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Abstract

Background: Gigantol and syringic acid (SA) have been shown to synergistically prevent formation of diabetic
cataract (DC). However, the exact mechanism of this effect is unknown. Here, we investigate the effect of these
compounds on the activity of aldose reductase (AR) and cataract formation.

Methods: We examined the synergistic anti-cataract efficacy of gigantol and SA in the high glucose- and
streptozotocin -induced DC rat model; synergism was evaluated using Jin's formula. We investigated possible
mechanisms of action by measuring AR expression and activity and levels of sorbitol using enzyme kinetics,
Western blot, and RT-PCR. Finally, we examined binding interaction between AR and both compounds using
a combination of site-directed mutagenesis, recombinant expression of wild-type and mutant proteins, and

enzyme kinetics.

Results: Combination treatment of gigantol and SA synergistically protected both HLECs(human lens epithelial
cells) grown in vitro and DC formation in STZ-induced rats in vivo. Synergism was attributed to inhibition of AR
activity, downregulation of AR expression via impaired transcription, and decreased sorbitol levels. Enzyme kinetics
studies showed that the activity of an AR Asn160Ala mutant protein was significantly decreased compared to
wild-type AR, confirming that Asn160 is a key residue for interaction between AR and both compounds.

Conclusion: Combined administration of gigantol and SA synergize to enhance anti-cataract efficacy. The
synergistic effect is mainly attributed to disruption of the polyol pathway and inhibition of AR activity.

Keywords: Synergism, Diabetic cataract, Site-directed mutagenesis, Gigantol, Syringic acid, Aldose reductase

Background

Cataract formation in patients suffering from diabetes is
a major cause of blindness. This is particularly true in
developed countries in which individuals tend to eat
high-fat diets, which are linked to an increased incidence
of diabetes. Cataract formation associated with diabetes
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(diabetic cataract, DC) can severely affect patients’ vision
and quality of life [1]. Importantly, cataracts account for
most cases of blindness in diabetic patients [2, 3].
Although cataract surgery is quite common and pro-
vides an effective cure, a better understanding of cataract
development might help delay or even prevent cataract
onset in diabetic patients. Furthermore, patients with
diabetes mellitus have more complications associated
with cataract surgery, including rapid acceleration of
retinopathy, rubeosis, macular edema, and cystoid macu-
lar edema [4-7]. Both diabetes and cataracts pose an
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enormous health and economic burden, particularly in
developing countries, where diabetes treatment is insuf-
ficient and cataract surgery is often inaccessible [4, 8].
Thus, there is an urgent need for inexpensive, non-
surgical approaches for cataract treatment [9]. Import-
antly, a 10-year delay in cataract onset is predicted to
cut the number of necessary cataract extractions to half
[10]. Thus, this necessitates the search for alternative
pharmacological measures to treat this disorder [11].

The pathogenesis of diabetic cataract development is
still not fully understood. Multiple mechanisms, includ-
ing increased sorbitol pathway activity [12, 13], non-
enzymatic glycation and glycoxidation [14, 15], enhanced
oxidative-nitrosative stress [16, 17], protein kinase C
signaling [18, 19], poly (ADP-ribose) polymerase (PARP)
activity [20, 21], and lipoxygenase activation [22, 23]
have all been implicated in the pathogenesis of chronic
diabetic complications [24].

Previous studies have established that the enzyme al-
dose reductase (AR) catalyzes the reduction of glucose
to sorbitol through the polyol pathway, a process linked
to the development of diabetic cataracts [4]. AR is the
first and rate-limiting enzyme of the polyol pathway
[25]. Polyols, such as sorbitol, physiologically accumulate
inside cells. Under diabetic conditions, AR promotes the
conversion of excess glucose to sorbitol in tissues [26].
The accumulation of sorbitol in lens fiber cells leads to
an increase in lens osmotic stress [27]. AR-dependent
synthesis of excess polyols has been implicated as a
primary mechanism leading to diabetic cataracts [28]. As
such, inhibition of AR signaling in the lens could repre-
sent a useful strategy for diabetic cataract prevention.
Along these lines, a variety of AR inhibitors (ARIs) have
been shown to effectively inhibit AR activity and de-
crease the risk associated with diabetes mellitus; more-
over, these inhibitors have also been shown to mitigate
polyalcohol metabolism-related pathogenesis in diabetic
patients [29].

Caulis Dendrobii, a traditional Chinese herb, is the
fresh or dry stem of the Dendrobium Sw. plants of
Orchidaceae. According to several Chinese medical
reports, Caulis Dendrobii has been shown to improve
vision [30, 31]. We have previously extracted gigantol
and syringic acid (SA) from Dendrobii and have shown
that either compound alone can significantly inhibit AR
activity and help prevent DC formation in rats [32, 33].
As a continuation of our efforts directed towards the
development of diabetes-associated anti-cataract agents
derived from natural sources, we found that the combin-
ation of gigantol and SA protects against DC formation
better than either agent alone. Molecular docking ana-
lysis predicts that binding between AR and the combin-
ation of gigantol and SA occurs via amino acid residue
Asnl60 within AR [34]. We have previously created eye
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drops containing gigantol and SA, and preclinical studies
have shown that these drops are non-toxic with little to
no irritation in several animal models. Thus, these eye
drops were deemed safe and determined to have several
drug-like properties [35]. Taken together, eye drops con-
taining gigantol and SA are worth further examination
as a potential anti-cataract therapeutic.

The molecular mechanisms underlying the synergistic
effect of gigantol and SA are not fully understood. More-
over, many of the previous studies have made use of
galactose- or hydrogen peroxide-induced cataract animal
models, which typically fail to mimic human disease
[28, 36]. As such, in this study, we examined the effect of
gigantol and SA combination in streptozotocin (STZ)-in-
duced diabetes in vivo and high glucose-induced diabetes
in vitro. Cell viability was analyzed by MTT (3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide)
assay, and the synergistic effects were evaluated by ap-
plying Jin’s formula [37, 38]. AR activity and expression,
sorbitol levels, and binding between AR and both com-
pounds were examined to better understand the poten-
tial synergistic mechanisms governing the anti-cataract
properties of these agents.

Methods

Materials and preparation of eye drops

STZ, MTT, DMSO (dimethyl sulfoxide, and DL-
glyceraldehyde were purchased from Sigma America
Corp. NADPH (reduced form of nicotinamide-adenine
dinucleotide phosphate) was obtained from Italian Roth
Corp. Pirenoxine eye drops were obtained and produced
by Wuhan Tiantianming Pharmacy Co. Ltd. (P. R. China).
Ammonium acetate was purchase from Gene-Tech
Co. Ltd. All other reagents were obtained domestic-
ally and were deemed to be analytically pure.

Live specimens of Dendrobium aurantiacum var.den-
neanum (kerr) Z.H. Tsi were acquired from Wan'an
Dendrobium Industry and Development Co., Ltd.
(Sichuan, P.R. China). These specimens were authenti-
cated by Professor Tingmo Zhang of the Chengdu
University of Chinese Medicine. Gigantol and SA were
extracted at >98 % purity using the method previously
described [39, 40].

The eye drops containing both gigantol and syringic
acid were prepared as previously described [35]. Briefly,
gigantol (1 g), SA (1.25 g), and ethylparaben (0.3 g) were
added to 1 L of buffer solution (940 mL of 12.4 g/L
boric acid buffer and 60 mL of 19.1 g/L borax buffer),
followed by boiling for 15 min. After the mix was cooled
and the pH was adjusted to 7.0 using the boric acid
buffer, the resulting solution was added with 22 g
sodium chloride and then filtered using a 022 um
membrane to generate the drops. Eye drops containing
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gigantol or SA alone were prepared as described above
except for the addition either gigantol alone (2 g) or SA
alone (2.5 g).

Cell culture, treatment, and cell viability assay
HLECs (human lens epithelial cells) line SRA01/04,
generously provided by the Ophthalmology Center of
the Sun Yat-sen University (P.R. China), was cultured in
Dulbecco’s modified Eagle’s medium (DMEM; with
5.56 mmol/L glucose) supplemented with 20 % fetal
bovine serum (FBS), 100 IU/mL penicillin, and 100 mg/
mL streptomycin at 37 °C in a 5 % CO, humidified
atmosphere [41]. HLECs were harvested at confluency
by trypsinization, and fresh culture medium was added
to generate single cell suspensions for use in cell viability
assays. HLECs were then seeded in 96-well cell culture
grade microplates at a density of 1x10° cells/well in
100 pL for 24 h followed by incubation with high glu-
cose (50 mmol/L glucose-DMEM; model group), normal
glucose (5.56 mmol/L glucose-DMEM; normal control
group), or mannitol (5.56 mmol/L glucose-DMEM with
45 mmol/L mannitol; osmolarity control group) [42].
Cells were treated for 72 h with high glucose
(50 mmol/L glucose-DMEM) and various concentrations
of gigantol and syringic acid, either alone or in combin-
ation. Gigantol was administered at doses of 0, 0.1, 0.5,
1.0, and 2 pg/mL. Syringic acid was administered at
doses of 0, 0.125, 0.625, 1.25, and 2.5 pg/mL. The doses
used for the combination are listed in Table 1. Cell via-
bility was assessed by MTT assay. After the indicated
treatments, 10 pL of 5 mg/mL MTT reagent was added
to each well of a 96-well microplate and incubated in
the dark at 37 °C for 4 h. Finally, 200 pL. DMSO was
added as the MTT formazan product solvent to each
well with vigorous mixing after the supernatant was
removed. Afterwards, the optical density (OD) at
570 nm was measured with an EnSpire™ Multimode
Plate Reader. Cell viability was calculated from the
absorbance ratios in the control group and the sample
group. Morphological changes of cells in each group
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were observed under an inverted microscope (Olympus,
Japan).

Evaluation of synergism

The synergistic effect of gigantol and syringic acid
was analyzed by applying the modified Burgi formula
(i.e., Jin equation) [37, 38]. The formula is q = EA + B/
(EA+EB-EA xEB), where EA +B, EA, and EB are
the average effects of the combination treatment,
gigantol alone, and SA alone, respectively. The ¢
value < 0.85, 0.85-1.15, and = 1.15 indicate antagonism,
additive effects, and synergism, respectively.

AR activity assay in HLECs

AR activity in the cytosolic fraction of HLECs was spec-
trophotometrically estimated as previously described
[42-46]. Harvested HLECs were first ultrasonically
disrupted in 100 mmol/L PBS (phosphate buffer saline,
pH 7.4), followed by centrifugation at 2000 x g for
10 min. The reaction was carried out in 1.5 mL incuba-
tion medium (100 mmol/L PBS, pH 6.8, 0.1 mmol/L
DL-glyceraldehyde, 0.15 mmol/L NADPH, and 100 pL
AR enzyme fraction); DL-glyceraldehyde was added the
last. Enzyme activity was measured spectrophotometric-
ally by estimating NADPH oxidation from a decrease in
absorbance at 340 nm. The assay was carried out at
room temperature with an appropriate blank subtracted
from each reaction to correct for non-specific oxidation
of NADPH during the measurement. One unit of
enzyme activity is defined as the amount of enzyme
catalyzing the oxidation of 1 umol NADPH/min under
the present assay conditions.

Effect of combined gigantol and SA on STZ-induced DC
lens opacification in vivo

Animal handling and care

Totally 100 Wistar rats with an average body weight of
220+ 10 g (aged 5 months old; 50 males and 50 females)
were obtained from the Laboratory Animal Center at
the Guangzhou University of Chinese Medicine. Rats
were housed in an air-conditioned animal house under a

Table 1 The cell viability (%) of HLECs after treatment with gigantol, syringic acid and their combination in the presence of high glucose

gigantol SA(ug/mL)

(ug/mL) 0 0.125 0625 125 25

0 28234112 3262+ 156 3621+2.18 4152+153 47724149
0. 3533+ 187 6802+ 127 6901 +179 7109+ 194 7399+ 135
05 3955+ 1.25 6977 + 222 7505+ 215 7626+ 128 7896+ 157
1 44714251 71164161 73,66+ 124 82514153 8302+ 182
2 5065 + 147 7276+ 159 74134127 83434156 89,16+ 132

Cells were incubated with various concentrations of gigantol, SA and their combination in presence of high glucose (50 mM, containing medium) for 72 h. The
cell viability of normal group (5.56 mM glucose), osmolarity control group and model group were 100 + 0.89 %, 98.33 + 0.24 % and 28.23 + 1.12 %, respectively.
Cells were treated for 72 h, respectively. independent experiments. Data were expressed as mean + SD (n=3), P <0.01 vs all other groups
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normal day/night cycle. All animals were fed a normal
rodent chow diet ad [libitum and had free access to
water. Food intake was monitored daily. This study was
approved by the Animal Care Committee of Guangzhou
University of Chinese Medicine and conducted in ac-
cordance with the institutional guide for the care and
use of laboratory animals.

Experimental design

Prior to the experiment, rats were administered tropica-
mide eye drops to check their lenses under the slit lamp
(YZ-5E slit lamp microscope, Suzhou medical apparatus
and instruments factory, P.R. China). After one week of
adaptable feeding, the rats were divided into six groups.
Control rats (group I; n = 15) received only 0.1 M citrate
buffer, pH 4.5 as vehicle. Other animals in experimental
groups were overnight-fasted, then diabetes (type I) was
induced by a single intraperitoneal injection of 1 %
(W/V) STZ (30 mg/kg body weight) in 0.1 M citrate
buffer, pH 4.5 [47]. Three days after the STZ injection,
blood was drawn from the tail vein to measure blood
glucose levels. Rats with blood glucose levels over
130 mg/dL were selected to develop cataract, then their
eyes were examined daily. When the lens opacity
reached stage 2 on day 30 (The noncataractous animals
were eliminated), the rats were then randomly distrib-
uted into five groups (Groups II-VI, n = 15/group): DC
rats treated with normal saline (group II, model group),
DC rats treated with syringic acid eye drops (group III),
DC rats treated with gigantol eye drops (group 1V), DC
rats treated with combination gigantol and syringic acid
eye drops (group V), and DC rats treated with 0.053
pg/uL pirenoxine sodium eye drops as suggested by the
manufacturer (group VI, positive control group). Drug
administration was performed by applying 50 pL of
eye drops to each eye, 3 times per day, for 60 con-
secutive days.

Slit lamp examination and cataract classification

Eyes were examined daily for 90 days using a slit lamp
microscope on dilated pupils. Initiation and progression
of lenticular opacity was graded into five categories as
follows [28]: stage 0: clear lenses and no vacuoles
present; stage 1: vacuoles cover approximately one half
of the surface of the anterior pole, forming a subcapsular
cataract; stage 2: some vacuoles have disappeared and
the cortex exhibits a hazy opacity; stage 3: a hazy cortex
remains and dense nuclear opacity is present; and stage
4: a mature cataract is observed as a dense opacity in
both cortex and nucleus. The incidence of cataract
appearance is expressed as the percentage of total lenses
in each group. At the end of 90 day, animals were sacri-
ficed by CO, asphyxiation, and the lenses were dissected
by the posterior approach. Then a small incision was
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made on the posterior side of the eye with the scissors.
The lenses were collected by pressing with tweezers
against the side of the eye opposite of the incision and
stored at —80 °C until further analysis.

Western blot analysis

Western blot analysis was performed as previously
described [48]. Protein samples were prepared by sample
homogenization in radio immunoprecipitation assay
(RIPA) buffer (1 % Nonidet P40, 0.5 % sodium deoxy-
cholate, 0.1 % sodium dodecyl sulfate-polyacrylamide in
PBS) [49]. Equal amounts (20 pg / lane) of protein were
subjected to a 10-20 % sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gradient
and then transferred to Polyvinylidene-Fluoride mem-
branes (Scientific Research Special, USA). Membranes
were blocked for 1 h with 5 % nonfat dry milk in 0.1 %
Tween—20 in PBS and then incubated overnight at 4 °C
with AKR1B1 antibody (ABGENT, CA, USA) at 1:1000
dilution. Following 3 washes with PBS containing TBST
(Tris and Tween Solution Buffer), the membranes were
incubated with HRP (horseradish peroxidase)-labeled
anti-mouse immunoglobulin G. The specific band was
visualized with BeyoECLPlus (Santa Cruz Biotechnology,
TX, USA). The density of each band was analyzed using
a LAS-1000 UV mini imager (Fuji Film, Tokyo, Japan).

Real-time reverse transcriptase-PCR

Total RNA was isolated from frozen rat lens samples
from each of the 5 groups (group I to V) using Trizol
reagent (Invitrogen, CA, USA) as previously described
[33, 50]. Lens cDNA was synthesized using the
ImProm-II"™ Reverse Transcription System kit (Promega
Company, Madison, W1, USA) in accordance with the
manufacturer’s protocol. The following primers were
used: 5-AGC GGT TTA GGT ACC ATG GGT TTT-3’
and 5-AGG GTA AGC TTC GAA TTC TCA GGC
GCG GAT TTG TTG TGA-3’ for AR,5’GAGACCTT-
CAACACC CAGCC-3 and 5-GCGGGGCATCGGA
ACCGTCA-3’ for B-actin. Quantitative real-time PCR
was performed with Power SYBR Green PCR Master
Mix (Applied Biosystems, Norwalk, CT, USA) using a
2400 Real-Time PCR system (Applied Biosystems,
Norwalk, CT, USA). The following PCR cycling condi-
tions were used: 95 °C for 10 min, with 40 cycles at 95 °C
for 15 s and 60 °C for 1 min. The relative quantities of
AR mRNA were automatically assessed by the com-
parative cycle threshold method and normalized to p-
actin mRNA levels as an endogenous control [51].

Sorbitol assay in the lens

The lens homogenate from each of the five groups
(groups I to V) was prepared in PBS (pH 7.4). Sorbitol
levels in the lens were measured as previously described
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[52, 53]. Briefly, a total of 1 mL of extract from each lens
was mixed with 2 mL glycine buffer (0.05 M, pH 9.4)
containing 2 mM NAD (Nicotinamide adenine dinucleo-
tide) and 0.05 mL sorbitol dehydrogenase (25.6 U/mL)
and incubated at room temperature for 60 min. After
incubation, fluorescence of the generated NADH was
measured at an excitation wavelength of 366 nm and
emission wavelength of 452 nm using a spectrofluorom-
eter (F-4500, Hitachi, Japan). Sorbitol levels in each
extract were calculated from a calibration curve of D-
sorbitol. Sorbitol content in the lens was expressed as
pumol/g wet weight.

Construction of pET28a vector for expression of wild-type
AR and mutants

The pET28a-AR (Novagen, Germany) plasmid carrying
full-length ¢cDNA encoding AR was used as the tem-
plate, and AR cDNA fragments were specifically am-
plified using primers containing restriction enzymes
Hindlll (TaKaRa, Japan) and Xhol (TaKaRa, Japan) di-
gestion sites; after amplification, these fragments were
cloned into the pET28a expression vector. The accur-
acy of the insertion sequence was verified by sequen-
cing. AR Asnl60 mutant expression plasmids were
constructed using pET28a-AR expression plasmid as
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template and rapid one-step PCR-medicated site-directed
mutagenesis. Asn160 was mutated to alanine (Ala) (Fig. 1).
The primer sequences for mutagenesis are listed in
Table 2; primers were synthesized by Shanghai Biotech-
nology Co., Ltd. P.R. China. Experimental procedures
were performed according to the instructions provided
with the Quick Change XL site-directed mutagenesis
kit. Sequencing was performed to verify that no add-
itional mutation (other than the desired Asnl60Ala
mutation) was introduced into the construct. Sequen-
cing of the recombinant plasmids was carried out by
BGI Genomics Co., Ltd, Shenzhen, P.R. China, and
this was followed by analysis using the Basic Local
Alignment Search Tool (BLAST).

Gene expression and purification

The pET28a-AR and mutant pET28a-AR Asnl60
expression vectors were used to transform E.coliBL21
(DE3) (Novagen, Germany). E. coliBL21 (DE3) were used
for expression of wild-type and mutant AR. Bacteria
were cultured on LB (Luria-Bertani) plates containing
Kanamycin (final concentration 50 pg/mL); incubation
was performed overnight at 18 °C with constant shaking
at 180 rpm. Transformation of E. coliBL21 (DE3)

Sacl (190)
a Xhol (158)
Eagl (166)
VotI (166)
HindIII (173)
Sall (179)
EcoRI (192)
iBamHI (198) Xhol(158)
hel (231)
ide1 (238)
Necol (296)
//\‘\'bﬂlisss)
/S50 Smal(5242) 1 origin(4903-5358) i
QI (1115
11 origin(4903-5358) Xmal (5240) AR(163-1113) BamHI (1140)
Smal (4300) Clal (5059), Kan(3995-4807) Sall (1121)
el (3208 Kan(3995-4807) Miul (1123) FNN Sect (1132)
P 1(4 9) lal(773-1852) L (":_) PET28a(+)-AR ECoRI (1134)
al (4117 7 Vhel (117"
4 pET-28a(+) BstEll 1304) (1) Digest with Hind I1I and Xhol AhwN1(4582) " sonte :Z::Enszi
5369bp Apal (1334) BssSI(4339), \
4 1; . . . o Neol (1238)
S (I1) Ligate with 951 bp Hind I1I-Xhol fragment Aorl(ms) 1all(773-1852) \alG1277)
= EcoRV (1573) Sap1(4050) ® 4 Sphl(1540)
AlwNI (3640) ori(3286) i Mlul (2065)
. ipal (1629 Tthi111(3911) Bcll (2079)
BssSl (3397) PshAIL (1968) | ‘ \
>/Bgll (2187) Fspl(3147) ‘l:h-\; Ezgm)) BStEII (2246)
'Hpal (2571 -
SPIG1H Fspl (2205) 20T cronv ey Essx:::jz)@
Tth111l (2969)
Hind 111 Xhol
AR-WT DNA sequence AAGCTT ATG.....TGG..... TAC....TGG......TTC...... AAC...... TTG...... CTCGAG
AR-WT protein sequence Met w Y w F Q L
AR-Q160A protein sequence Met W Y w F A L
Position 1 20 48 79 122 160 300
Fig. 1 Structure and protein sequence of plasmid pET-28a-AR and its mutants. a plasmid map of pET-28a and pET-28a-AR. pET-28a was digested
with Hindlll and Xhol and ligated with a 951-bp fragment from either wild-type or mutant AR. b Protein sequences of wild-type and mutant AR
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Table 2 Primers for human wild-type AR mRNA expression
vector and mutant AR-Asn160 expression vector

Primer Sequence
wild-type AR HindllIF:5" CCCAAGCTTATGGCAAGCCGTCTCCTG 3
XholR:5" CCGCTCGAGTCAAAACTCTTCATGGAAGGG 3’
mutant HindllIF:5" CCCATCCTGGGGTTGGGTACCGCTAAGGGT
AR-Asn160 GGTGGTTCTGGAGGTG3'
XholR:5" CTGCCCTGGAGGGGACTTAGCGGTACCTCCC
TGGCTATTATCTGAGCTT 3'

competent cells with blank vector pPELB served as the
control. Successfully transformed positive clones were
screened. Expression was detected by 12 % sodium
dodecyl sulfate polyacrylamide gel electrophoresis.

The bacteria solution was centrifuged at 10,000 rpm for
30 min at 4 °C, mixed with lysis buffer (50 mM NaH,PO,,
300 mM NaCl, 20 mM imidazole, pH = 8.0), disrupted by
ultrasonic treatment after suspension, and centrifuged at
10,000 g, 4 °C for 30 min. The supernatant was transferred
to a centrifuge tube, mixed with lysis buffer-treated Ni-
NTA beads, and then slowly shaken on ice for 1 h to fully
mix the beads and protein. The bead-protein solution was
transferred to a chromatographic column, and the beads
were allowed to naturally sediment. Next, the beads were
washed twice with 8 mL eluent (50 mM NaH,PO,,
300 mM NaCl, 20 mM imidazole, pH = 8.0). The target
protein was eluted into 1.5 mL EP tubes using elution buf-
fer (50 mM NaH,PO,4, 300 Mm NaCl, 250 mM imidazole,
pH = 8.0); between four and six elutions were performed,
and 1 mL eluent was collected each time. Steps of the pro-
cedure involving sedimentation, rinsing, and elution were
all performed in a refrigerator. Protein concentration was
determined by the Bradford method. Sample purity was
determined by 12 % sodium dodecyl sulfate polyacryl-
amide gel electrophoresis. Purified protein plus 15 %
glycerol (Amresco, USA) was stored at —80 °C.

Measurement of AR activity
Enzyme activity was determined according to a previ-
ously described method [54]. The decrease in NADPH
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absorbance per minute in response to different concen-
trations of combination treatment of gigantol and SA
was determined by plotting the inhibitory rate of each
sample for wild-type AR (wt-AR) compared to mutant
AR Asn160 (Q160A).

Statistical analysis

Statistical analyses and data processing were performed
using SPSS 22 software. P < 0.05 was considered statisti-
cally significant.

Results
Gigantol and syringic acid synergize to enhance viability
of HLECs
Compared to either the normal control group or the
osmolarity control group, HLECs treated with high glu-
cose (50 mM) became swollen and exhibited cavitation
and formation of small particles when viewed under an
inverted microscope. The decrease in cell density and
the increased numbers of floating cells suggested that
high glucose inhibits HLECs proliferation. Treatment of
these cells with various concentrations of gigantol and
SA, either alone or in combination, restored HLECs
morphology back to normal. MTT assay showed that
HLECs viability in the model group was significantly
decreased as compared to any of the other treatment
groups (Table 3; P<0.01). There was no difference in
viability between the normal control group and the
osmolarity control group (P>0.05), suggesting that
osmolarity had no significant effect on HLECs viability.
Using the Jin’s formula [37, 38], we found that gigantol
and SA in combination yielded synergism across a wide
range of concentrations; in total, nine combination treat-
ments showed synergism (q>1.15) while the remaining
combinations were additive (Table 4). The largest degree
of synergism was observed when gigantol and SA were
administered at a ratio of 1:1.25 (w/w) (P<0.01). As
such, concentrations of 1 pg/mL gigantol and 1.25 pg/
mL syringic acid were chosen for further investigation
for combined effects and mechanisms.

Table 3 Cell viability (%) of HLECs after treatment with gigantol, syringic acid, and the combination in the presence of high glucose

gigantol syringic acid (ug/mL)

(bg/m) 0 0125 0625 125 25

0 2823+1.12" 3262+ 1.56 3621+2.18 41524153 47.72+149
0.1 3533+187 68.02+ 127 69.01+1.79 7109+ 1.94 7399+135
05 3955+ 1.25 69.77 £2.22 7505£2.15 7626+ 1.28 7896 £1.57
1 4471+ 251 71.16£ 161 7366+ 124 8251+153 83.02+1.82
2 5065+ 147 7276+ 159 7413+127 8343+ 1.56 89.16 +1.32

Cells were incubated with various concentrations of gigantol, SA and their combination in presence of high glucose (50 mM, containing medium) for 72 h. The
cell viability of normal group (5.56 mM glucose), osmolarity control group and model group were 100 + 0.89 %, 98.33 + 0.24 % and 28.23 + 1.12 %, respectively.
Cells were treated for 72 h, respectively. independent experiments. Data were expressed as mean + SD (n=3), P <0.01 vs all other groups
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Table 4 Synergistic effect of gigantol combined with SA on
high glucose-induced HLECs analyzed by Jin's formula (g value
listed in the table)

gigantol syringic acid (ug/mL)

(ug/mb) 0.125 0625 1.25 25
0.1 121 117 114 1.10
05 118 1.20% 1.18° 1.15°
1 113 114 126~ 1.17°
2 1.09 106 112 1.20%

According to Jin's formula, q < 0.85 indicates antagonism, 0.85 <q < 1.15
indicates additive effects, and q > 1.15 indicates synergism (°). Synergism
indicates that the effect of a mixture exceeds that expected from the
individual components and additive effects (non-interaction) mean that the
combined effect is equal to the expectation. The largest grades synergism
efficiency when combination ratio of gigantol and SA was 1:1.25, "P < 0.05 vs
the other combination ratio groups

Gigantol and syringic acid synergize to inhibit DC lens
opacification in STZ-induced rat model in vivo

We next examined the effect of gigantol and SA eye
drops on cataract formation in the STZ-induced rat
model. Cataract scores in each of the experimental
groups following 60 days of treatment are summarized
in Fig. 2, and representative images of lenses from each
group are shown in Fig. 3. The lenses of normal control
rats (Group I) appeared to be clear and free of opacities
throughout the experimental period. This was in stark
contrast to clearly visible cataracts observed in the dia-
betic model group (Group II). Cataract development was
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inhibited in the rats treated with gigantol, syringic acid,
or pirenoxine (Group IIL, IV, VI). Importantly, there was
a significant difference in cataract progression in the
model group compared to each of these three treatment
groups (Groups III, IV, VI; P<0.01). Moreover, the
combined administration of gigantol and SA (Group V)
was more effective than either agent alone (p < 0.05).

Gigantol and syringic acid inhibit AR activity in cultured
HLECs

We next examined the effect of gigantol and SA on AR
activity in cultured HLECs. HLECs cultured in the pres-
ence of 5.56 mM glucose exhibited AR activity of 5.35 mU -
min-1-pg-1 protein. Following 72 h of incubation with
50 mM glucose, AR activity was dramatically increased (P
<0.01) to 15.34 mU - min-1-pg-1 protein, suggesting that
high glucose can significantly activate AR. Compared to
the high glucose group, AR activity in the gigantol, syrin-
gic acid, and combination groups was significantly de-
creased (P<0.01), suggesting that treatment with these
compounds inhibits AR activation induced by high glu-
cose in a dose-dependent manner (Table 5).

Gigantol and syringic acid attenuate STZ-induced AR
expression in the lens

The effect of gigantol and SA on AR activity prompted
us to examine the effect of these compounds on its
protein expression. We performed Western blot analysis

110 -
100 -
< 90 -
IS
= 80
3
E 70
S 60 -
% 50 - T T T
T T
8 T
2 40 A i
[9)
= 30
3)
= 20 I
.
10 -
0 -
50d 90d 50d 90d 50d 90d 50d 90d 50d 90d 50d 90d
Group | Group II * Group III Group IV Group V*#* GroupVI
m StageO| 100 100 0 0 0 0 0 0 0 0 0 0
m Stagel 0 0 0 0 333 | 233 10 26.7 10 30 3.33 13.3
Stage2| 0 0 20 13.3 40 33.4 50 433 | 46.6 50 46.7 50
B Stage3 0 0 333 | 26.7 30 233 | 233 16.7 | 26.7 | 16.7 30 20
m Stage4| O 0 46.7 70 26.7 20 16.7 13.3 16.7 | 3.33 20 16.7
Groups
Fig. 2 Cataract progression in different groups as observed by slit lamp microscope. The results are expressed as mean + SD (n = 15). Compared
with the model group (Group II), turbidity in the pirenoxine group (GroupVl) and all 3 treatment groups (Group I, IV, V) was significantly reduced,
P <001, vs all other groups. Optimal effects were observed in the combination (Group V); P < 0.05, vs group IIl, IV
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d e

Fig. 3 Inhibitory effect of gigantol and SA eye drops on STZ-induced diabetic cataracts in Wistar rats. Representative photographs of lens from
each group at the end of 60 days eye drop treatment. a normal control (group ); b diabetic cataracts untreated (group Il); f diabetic cataracts
treated with pirenoxine sodium eye drops each time (group VI); ¢, d, and e diabetic cataracts treated with SA, gigantol, or the combination of

gigantol and SA, respectively (group Ill, IV and V)

for AR expression in the lens from the various treatment
groups (Fig. 4). AR expression in animals with diabetic
cataracts (Group II) was approximately 6-fold higher than
in the normal control group (p <0.01). This increase was
significantly inhibited by gigantol and SA, and, im-
portantly, the combined treatment of gigantol and SA
performed better than either agent alone (p<0.05).
These findings indicate that combination gigantol/syringic
acid significantly attenuates STZ-induced AR expression
in vivo, which may, at least in part, explain the syner-
gistic effect of combination treatment.

Gigantol and syringic acid attenuate STZ-induced AR
mRNA expression in the lens

Since we found that gigantol and SA modified AR protein
expression, we next examined whether these compounds

Table 5 Inhibition efficiency of drug alone and drug combination on AR activation (mU-min~

regulated AR at the mRNA level as well. We performed
real-time RT-PCR and found low level of AR mRNA ex-
pression in control rats (Group I). AR mRNA transcripts
were significantly elevated in the diabetic model group,
showing a 4.85-fold increase in AR mRNA expression in
STZ-induced rats (Fig. 5). This STZ-induced increase was
attenuated by gigantol and syringic acid (p < 0.01). Import-
antly, combined administration (group V) was more ef-
fective than either compound alone (p < 0.01), indicating
that gigantol and syringic acid synergistically inhibit
STZ-mediated increase in AR mRNA expression.

Gigantol and syringic acid decrease sorbitol accumulation
in DC lenses

We found elevated sorbitol levels in lenses from DC rats
compared to control rats (p<0.01). Treatment with

1

-ug™" protein) of HLECs induced by

high glucose

gigantol syringic acid (ug/mL)

(hg/m) 0 0125 0625 125 25

0 1634 +0.71 1311+013 1223+0.68 1121+037 1027 £0.29
0.1 12984032 1046 +0.23 979+ 033 886+0.19 845+ 058
05 11.02+0.63 10.06 +£0.26 951+£0.15 862+047 8.05+0.36
1 10.52+042 9.73+0.54 9.06 +£0.27 803+0.36 7.24+083
2 1001076 033+045 742+052 6.79+023 6.25+037

The AR activity in HLEC cultured in the normal group (5.56 mM glucose alone) was 5.35 mU-min~'-ug™" protein. The results given are for HLEC incubated with
50 mM glucose with the indicated additions, respectively. Data were expressed as mean + SD (n = 3). "P < 0.05 vs all other groups
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(relative to B-actin)
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SD (n=20), *p < 0.01, vs Group |, ll, IV, V; **p < 0.05, vs Group IlI, IV
A\

Fig. 4 AR expression in the lens after treatment with gigantol, syringic acid, and the combination. a Representative image of Western blot, lanes
1 to 5: Group | to Group V. B-actin was used as the internal control. b AR expression levels after normalization for 3-actin. The values are mean +

I’ B

Group III  Group IV Group V
Groups

either gigantol or SA effectively attenuated this STZ-
mediated increase. Moreover, combined treatment with
gigantol and SA performed better than either agent
alone (p < 0.05; Fig. 6), suggesting that these compounds
synergize to decrease sorbitol accumulation in the
diabetic lens in vivo.

Generation and expression of wild-type AR and
Asn160Ala mutant

Using recombinant plasmid pET28a-AR as template,
we performed site-directed mutagenesis to generate the
AR Asnl60Ala mutant. As expected, a 1 kb band was

amplified. This amplified product was digested with
Dpnl and transformed into E. coli BL21 (DE3). Positive
clones were screened and sequenced. Following the
sequencing and assembly of sequencing data, the
BLAST result showed that the AR mutant with Asn160
was changed to Ala and was generated to test the
binding sites predicted by docking simulation.
Differential expression was analyzed by sodium dode-
cyl sulfate polyacrylamide gel electrophoresis. Wt-AR
and mutant AR were expressed at similar levels (Fig. 7).
As expected, both wild-type and mutant proteins ran at
approximately 36000 Da. Protein concentration was
determined by the Bradford assay. The concentration of

*
§57
3
$ 4 4
Q.
>
o3 -
=
&
© 2 A
= kek
<
£1 -
| I
g0 . . . .
Group I Group IT Group III  Group IV Group V
Groups

Fig. 5 AR mRNA expression after treatment with gigantol, syringic acid, and the combination. The expression of AR mRNA is normalized using
the housekeeper gene (B-actin), which is evenly expressed in rat lens cells. Compared with the normal control group, mRNA levels of the AR
gene increased 4.85-fold in Group Il and 1.23-fold in Group V; *p < 0.01 vs Group |, Group lll, Group IV and Group V. **p < 0.05 vs Group Ill and IV
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Fig. 6 Sorbitol levels in the lens after treatment with gigantol, syringic acid, and the combination. The sorbitol level in lens in DC rats is significantly
higher than levels in control rats (p < 0.01). Gigantol, syringic acid, and the combination reduced STZ-induced lenticular sorbitol accumulation. Sorbitol
levels in lenses treated with the combination are lower than in the gigantol or syringic acid groups alone (p < 0.05)

Group Il Group IV Group V
Groups

wt-AR and the mutant Q160A was 1.85 and 7.93 mg/
mL, respectively.

Asn160 is a key residue within AR mediating the
inhibitory effect of gigantol and syringic acid

Combined treatment of gigantol and SA inhibited wt-
AR in a dose-dependent manner, and the inhibition ra-
tio of combination treatment was consistent with our

-

e g Al

26kDa - ’
17kDa

Fig. 7 Expression of wild-type and mutant AR (sodium dodecyl sulfate
polyacrylamide gel electrophoresis). BL21 (DE3)-pET28b-AR and the
mutant were induced by 0.5 mM IPTG at 18 °C and then purified.
Sampling volume was 8 g per well. 2 proteins were successfully
purified. AR protein molecular mass was 34.8 kDa, and was 38 kDa after
being fused to His. 1: Marker; 2: blank control; 3: wild-type AR; 4: AR
N160A. The arrow indicates the target protein

previous work [34]. Furthermore, we found that the in-
hibitory effect increased with increasing concentrations
of both compounds. In contrast to wt-AR, the inhib-
ition ratio of Q160A mutant AR in the presence of
similar concentrations of gigantol and SA was far lower.
In fact, gigantol and SA were very poor inhibitors of
mutant AR activity (Fig. 8). These data suggest that
Asnl60 is a key residue within AR mediating the
inhibitory effects of gigantol and SA.

Discussion

The development of cataracts in patients suffering from
diabetes can lead to blindness at late stages of the
disease. The polyol pathway, advanced glycation end
products (AGEs), and oxidative stress have all been
implicated in the development of DC [55-58]. Lens epi-
thelial cells (LECs) are damaged in diabetic cataracto-
genesis, which can be induced by ultraviolet radiation,
oxidative stress, and hyperglycemia [59-61]. Apoptosis
of LECs occurs during cataract formation, and, as such,
inhibiting apoptosis can prevent or delay this process
[60, 62]. AR catalyzes the conversion of glucose to sorb-
itol via the polyol pathway, a process involved in diabetic
cataract formation [63—67]. Extensive research has dem-
onstrated that the AR pathway is the initiating step in
diabetic cataract formation. Intracellular accumulation
of sorbitol leads to osmotic changes resulting in hydro-
pic lens fibers that degenerate and form sugar cataracts
[68, 69]. There are several factors leading to the accumu-
lation of sorbitol in the lens. The production of sorbitol
by AR occurs more rapidly than its conversion to
fructose by sorbitol dehydrogenase [70-73]. In addition,
sorbitol cannot penetrate the cell membrane by simple
diffusion. As a result, increased accumulation of sorbitol
creates a hyperosmotic effect that leads to an infusion of
fluid to countervail the osmotic gradient [68]. Studies
have shown that osmotic stress in the lens caused by



Wu et al. BMC Complementary and Alternative Medicine (2016) 16:286

Page 11 of 14

100 1

80 -
70 -
60 -
50 -
40 -

Inhibition ratio (%)

30 A
20 ~
10 A

——wt-AR ——mutant AR

x—l_/__/_zx———i

0.125+0.156  0.25+0.313

are expressed as mean +SD (n=3)

0.50+0.625
The concentration of gigantol and syringic acid(mM)

Fig. 8 Wild-type AR (wt-AR) and the mutant AR (Q160A) activity in the presence of different concentrations of gigantol and syringic acid. Data

1.0+1.25 5.0+6.25

sorbitol accumulation also induces LEC apoptosis, lead-
ing to the development of cataract [74-77].

The Dendrobium species (Orchidaceae), locally known
as ‘Shihu’ or ‘Huangcao;, have long been used in
traditional Chinese medicine for their antipyretic, eye-
benefiting, immunomodulatory, and anti-aging effects
[78, 79]. Our previous studies performed in the galact-
ose- and hydrogen peroxide-induced DC animal models
have demonstrated that the combination of gigantol and
syringic acid inhibits AR activity and prevents cataract
formation more effectively than either compound alone
[34]. Molecular docking analysis predicted that the syn-
ergistic binding site between AR and combined gigantol
and SA administration was the amino acid residue
Asn160 within AR [34]. In the present study, we demon-
strate that gigantol and syringic acid synergistically in-
hibit AR activity and protect against cataract formation
both in vitro and in vivo. Importantly, this synergistic
effect was observed in multiple diabetic cataract models,
including the high glucose-, STZ-, and D-galactose-
induced models [34].

Galactosemic animal models are widely used to study
sugar-induced complications. This is because galactose
can rapidly produce cataracts, and animal survival in this
model is typically better due to less severe systemic
metabolic changes. As such, this animal model is often
favored over the diabetic model, particularly for initial
screening of new investigational agents [80]. Therefore,
we used this model in our previous work to initially
screen active ingredients from Dendrobium [32-35].
While appropriate as a starting point, galactose- and
hydrogen peroxide-induced DC models are not exact

representations of human DC. Despite some similarities,
including activation of AR, polyol accumulation, and
oxidative stress [80—85], we transitioned to using the
STZ-induced DC model in the study presented here.

In an effort to understand the synergistic mechanism
of gigantol and syringic acid, we treated STZ-induced
rats with a combination of both compounds. We found
that combined gigantol and SA treatment inhibited
HLECs apoptosis and lens opacification. To better
understand the underlying synergistic effect, we exam-
ined AR activity, expression level of AR, and sorbitol
accumulation in the lens. We found that treatment with
gigantol and/or syringic acid decreased AR activity and
expression, particularly in the combination group.
Furthermore, a significant decrease in the accumulation
of sorbitol was observed when both compounds were
simultaneously administered, which correlated with de-
creased HLECs apoptosis. AR downregulation by gigan-
tol and/or syringic acid might explain their synergistic
anti-cataract effect in the lens.

We next examined the importance of Asnl60 in AR
for its inhibition by gigantol and SA. Enzyme kinetics
showed that the Q160A mutant was not inhibited by
gigantol and SA to the same extent as the wild-type
protein. These findings confirmed that Asnl60 is a key
residue within AR mediating the inhibitory effects of
gigantol and SA, and this information was not previously
reported [86—92]. The bond between gigantol, SA, and
AR is very stable. Combination treatment and AR form
their collaborative pharmacophore. We found that the
hydrogen bond receptors were the oxygen of 3-methoxyl
in the benzene ring of SA and the 5-methoxyl group in
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the benzene ring of gigantol; the hydrogen bond donors
were the oxygen of the 3-methoxyl group in the benzene
ring of syringic acid. Thus, gigantol and syringic acid
provide synergistic protection against the development
of DC through inhibition of AR activity.

Conclusion

In conclusion, combined treatment of gigantol and syr-
ingic acid synergize to significantly protect against DC
formation and, as such, may represent a promising
therapeutic option. The synergistic effect might be due
to decreased AR expression and activity. These results
add to the growing body of evidence supporting a thera-
peutic role for gigantol and SA in preventing cataract
formation in patients with diabetes.
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