 5, MRC 4, see Table 1) degree of functional
recovery after surgical reconstruction. We took the same steps de-
scribed above when we compared controls and BPI's. In each of the 5
masks, data did not show any difference in the correlation behavior be-
tween patients with low and high degree of functional recovery.

Since changes of interhemispheric functional connectivity between
motor areas were recently reported in patients with BPA (Liu et al.,
2013), we also investigated whether these effects were present in our
cohort. We performed a similar analysis for each sub-region in M1 in
the hemisphere ipsilateral to the affected limb for controls and BPA pa-
tients. Results are shown in Fig. 3. Fig. 3A-E shows differences between
controls and BPA patients (non-overlapping confidence intervals) for
the red (Fig. 3A) and dark blue (Fig. 3C) masks. These differences
were confirmed by performing a Wilcoxon rank-sum test. Results for
the Wilcoxon test are shown in Fig. 3F and Fig. A.6 in Appendix A.
After correction for multiple comparisons, the threshold values for the
red mask (Fig. 3A) is 0.04 and the dark blue mask (3C) is 0.02.

Finally, we investigated if the observed differences in the correlation
functions were accompanied by differences in gray matter density. To
verify if there was any structural difference in M1 between groups,
structural imaging analysis was performed using STM (see Material
and methods). Results are shown in Fig. 4. Inspecting the figure, we no-
tice that for all voxels included in the model, the posterior mean is close
to zero, indicating a lack of difference between controls and BPA pa-
tients. We further computed the 95% credible interval for each voxel
and all of them, with no exception, included the value zero. Such result
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Fig. 3. Right hemisphere, ipsilateral to BPA — Pairwise Spearman's rank correlation coefficients between voxels as a function of distance in voxels. A-E: Average correlations per mask as a
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-0.00014 0.00013

Fig. 4. Estimates for the differences in M1 gray matter tissue density between BPA and control group. For each voxel, the color represents the posterior mean estimate of the coefficients
associated with the Control versus BPA contrast. As observed in the color bar the values are close to zero indicating that the gray matter density does not differ between groups.

confirms that there are no significant differences in gray matter tissue
between BPA patients and the control group.

4. Discussion

We herein investigated the correlation decay between neighboring
voxels during resting state in the primary motor cortex (M1). We com-
pared control volunteers to patients that had a traumatic brachial plex-
us lesion with root avulsions (BPA) in adulthood in whom an intercostal
to musculocutaneous (ICN-MC) nerve transfer was performed.

Analyzing correlation as a function of distance between points in
space is a classical tool in spatial statistics (Gelfand et al., 2010;
Sherman, 2011) and in statistical physics. A typical approach to describe
an interacting system is to study how the interactions (measured, for
example, by linear correlation) decay with increasing distance. In gener-
al, mutual dependence between two units of a system (in our case,
voxels) decreases the further apart they are. This methodology has
been recently employed to compare control subjects and stroke patients
(Garcia-Cordero et al.,, 2015). Applied to the present results, changes in
the interactions between voxels in M1 should correspond to functional
reorganization due to BPA. Accordingly, the analysis of the correlation
function between voxels revealed a faster decay in the M1 region corre-
sponding to the trunk/arm in BPA patients as compared to the control
group.

Functional connectivity differences were found between healthy
controls and BPA injured patients in M1. These differences were most
evident in the masks corresponding roughly to the upper limb and
trunk representations. However no difference between groups was
detected in the mask region corresponding to the face representation,
indicating that these changes were specific to body segment represen-
tations more directly affected by BPA. A fine grain statistical comparison

between groups showed highest differences in pairwise correlations
among controls and BPA patients at distances of approximately 6 to
10 mm (3 to 5 voxels).

Whereas the higher functional correlation found in M1 for spatially
close voxels could result from intense functional interaction occurring
within local modules, lower correlation values observed between voxels
at higher distance might result from comparatively lower levels of con-
certed activity within M1. Spanning several millimeters within M1,
long-range horizontal connections were proposed to be involved in ac-
tivity synchronization beyond cortical modules (Boucsein et al., 2011),
fine motor synergy coordination (review in Schieber, 2001) and use-de-
pendent motor learning (review in Sanes and Donoghue, 2000). Conse-
quently, the reduced pairwise correlation values found mostly for larger
distances in M1 after BPA are possibly due to decreased activity in hor-
izontal connections, as a result of greatly reduced upper arm and trunk
motor synergies. Thus, by strongly disrupting upper limb motor syner-
gies (Schieber, 2001), denervation due to BPA would affect long-range
connections and strongly reduce functional connectivity within M1. Ac-
cordingly, we recently showed that brachial plexus injured patients
show altered postural control (Souza et al., 2015).

Reduced pairwise correlations were also verified at regions corre-
sponding to the trunk and hand areas in M1 ipsilateral to the affected
limb, indicating interhemispheric effects of BPA. These results are in ac-
cordance with a resting state functional connectivity approach recently
used to explore changes of interhemispheric functional connectivity of
motor areas in patients with BPA (Liu et al., 2013). Indeed, in healthy
subjects, enhancing the proprioceptive input of a hand muscle by apply-
ing a low amplitude vibration was shown to reduce corticospinal excit-
ability of the contralateral homologous muscle, suggesting transcallosal
effects (Swayne et al., 2006). Likewise, interhemispheric inhibition has
recently been verified for forearm muscles in healthy subjects (Ibey et
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al., 2015). Finally, changes in the cortical representation of the intact
limb have also been proven in lower limb amputees (Simoes et al.,
2012). Thus, in BPA patients changes in transcallosal connectivity
might have resulted in reduced pairwise correlation also in the trunk/
hand representations of M1 ipsilateral to the affected limb.

Pairwise correlation decay as a function of distance was found to
occur similarly in patients with low (MRC grade 1 and 2) and high de-
gree (MRC 4) of functional recovery after surgical reconstruction.
These results, although obtained with small subsamples, could suggest
that long-range horizontal connections do not play a prominent role
in functional control following reinnervation. In any case, the severe
diminution of the correlation between voxels at intermediate distances
observed within M1 could be attributed to the massive missing of sen-
sorimotor connections with the parts of the arm that have not been sur-
gically reconnected. This in turn would occur in parallel to a greatly
reduced repertoire of upper limb synergies (review in Dy et al,, 2015).

Mano et al. were the first to investigate the location of the cortical
area responsible for contraction of the reinnervated biceps muscle in
BPA patients using TMS (Mano et al., 1995). Stimulating the motor
area situated medially to the cortical area evoking a response in the
healthy biceps resulted in a motor evoked potential (MEP) in the rein-
nervated biceps. At the end stage of recovery, however, the cortical
area evoking responses in the biceps had shifted laterally in the motor
cortex towards the deefferented biceps area (Mano et al., 1995).
Malessy and Thomeer (1998) also did not find any difference between
the TMS evoked ‘cortical location’ of the reinnervated and normal biceps
areas. Employing fMRI, Malessy et al. (2003) confirmed that the cortical
regions in M1 activated during contraction of the surgically reinnervat-
ed and the healthy biceps were topologically equivalent. Thus, during
recovery, a medial-to-lateral cortical shift might represent a shift from
the trunk area to the arm area, possibly underlying the decoupling of vo-
litional breathing from biceps control. One could conjecture that such
cortical shift might be endowed by the recruitment of horizontal con-
nections within M1. These effects might however be subtle enough to
fall below our detection threshold. Thus, how these plastic changes re-
late to reduced correlation function found herein deserves further
investigation.

Importantly, the differences found between controls and BPA in-
jured patients in M1 were not accompanied by gray matter changes. Ac-
cordingly, so far peripheral lesions were shown to drive anatomical
changes (as measured by gray matter modifications in MRI) in several
brain regions such as primary somatosensory cortex, secondary so-
matosensory cortex, ventrolateral prefrontal cortex, middle cingulate
cortex, anterior cingulate cortex and thalamus (Taylor et al., 2009;
Davis et al., 2011; Jaggi and Singh, 2011) but not in M1. The reasons
for such departure are unknown. In conclusion, the faster decay in func-
tional correlations without any gray matter diminution in BPA patients
clearly indicates a reduced activity in intrinsic M1 connectivity. This
could result from a BPA-induced dysfunction in the horizontal connec-
tion intrinsic network, considered to be responsible both of coordinat-
ing upper limb motor synergies and driving plastic changes in M1.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2016.07.008.
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