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Current research is investigating the potential utility of longitudinal measurement of brain structure as a marker
of drug effect in clinical trials for neurodegenerative disease. Recent studies in Alzheimer3s disease (AD) have
shown that measurement of change in empirically derived regions of interest (ROIs) allows more reliable mea-
surement of change over time compared with regions chosen a-priori based on known effects of AD on brain
anatomy. Frontotemporal lobar degeneration (FTLD) is a devastating neurodegenerative disorder for which
there are no approved treatments. The goal of this study was to identify an empirical ROI that maximizes the
effect size for the annual rate of brain atrophy in FTLD compared with healthy age matched controls, and to es-
timate the effect size and associated power estimates for a theoretical study that would use change within this
ROI as an outcome measure. Eighty six patients with FTLD were studied, including 43 who were imaged twice
at 1.5 T and 43 at 3 T, along with 105 controls (37 imaged at 1.5 T and 67 at 3 T). Empirically-derived maps of
change were generated separately for each field strength and included the bilateral insula, dorsolateral, medial
and orbital frontal, basal ganglia and lateral and inferior temporal regions. The extent of regions included in
the 3 T mapwas larger than that in the 1.5 T map. At both field strengths, the effect sizes for imaging were larger
than for any clinical measures. At 3 T, the effect size for longitudinal change measured within the empirically
derived ROI was larger than the effect sizes derived from frontal lobe, temporal lobe or whole brain ROIs. The
effect size derived from the data-driven 1.5 T map was smaller than at 3 T, and was not larger than the effect
size derived from a-priori ROIs. It was estimated that measurement of longitudinal change using 1.5 T MR systems
requires approximately a 3-fold increase in sample size to obtain effect sizes equivalent to those seen at 3 T. While
the results should be confirmed in additional datasets, these results indicate that empirically derived ROIs can re-
duce the number of subjects needed for a longitudinal study of drug effects in FTLD compared with a-priori ROIs.
Field strength may have a significant impact on the utility of imaging for measuring longitudinal change.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

FTLD is a neurodegenerative disorder that typically presents as one
of three clinical variants: 1) the behavioral variant of frontotemporal
dementia (bvFTD), characterized by progressive impairment in
socioemotional function, 2) the semantic variant of primary progressive
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aphasia (svPPA), characterized by progressive loss of knowledge about
words and objects, and 3) the nonfluent variant of PPA (nfvPPA), charac-
terized by progressive impairment of articulation and speech (Rascovsky
et al., 2011). FTLD is at least as common as Alzheimer3s disease (AD) in
people under the age of 65 (Borroni et al., 2009; Knopman et al., 2004;
Papageorgiou et al., 2009; Ratnavalli et al., 2002; Rosso et al., 2003). It
has a profound effect on the lives of patients and their families; one
that can be considered more detrimental than the effects of more typical
degenerative disease such as AD because it is associated with an earlier
age of onset (Papageorgiou et al., 2009) and more rapid rate of decline
(Roberson et al., 2005). As there are no approved treatments for FTLD,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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these features reinforce the importance of developing therapies for this
devastating disorder.

Brain imaging is a powerful tool in neurodegenerative disease. MRI
and PET, themost commonly used tools, can be used to support diagno-
sis, andmeasures derived frombrain images correlatewith the type and
severity of symptoms in each patient (Tartaglia et al., 2011). These ob-
servations have led to studies examining the utility of brain imaging
as a tool for clinical trials, which have demonstrated that longitudinal
imaging can be used to track change in neurodegenerative disorders
more reliably than clinical measures such as cognitive testing (Weiner
et al., 2013).

One limitation of brain imaging is that each image produces
hundreds or thousands of data-points corresponding to spatial locations
in the brain, posing a significant hurdle for defining imaging-based
biomarkers (Friston et al., 1996). One of the most common approaches
to reduce the large-scale data in imaging studies is to limit measures of
change to aggregated estimates over regions-of-interest (ROIs), which
tend to be chosen based on prior knowledge about the regions that
are most severely affected in each disease. Thus, in AD, ROIs chosen
often include the hippocampus, entorhinal cortex, and temporoparietal
regions (Dickerson et al., 2011). In FTLD, the frontal and/or temporal
lobes have been used (Gordon et al., 2010; Krueger et al., 2010). The re-
gions most severely affected in each disease, however, tend to be those
affected earliest (Jack et al., 1997; Seeley et al., 2008). When a disorder
moves beyond the earliest stages, it is possible that regions affected
early begin to slow their rate of change while other regions, previously
only mildly affected, begin to accelerate their decline (Brambati et al.,
2009; Rohrer et al., 2012; Schuff et al., 2012). Thus, ROIs chosen based
on regions that are most strongly associated with the disease may not
be ideally placed to include the regions changing most rapidly. In AD,
it has recently been demonstrated using both MRI and PET that ROIs
chosen based on empirical data about the regions ofmost robust change
improve statistical power to detect change compared with ROIs chosen
based on their general association with the disease (Chen et al., 2010;
Hua et al., 2009).

The goal of this study was to empirically identify the most reliable
regions of change in FTLD using longitudinal imaging data and to quan-
tify the power estimates for longitudinal imaging studies thatwould use
an ROI derived from these regions. We also compared these power esti-
mates to those that would be calculated based on anatomically based
ROIs. We included longitudinal image pairs from a patient cohort
accrued between 1999 and 2013, including images obtained at both
1.5 Tesla (T) and 3 T (same field strength within patients). Our original
intent was to assess reproducibility by generating the ROI in the 1.5 T
dataset and testing the reproducibility of the estimate of change in the
3 T dataset. However, we found important differences in the effect
size of change estimates across field strengths that could have implica-
tions for future studies. Thus, we have estimated data-driven ROIs for
each field strength separately and included the analyses at both field
strengths in order to report on those differences.

2. Methods

2.1. Subjects

Our overall objective was to include as many patients as possible.
We chose to include patients with the behavioral variant of fronto-
temporal dementia (bvFTD, n = 37 [14 in 1.5 T and 23 in 3 T]) and
the semantic variant of primary progressive aphasia (svPPA, n = 49
[29 in 1.5 T and 20 in 3 T]), alongwith healthy age-matched comparison
subjects (n = 105 [38 in 1.5 T and 67 in 3 T]). These two variants of
FTLD were chosen because they are often caused by similar neuro-
pathological changes (Seelaar et al., 2011) and prior studies have
shown significant overlap between these two disorders in both behav-
ioral symptomatology and anatomical regions of damage (Liu et al.,
2004; Rosen et al., 2002). Because of this overlap, we reasoned that
there are likely to be shared regions of longitudinal change between
these variants, justifying our combining them into a single group. Re-
cent clinical trials have also combined the two groups (Boxer et al.,
2013). Patients were recruited between 1998 and 2013 through ongo-
ing studies (AG019724, AG032306, AG023501) at the University of
California San Francisco (UCSF)Memory andAging Center (MAC). Diag-
nosis for these studies is based on a multidisciplinary evaluation incor-
porating neurological, neuropsychological, and nursing assessment
(Rosen et al., 2002). Structural neuroimaging is not used to make the
syndromic diagnosis, but only to exclude other causes of brain damage,
such as strokes or tumors.

Two groups of cognitive healthy comparison (HC) subjects were
used for analysis. One group of 105 HCs was included who had longi-
tudinal imaging at 1.5 T (n= 38) and 3 T (n=67), and these controls
were used to create maps of disease specific change in FTLD (see
below). A second group of 272 HCs was used to generate z-scores
in order to create composite metrics of change in cognitive scores
over time (described below). All HC data were obtained from a
cohort of subjects recruited at the MAC via advertisements and com-
munity events. Controls undergo the same evaluation as patients and
are required to have no clinically significant cognitive or behavioral
complaints, performance within one standard deviation of normal
on all cognitive tasks, and to bring a knowledgeable informant to
verify the absence of clinically significant cognitive or behavioral
problems. Controls were excluded if they had a history of significant
mood disorders, clinically-significant alcohol or drug use, significant
vascular disease, visual problems that would impair test perfor-
mance, other neurological conditions, and self-reported deficits in
cognition.

To be included in the present study, a subject was required to have
had two T1-weighted MRI scans acquired with the same scanner and
pulse sequence.We aimed for an inter-scan interval of 1 year. However,
in the interest of sample size, we included 2 subjects that had an interval
greater than 2 years (one at 2.12 years and one at 2.27 years) as they
otherwise met criteria. All estimated change maps were divided by
the inter-scan interval in years (see below) to becomemaps of estimated
annual rate of relative volume change, so that differences due to inter-
scan interval effects would be somewhat mitigated. Images were
inspected for quality, including ensuring whole brain coverage and
looking for excessive motion artifact. In the years prior to 2008, research
subjects underwent MRI at 1.5 T. Subsequently, MRI was acquired at 3 T.
Subjectswere divided into two sets based onmagnet strength. Nopatient
was included in both the 1.5 T and 3 T sets. The majority of the patients
had assessment of CNS amyloid burden, usually with PET amyloid imag-
ing using Pittsburgh B compound or, less commonly AV45, but some-
times using CSF. Also, some patients have gone on to autopsy. Patients
were excluded if they had evidence of amyloid at a level consistent
with AD based on any of these assessments. All subjects provided in-
formed consent, and the clinical and imaging protocols were approved
by the UCSF Committee on Human Research.
2.2. Clinical assessment

Patients received an extensive battery of cognitive and behavioral
assessments. In order to compare the utility of MRI-based measures
with the value of clinical variables for tracking disease progression, a
subset of these measures was used. Prior studies have indicated that
quantification of daily function and cognitive composite scores is
among the most useful clinical variables for this purpose (Knopman
et al., 2008). Functional statewas quantified using the Clinical Dementia
Rating (CDR) (Morris, 1997), whichwas used here to generate a contin-
uous variable based on the sum of the individual ratings for functional
domains, typically referred to as the sum-of-the-boxes (CDR-SB).
General intellectual functioning was quantified using the Mini-mental
state examination (MMSE; Folstein et al.,1975) The cognitive tasks
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Table 1
Basic demographics in subject groups.

N Sex
(M/F)

Mean age at time
1 (S.D.)

Mean interscan interval
in years (S.D.)

1.5 T All subjects 81 42/39 64.7 (7.21) 1.08 (0.25)
Healthy 38 15/23 66.42 (7.89) 1.06 (0.17)
All FTLD 43 27/16 63.19 (6.28) 1.11 (0.28)
bvFTD 14 10/4 61.36 (7.03) 1.14 (0.37)
svPPA 29 17/12 64.07 (5.7) 1.14 (0.37)

3 T All subjects 110 58/52 66.5 (7.78) 1.03 (0.24)
Healthy 67 33/34 69.28 (6.53) 1.05 (0.21)
All FTLD 43 25/18 62.16 (7.65) 0.99 (0.28)
bvFTD 23 13/10 60.65 (7.8) 1.00 (0.29)
svPPA 20 12/8 63.9 (7.26) 0.99 (0.27)
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assessed a variety of abilities typically affected in bvFTD and svPPA,
which can be divided into four broad domains:

1 Episodic memory: California Verbal Learning Test, Second Edition,
Short Form (CVLT; D.C. Delis et al., 2000). The total immediate recall
over four learning trials, delayedmemory, and discriminability scores
were used for analysis. Discriminability summarizes hits and false-
positives on recognition performance. Modified Rey–Osterrieth
Figure memory task (Benson figure; Kramer et al., 2003).

2 Language/semantic knowledge: Boston Naming Test (BNT; Kaplan
et al., 1983), Semantic fluency (D. Delis et al., 2001), Peabody Picture
Vocabulary Test — Revised (PPVT-R; Dunn & Dunn, 1997), Pyramids
and Palm Trees (PPT; Howard & Patterson, 1992). WAIS −III, Infor-
mation subtest (Wechsler, 1997).

3 Visuospatial: Modified Rey–Osterrieth Figure Copy (Benson Figure)
(Kramer et al., 2003), Number Location from the Visual Object and
Space Perception (VOSP) battery (Warrington & James, 1991),
Beery-Buktenica Developmental Test of Visual–Motor Integration
(Beery, 1997) — participants copy a series of basic geometric figures
of increasing complexity. Scoring is based on objective criteria.
WAIS-III Block Design (WAIS-BlockD) (Wechsler, 1997).

4 Executive functions: Modified trailmaking set-shifting task (Trails;
Kramer et al., 2003). A logarithmic transformation was performed
to normalize the data. Design Fluency (Filled Dots Condition) from
the Delis–Kaplan Executive Function System (D. Delis et al., 2001),
Lexical Fluency (Birn et al., 2010), Stroop color–word interference
(Stroop, 1935), and a backward digit span task (Digits BW).

2.3. Image acquisition

1.5 T MRI was acquired on a Siemens Magnetom VISION system
(Siemens, Iselin, NJ) equipped with a standard quadrature head coil. A
volumetric magnetization prepared rapid gradient-echo (MPRAGE)
sequence was used to acquire T1-weighted images of the entire brain
(coronal slice orientation; slice thickness = 1.5 mm; in-plane resolu-
tion = 1.0 × 1.0 mm; matrix = 256 × 256; time to repetition (TR) =
10 ms; echo time (TE) = 4 ms; inversion time (TI) = 300 ms; flip
angle = 15°). MRI was acquired on a 3.0 T Siemens Tim Trio system
(Siemens, Iselin, NJ) equipped with a 12-channel receiver head coil. A
volumetricMPRAGE sequencewas used to acquire T1-weighted images
of the entire brain (coronal slice orientation; slice thickness= 1.0 mm;
in-plane resolution = 1.0 × 1.0 mm; matrix = 240 × 256; TR =
2300 ms; TE = 3 ms; TI = 900 ms; flip angle = 9°).

2.4. Creation of cognitive composites and effect sizes for clinical variables

In order to reduce the number of variables used to assess longitudinal
change, a single composite measure was created for each of the four do-
mains listed above based on mean z-scores compared with a normative
sample of age-matched heal. In the first step, means and standard devia-
tions were created for each cognitive measure, based on a group of 272
healthy control participants (mean age: 70.56 (7.0); mean education:
17.5 (2.0))whohad received thesemeasures. This control groupwas sep-
arate from the control group used for the image analysis. Next, z-scores
were created for svPPA participants at each time point by subtracting
the HC mean from their performance and dividing by the standard devi-
ation of HC participants. Composite scores were created based on the
available data for each participant even if some data were missing. An
episodic memory composite was created if a participant had at least 3
of 4 measures at a given time point. A semantic memory composite
was created if participants had at least 2 of 5 measures at a given time
point. A spatial composite was created if participants had at least 2 of 4
measures. Lastly, an executive composite was created for a participant if
they had at least 3 of 5 measures at a given time point.

For each cognitive composite measure, we calculated the Cohen’s d
effect size measure to calculate the change between time points for
the FTLD and HC groups assuming unequal variances. The HC group
was included in order to estimate the FTLD-specific change, which is
analogous the approach we used to estimate rates of atrophy in FTLD
(see below). The HC group used for the image analysis was used for
this estimate of clinical change in HCs. We then used this effect size
measure (α = 0.05, β = 0.8) to estimate the necessary sample size to
detect a 20% reduction in the change in clinical measures in the FTLD
group.
2.5. Image processing

Longitudinal changes in regional brain volumewere estimated using
the Pairwise Longitudinal Registration Toolbox implemented in
SPM12b (Ashburner & Ridgway, 2012), which addresses concerns re-
garding asymmetric bias in pair-wise longitudinal registration
(Thomas, 2010; Yushkevich et al., 2010). The process begins with
intrasubject registration using iterative and interleaved rigid-body
alignment, diffeomorphic warping and correction for differential inten-
sity inhomogeneity to generate a within-subject template representing
an average of the subject3s two scanswith respect to position, shape and
intensity non-uniformity. Two Jacobian determinant maps are then
computed; one that encodes the relative difference in volume between
the first scan and the average template, and another that describes the
relative volume between the second scan and the template. These
maps are generated in the same image space as thewithin-subject aver-
age. Computing the difference between these two Jacobian determi-
nants provides a map of relative change in volume between scan one
and scan two at each spatial location. These change maps were divided
by the inter-scan interval (in units of years) to become maps of annual
rate of relative volume change. Each subject3s average image was bias
corrected and the brain was partitioned into gray matter, white matter,
and cerebrospinal fluid (CSF), using SPM12b3s unified segmentation
procedure. The contraction/expansion maps were then multiplied
with the gray matter probabilistic tissue segmented maps, in within-
subject average space, to restrict analyses to cortical and subcortical
gray matter.

To allow statistical analysis across subjects, all image data were
transformed to a standardized space. Mappings from the gray matter
and white matter segments of the within-subject averages (all patients
and control subjects) to an iteratively evolving study-specific population
mean of these tissues were estimated using the DARTEL (diffeomorphic
anatomical registration through an exponentiated lie algebra) toolbox
(Ashburner, 2007). DARTEL minimizes the geodesic distance from each
patient to the population mean. Thus, between-population asymmetries
in registration, which could also lead to erroneous population effects,
were addressed. An affine mapping between the population mean and
MNI space (defined by SPM12b3s Prior Tissue Probability Map) was also
estimated and combined with each subject-to-population mean map-
ping for warping average images and volume expansion/contraction
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rate maps to MNI space. The rate change maps were then warped to
population-in-MNI space using the abovementionedmapping composi-
tion, and resampled to 1.5 mm3 without ‘volume-preserving’ modula-
tion. No spatial smoothing was applied. Subsequent analysis was done
using only the gray-matter maps of each patient.
Table 2
Baseline and 1-year clinical data in svPPA and bvFTD groups at each field strength.

svPPA

1.5 T 3 T

Measurea Baseline
(n, S.D.)

Followup
(n, S.D.)

Baseline
(n, S.D.)

Follo
(n, S

General functioning
MMSE 22.42

(24; 7.98)
20.16
(25; 7.88)

25.06
(16; 5.12)

23.1
(18;

CDR-SB 3.73
(24; 2.29)

5.13
(23; 2.90)

3.68
(19; 2.19)

4.53
(20;

Memory scores
CVLT-
immediate recall
(Max = 36)

16.0
(18; 6.65)

13.17
(18; 6.91)

18.87
(15; 5.51)

16.2
(15;

CVLT-
long delay
(Max = 9)

2.83
(18; 2.28)

1.67
(18; 2.47)

3.4
(15; 2.17)

1.87
(15;

CVLT−
Recognition
Discrim. (d’′)

1.58
(18; 1.15)

1.57
(17; 0.83)

1.84
(15; 1.06)

1.41
(14;

Benson recall
(Max = 17)

7.33
(18; 4.12)

7.37
(16; 5.3)

6.4 (15; 4.73) 5.2
(10;

Memory composite
(z-score)

−2.98
(18; 1.42)

−3.46
(18; 1.56)

−2.61
(15; 1.43)

−3.5
(15;

Language scores
BNT
(Max = 15)

4.58
(19; 4.13)

3.2
(20; 3.33)

6.0
(16; 3.76)

4.35
(17;

Semantic fluency
(Max in 1 min)

7.17
(18; 4.3)

4.72
(18; 3.27)

7.81
(16; 4.23)

6.56
(16;

PPVT-R
(Max = 16)

9.73
(11; 4.5)

6.4
(15; 4.37)

9.94
(16; 4.02)

7.92
(12;

PPT
(Max = 52)

40.08
(13; 7.96)

40.0
(13; 6.3)

42.41
(17; 7.13)

39.4
(9; 9

WAIS-Information
(Max = 28)

8.71
(14; 5.66)

7.29
(14; 5.85)

10.63
(16; 5.37)

9.6
(10;

Semantic−
Language composite
(z-score)

−5.8
(21; 2.59)

−7.48
(21; 3.08)

−5.17
(18; 2.72)

−6.3
(18;

Visuospatial scores
WAIS-Block D
(Max = 68)

35.08
(12; 9.24)

33.67
(15; 11.76)

36.67
(12; 15.47)

37.0
(9; 1

Benson Copy
(Max = 17)

15.94
(16; 1.06)

15.83
(18; 1.15)

15.45
(11; 0.69)

15.6
(12;

VOSP
(Max = 10)

9.47
(15; 1.06)

9.69
(16; 0.48)

9.18
(11; 1.08)

9.73
(11;

Beery
(Max = 16)

15.07
(15; 1.16)

13.44
(16; 2.53)

13.75
(12; 2.01)

12.7
(11;

Visuospatial composite
(z-score)

0.2
(18; 0.69)

−0.06
(18; 0.69)

−0.17
(13; 0.75)

−0.3
(13;

Executive scores
Design fluency
(Max in 1 min)

8.0
(13; 3.42)

6.13
(15; 3.72)

7.92
(13; 2.72)

5.89
(9; 3

Lexical fluency
(Max in 1 min)

8.13
(15; 4.0)

5.13
(15; 3.7)

7.0
(13; 2.24)

7.0
(13;

Trails set-shifting
(Time to complete)

64.33
(15; 37.55)

69.87
(15; 38.42)

49.75
(12; 29.62)

55.1
(13;

Stroop
(Trials in 1 min)

35.07
(14; 10.1)

30.25
(12; 15.52)

39.31
(13; 18.54)

37.3
(6; 1

Digits BW
(Max Span)

4.73
(15; 0.96)

4.71
(14; 1.33)

5.15
(13; 0.8)

4.85
(13;

Executive composite
(z-score)

−1.33
(15, 0.81)

−1.79
(15, 1.1)

−1.02
(13, 0.75)

−1.4
(13,

a See Methods (Section 2.2) for test names corresponding to abbreviations.
2.6. Generation and evaluation of a data-driven ROI

Our data-driven ROI generation procedure follows (in spirit) from
the approaches of Chen et al. and Hua et al. (Chen et al., 2010; Hua
et al., 2009), adopting some minor modifications, to identify a single
bvFTD

1.5 T 3 T

wup
.D.)

Baseline
(n, S.D.)

Followup (n, S.D.) Baseline
(n, S.D.)

Followup
(n, S.D.)

1
5.99)

22.57
(14; 9.1)

21.08
(12; 8.71)

24.52
(21; 4.07)

20.22
(18; 7.54)

2.53)
6.5
(14; 3.36)

10.41
(11; 4.18)

7.22
(23; 3.04)

9.5
(22; 3.15)

5.38)
20.5
(10; 6.82)

20.2
(10; 9.92)

22.0
(13; 6.1)

18.62
(13; 6.49)

2.2)
4.6
(10; 2.41)

4.4
(10; 3.66)

5.38
(13; 1.5)

4.08
(13; 2.4)

1.03)
2.43
(10; 0.73)

2.41
(10; 1.0)

2.05
(13; 1.18)

1.56
(13; 1.15)

4.49)
9.7
(10; 4.47)

7.2
(10; 6.27)

7.15
(13; 4.54)

6.78
(9; 6.46)

2
1.51)

−1.67
(10; 1.37)

−2.01
(10; 2.18)

−1.94
(13; 1.47)

−2.86
(13; 1.68)

3.69)
12.9
(10; 2.81)

12.0
(10; 4.22)

13.15
(13; 1.46)

12.54
(13; 2.9)

5.62)
12.5
(10; 6.54)

10.7
(10; 7.18)

11.31
(13; 3.07)

7.69
(13; 4.94)

4.03)
14.11
(9; 2.32)

14.0
(8; 2.0)

14.54
(13; 1.71)

13.0
(9; 2.74)

4
.04)

47.56
(9; 6.91)

46.67
(6; 8.21)

46.75
(12; 4.25)

45.5
(6; 5.54)

6.9)
16.56
(9; 7.54)

16.71
(7; 8.06)

17.08
(12; 5.71)

16.8
(5; 3.42)

8
2.69)

−1.69
(10; 2.22)

−2.12
(10; 2.41)

−1.68
(13; 1.27)

−2.61
(13; 1.83)

1.64)
30.44
(9; 12.24)

25.78
(8; 13.97)

29.11
(9; 13.82)

22.14
(7; 14.89)

7
0.89)

15.1
(10; 2.42)

14.8
(9; 1.75)

15.7
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data-driven region that can most reliably quantify longitudinal change
in FTLD. We first generated Student3s t-statistic (allowing heteroge-
neous group variances) at each voxel in standardized space to quantify
the difference in expansion/contraction between FTLD patients and
controls. A map was then generated from the t-statistics. A cross-
validated procedure was used to determine the threshold for gen-
erating a data-driven ROI that led to maximal effect size. The algo-
rithm proceeded as follows (performed separately in the 1.5 and 3 T
datasets):

1 The data for each of controls and patientswere randomly divided into
training and test sets; here, 16% of the data were used in the test set
(n= 13 for 1.5 T and n= 18 for the 3 T dataset). In addition, a restric-
tion was applied such that the proportion of FTLD to normal samples
was required to be more than 1/3, but less than 2/3.

2 A series of ROIswas thengenerated in the training set by thresholding
the t-maps over a set of levels ranging from 3.5 to the maximum ob-
served t-statistic in increments of 0.01 units.

3 The effect size for the mean difference in rate of change between the
FTLD and controls was then calculated for each ROI of the training set.
The curve for the plot of effect sizes for eachmap represents the rela-
tionship between the t-statistic cutoff and the corresponding effect
size for each resulting ROI.

4 The ROI associated with the t-statistic cutoff corresponding to the
maximum effect size is selected.

5 The effect size of the ROI from step 4 is then calculated in the test set
to obtain an unbiased effect size estimate.

It should be noted that the t-statistic cutoff corresponding to the
maximal empirical effect size estimate becomes highly variable over
neighboring thresholds because of high variability in estimated effect
sizes at high t-thresholds; because only a small number of voxels form
an ROI at high thresholds. To mitigate this effect and generate a stable
estimate of maximum effect size we smoothed the effect size curve
plotted against threshold. However, even lowess regression did not suf-
ficiently down-weight the influence of high thresholds. We therefore
implemented a heuristic method to identify the maximum effect size.
Specifically, a lowess regression was performed after iteratively exclud-
ing a top set of t-statistic thresholds (from 0 to 10% of the highest voxels
in increments corresponding to those associated with the t-thresholds).
At each iteration, the lowess-smoothed maximum was calculated, and
the overallmaximumwas taken as themedian of all the smoothedmax-
imums. This approachwas able to identify the location of themaximum
in reasonable agreement with the choice that one would make visually
as being the maximum of the relatively smooth part of the curve.

Steps 1–5 were then repeated 1024 times, reassigning patients
into the training and test sets each time. At the end of the process,
we have a set of “optimal” ROIs (i.e., across training/test set parti-
tions). To estimate the consensus ROI from the ensemble of cross-
Fig. 1. Curves for effect size associated with in
validated measurements, we weighted the contribution of each
voxel to the data-driven ROI as the proportion of cross-validation
partitions (weighted by the effect size for that cross-validation sam-
ple) in which the voxel contributes to the “optimal” ROI. Thus, the
resultingmap has a stronger representation from voxels consistently
contributing to the overall effect size across cross-validation samples
and weaker representation from voxels whose contribution was
more variable.

In order to assess the potential impact of using a data-driven ROI of
change for future clinical trials, we compared the effect size observed
using the data-driven ROIs to the effect sizes obtained by measuring
change within a-priori ROIs based on cerebral anatomy. For this pur-
pose, we used frontal, temporal, combined frontal and temporal, and
whole brain masks as regions of interest relevant to FTLD. These
ROIs were obtained from the AAL brain atlas supplied with the
WFU-PickAtlas software package (Maldjian et al., 2003).

3. Results

3.1. Group demographics and clinical assessments

Demographic characteristics of the 1.5 and 3 T patient groups are
presented in Table 1. The two patient groups had similar ratios of
males to females. There was no statistically significant difference
between the groups in age at the time of the first scan acquisition
(p = 0.5). The difference in inter-scan interval between groups was
small and approached statistical significance (0.05 year, or about
19 days, p = 0.065). The control subjects at both 1.5 and 3 T were not
statistically significantly different from their respective patient groups
with respect to inter-scan interval (p= 0.32 and p= 0.22, respectively).
Control subjects were, however, statistically significantly older than the
patients in both the 1.5 and 3 T comparisons p = 0.043 and p b 0.001,
respectively. The control subjects scanned at 1.5 T did not statistically
significantly differ from those scanned at 3 T in inter-scan interval
(p = 0.96). The 3 T control subjects were significantly older than
those scanned at 1.5 T (p = 0.048).

In terms of cognitive and behavioral data, scores were generally
what would be expected. SvPPA patients tended to score more poorly
on measures of episodic memory and on the language/semantic tasks
compared with bvFTD (Table 2). BvFTD patients performed slightly
worse on measures of visuospatial and executive function compared
with svPPA. All groups declined in all domains of testing. When compar-
ing participants across field-strengths, there were no obvious differences
in baseline performance within diagnostic groups (Table 2).

3.2. Change maps and effect sizes

As expected, there was a clear relationship between the t-statistic
threshold and the effect size for the associated ROI (Fig. 1). As can be
creasing t-statistic cutoff for 1.5 and 3 T.



Fig. 2.Non-cross-validated ROIs associatedwith a range of t-cutoffs at twofield strengths. ROIs chosen as optimal based on effect size curves in Fig. 1, and associated t-cutoff, are enclose in
the white box.
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seen in Fig. 2, which depicts non-crossvalidated voxel maps at the same
axial section associated with various t-cutoff thresholds for each field
strength from one iteration of step 2, longitudinal change is detect-
able in the cortical and subcortical regions of the frontal lobes as
well as in the temporal lobes in both analyses. In both datasets, the
typical peak effect sizes were associated with t-score cutoffs be-
tween 6 and 7. In both the 1.5 T and 3 T data, estimates of effect
size at the highest t-thresholds varied greatly, stemming from the
small number of voxels at those thresholds. For instance, in the
1.5 T graph in Fig. 1, it is clear that t-cutoff thresholds above approxi-
mately 7 are associated with increased variance in effect size. This was
the major motivation for using a smoothed estimate for the maximum
effect size. While the maps of change are spatially similar at the two
field strengths, the extent of the map at the optimal threshold is larger
at 3 T compared with 1.5 T.

Fig. 3 depicts the optimal ROIs created at 1.5 and 3 T after
crossvalidation. The ROI maps are displayed on a scale from 0 to 1,
representing the proportion of times during the cross-validation proce-
dure that the voxel contributed to the optimal ROI. At 3 T, a large num-
ber of voxels were identified in the optimal ROI in more than 50% of the
iterations, including voxels in the posterior portions of the orbitofrontal
cortex, medial frontal region, bilateral insula and underlying striatum,
and in the inferior and inferolateral portions of the temporal lobe, ex-
cluding the temporal pole and medial temporal regions. The number
of voxels at 1.5 T that were included in a high proportion of the optimal
Fig. 3. Crossvalidated ROIs
ROIs ismuch smaller, although these voxels overlapped in locationwith
those seen at 3 T.

Fig. 4 illustrates the distribution of the effect sizes in the test sets es-
timated during the crossvalidation iterations and Table 2 compares the
effect sizes obtained using the statistical ROIs (taken as themean of the
test effect sizes from the cross-validation procedure) with those obtain-
ed using anatomically-based ROIs. Also included in the table are sample
size estimates for a hypothetical study designed to detect a 20% or 40%
reduction in rate of decline between two time points 1 year apart. In
both datasets the effect sizes from the data driven ROIs are among the
largest although at 1.5 T some of the a-priori ROIs produced larger effect
sizes. At 3 T the data-driven ROI outperformed all other ROIs. The most
notable difference was in the effect sizes obtained at 1.5 vs. 3 T. For in-
stance the effect size for the data-driven ROI was 1.6 at 1.5 T vs. 2.7 at
3 T. We also estimated the effect size when applying the crossvalidated
change map created at 3 T to the 1.5 T dataset, and this resulted in the
best effect size at 1.5 T, which was 1.75.
3.3. Effect sizes for clinical measures

Table 3 reports the effect sizes and sample size estimates required to
achieve a 20% reduction in rate of decline for MMSE, CDR-SB and the
memory, language, spatial, and executive composite scores. The effect
sizes are substantially larger than those required for imaging.
created at 1.5 and 3 T.



Fig. 4. Histogram of the test set effect sizes for the crossvalidated data. Median and 5th and 95th quantiles are marked by vertical lines.
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4. Discussion

The aim of this project was to create an ROIwithmaximal effect size
for measuring change in cortical volume in FTLD, and to compare the
effect-size for measuring change within this region to the effect size in
a-priori defined anatomical ROIs. The hope is that these data-driven
ROI will prove powerful in detecting treatment effects in clinical trials,
resulting in reduced sample sizes relative to a-priori defined anatomical
ROIs. The approach we implemented generated an ROI that included
medial and inferolateral portions of the frontal lobes, insula, striatum,
and lateral and inferior portions of the temporal lobes, but no voxels
in the medial temporal regions and temporal poles. For images ac-
quired at 3 T, the estimated effect size for longitudinal studies within
these data-driven ROI was higher than that generated by all other
anatomically-based ROIs examined. We identified a large difference in
the reliability of change measures at 1.5 T resulting in smaller ROIs
with lower effect sizes compared with 3 T. The findings identify new
ROIs that may be able to improve the efficiency of clinical trials in
FTLD through MRI volumetric change measurement.

The specific regions identified in the change maps were what would
be expected from prior cross-sectional and longitudinal studies of FTLD.
Prior cross-sectional analyses have demonstrated that svPPA and bvFTD
share regions of cortical volume loss in themedial and orbital frontal re-
gions and insula when compared with controls (Liu et al., 2004; Rosen
et al., 2002). Few, if any, studies have examined regions of overlapping
longitudinal volume loss in svPPA and bvFTD, but two studies of longi-
tudinal change in svPPA identified regions of change in the medial and
orbital frontal regions as well as the temporal lobes (Brambati et al.,
2009). The absence of detectable change in themost anterior andmedi-
al portions of the temporal lobes is also consistent with prior studies of
svPPA, which have interpreted these findings as evidence of a floor
effect in volume loss in this disorder (Brambati et al., 2009; Rohrer
et al., 2008).

The differences in the estimated change maps between 1.5 and 3 T
are potentially important. Large differences in effect size were present
Table 3
Effect sizes (ES) and sample size calculations for rate of atrophy in a-priori and data-driven RO

Region 1.5 T

Effect size Sample size 20% reduction Sample size 4

Frontal lobe 1.11 319 81
Temporal lobe 1.57 161 41
Frontal and temporal 1.66 145 37
Lateral ventricles 1.09 332 84
Whole brain 1.59 157 40
All regions combined 1.60 154 40
Data-driven (mean of test ES) ~1.67 155 40
using both the statistically-derived ROI and a-priori ROIs. It should be
noted, however, that images from two specificMRI scanners were com-
pared, thus we cannot confirm that the effects are due to field strength
per se — they could be machine specific due to other scanner differ-
ences. The particular approach to quantification of longitudinal decline
using SPM may also be particularly sensitive to the effects of field
strength. That said, the approach taken in this paper for quantification
of change would be a reasonable approach for a clinical trial, and if the
particular methodology were to have such a major impact on volumet-
ric calculations, it would be important to consider that in the design of
any future clinical trial. In addition, the sample size calculations derived
from our analysis of the 1.5 T data were similar to prior estimates de-
rived from 1-year longitudinal studies of FTLD using different method-
ologies, which estimated a sample size of 50 (Gordon et al., 2010) to
55 (Knopman et al., 2009) per group to detect a 40% effect on longitudi-
nal decline, compared with our estimate of 40 per group.

It is also notable that the effect sizes for change inmost clinical mea-
sures were also substantially larger in the 3 T group compared with the
1.5 T group. Upon looking at the characteristics of the groups, there is no
obvious explanation for this. The groupswere similar in age and sex dis-
tribution, and overall similar in baseline cognitive characteristics, except
for a slightly higherMMSE at baseline in the 3 T group. In addition,while
the effect sizes were larger for cognitive measures in the 3 T group, they
were larger in the 1.5 T group for the CDR-SB. Thus, it is difficult to con-
clude that there was a meaningful difference in the two groups that
would predictably affect rates of decline, and we would attribute these
differences to chance. Nevertheless, the differences in rates of cognitive
decline could be an indicator that some factor other than field strength
could have accounted for the difference in rates of brain atrophy be-
tween the two groups. Because of all these caveats, it will be important
to confirm the effect of field strength on estimates of brain atrophy in
other datasets.

One potential benefit from the use of imaging as amarker of longitu-
dinal decline is that increased precision could result in improved effect
sizes when compared with clinical measures of change (Weiner et al.,
Is (sample sizes are those required for each arm).

3 T

0% reduction Effect size Sample size 20% reduction Sample size 40% reduction

1.53 170 44
2.30 76 20
2.20 83 22
1.50 176 45
2.31 75 20
2.33 74 20

~2.81 55 15



Table 4
Effect sizes and sample size calculations for rate of change in clinical measures.

Clinical measure 1.5 T 3 T Entire group

Sample size
(FTLD, HC)

Effect size Sample size
20% reduction

Sample size
(FTLD, HC)

Effect size Sample size
20% reduction

Sample size
(FTLD, HC)

Effect size Sample size
20% reduction

CDR-SB 30, 18 1.15 298 41, 24 0.84 558 71, 42 0.98 410
MMSE 34, 24 1.05 357 31, 23 0.86 532 65, 47 0.95 436
Memory score 28, 4 0.54 1347 28, 3 1.23 261 56, 7 0.85 545
Language score 31, 23 0.76 681 31, 21 1.39 205 62, 44 0.95 436
Spatial score 28, 23 0.52 1453 23, 7 0.66 902 51, 30 0.54 1347
Executive score 26, 23 1.03 371 23, 22 1.56 163 49, 45 1.29 237
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2013). This was generally confirmed in our analysis. For instance, we
found that measures of clinical change in a placebo-controlled trial
would require 410 subjects per arm using the CDR-SB and 237 subjects
per arm using an executive composite score to detect a 20% reduction in
rate of change in FTLD (Table 4, entire group). These estimates are
roughly consistent with prior studies that estimated sample sizes of
251 (Knopman et al., 2008) and 298 (Gordon et al., 2010) for CDR-SB
and 174 (Knopman et al., 2008) for cognitive composite scores to detect
a slightly larger effect size of 25%. In contrast, our analysis indicates that
a study measuring rates of atrophy using a statistically derived ROI in
T1-weighted images acquired at 3 T would require 55 people to detect
the same effect.

Our results confirm that this approach for generating data-driven
ROIs is reproducible (based on the general shape of the non-
crossvalidated ROIs at the two field strengths) and generates expected
patterns of longitudinal atrophy based on the known patterns of disease
in FTLD and the limited prior data on longitudinal change. Ourmost dra-
matic finding of significant differences in the reliability of change maps
at different field strengths should be followed up using images acquired
on other scanners to more thoroughly establish the effect of field
strength on the reliability of longitudinal change estimates.
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