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Abstract

The 2014 i2b2 natural language processing shared task focused on identifying cardiovascular risk 

factors such as high blood pressure, high cholesterol levels, obesity and smoking status among 

other factors found in health records of diabetic patients. In addition, the task involved detecting 

medications, and time information associated with the extracted data. This paper presents the 

development and evaluation of a natural language processing (NLP) application conceived for this 

i2b2 shared task. For increased efficiency, the application main components were adapted from 

two existing NLP tools implemented in the Apache UIMA framework: Textractor (for dictionary-

based lookup) and cTAKES (for preprocessing and smoking status detection). The application 

achieved a final (micro-averaged) F1-measure of 87.5% on the final evaluation test set. Our 

attempt was mostly based on existing tools adapted with minimal changes and allowed for 

satisfying performance with limited development efforts.
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1. Introduction

The 2014 i2b2 (Informatics for Integrating Biology and the Bedside) challenge proposed 

several different tasks: clinical text de-identification, cardiovascular risk factors 

identification, software usability assessment, and novel data uses. Our efforts focused on the 

second track, identifying risk factors for heart disease based on the automated analysis of 

narrative clinical records of diabetic patients [1]. The annotation guidelines for the task 

defined eight categories of information associated with increased risk for heart disease: 1) 

Diabetes, 2) Coronary Artery Disease (CAD), 3) Hyperlipidemia, 4) Hypertension, 5) 

Obesity, 6) Family history of CAD, 7) Smoking and 8) Medications associated with the 

aforementioned chronic diseases. Each category of information (except family history of 

CAD and smoking status) had to be described with indicator and time attributes. The 

indicator attribute captures indications of the risk factor in the clinical text. For instance, 

Diabetes could be identified using a mention of the disease (i.e. “patient has h/o DMII”), or 

a hemoglobin A1c value above 6.5 mg/dL (i.e. “7/18: A1c: 7.3”) while CAD could be 

identified using a mention (i.e. “PMH: significant for CAD”), or an event (i.e. “CABG in 

1999”). The time attribute specifies the temporal relation to the Document Creation Time 

(DCT). It could take any one of the following values: before DCT, during DCT or after DCT. 

We refer the reader to [2] for a complete description of the annotation guidelines. For this 

challenge, we built a natural language processing (NLP) application based on the Apache 

UIMA (Unstructured Information Management Architecture) [3] and reusing existing tools 

previously developed to address similar tasks in previous i2b2 challenges. In this paper, we 

present our approach to extract relevant information from clinical notes, discuss 

performance results, and conclude with remarks about our experience adapting existing NLP 

tools.

2. Background

Extracting information from clinical notes has been the focus of a growing body of research 

these past years [4]. Common characteristics of narrative text used by physicians in 

electronic health records (e.g., telegraphic style, ambiguous abbreviations) make it difficult 

to access such information automatically. Natural Language Processing (NLP) techniques 

are needed to convert information from the unstructured text to a structured form readily 

processable by computers [5, 6]. This structured information can then be used to extract 

meaning and enable Clinical Decision Support (CDS) systems that assist healthcare 

professionals and improve health outcomes [7]. Among the earliest attempts to develop NLP 

applications in the medical domain, the LSP (Linguistic String Project) [8], and MedLEE 

(Medical Language Extraction and Encoding system) [9] were prominent examples. More 

recent applications include MetaMap [10] developed by the National Library of Medicine to 

map terms in biomedical text with concepts in the UMLS (Unified Medical Language 

System) Metathesaurus [11]. cTAKES [12] was developed at the Mayo Clinic and is 

described as “large-scale, comprehensive, modular, extensible, robust, open-source” 

application based on Apache UIMA. It can be used to preprocess clinical text, find named 

entities and perform additional advanced NLP tasks such as coreference resolution. 

Textractor [13] is another UIMA-based application that was originally developed at the 
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University of Utah to extract medications, their attributes, and reasons for their prescription 

from clinical notes.

When extracting information from clinical notes, NLP applications must take local 

contextual and temporal information into account for improved accuracy. Contextual 

information is important to determine if concepts are affirmed or negated (e.g., ‘denies any 

chest pain’), or if the subject of the information is the patient or someone else (e.g., ‘mother 

has diabetes’). Popular algorithms for negation detection in clinical notes include 

NegExpander [14] and NegEx [15]. Temporal information is critical to establish 

chronological order of events described in patient notes and to resolve mentions of 

procedures or laboratory results to specific time points for accurate analysis [16, 17]. The 

ConText algorithm [18] proposed by Chapman et. al. is an extension of NegEx that allows 

analysis of contextual information like negation (negated, affirmed), temporality (historical, 

recent, hypothetical), and experiencer (patient, other). The development of NLP applications 

typically requires significant efforts and relies on annotated clinical text for training and 

testing. Widely accessible and shared annotated corpora in the medical domain are still rare, 

mainly because of strict patient privacy rules. This scarcity has been an obstacle to 

developing state-of-the-art NLP approaches for clinical text [19]. To address this obstacle 

and enable direct comparison of NLP approaches in the clinical domain, i2b2 shared NLP 

tasks have been organized almost annually since 2006. The challenges started with an 

automated de-identification [20] and smoking status detection [21] challenges. In 2008, the 

i2b2 challenge focused on identifying information about obesity and 15 co-morbidities [22]. 

In 2009, the third i2b2 challenge [23] was focused on identifying medications and associated 

information such as dosage and frequency. This was followed by challenges for medical 

concept extraction, assertion and relations classification in 2010 [24], followed by 

coreference resolution tasks in 2011 [25] and a temporal relations classification in 2012 [26].

To reduce development efforts, many authors have reused NLP tools or resources such as 

ConText, sentence boundary detectors and part-of-speech taggers from OpenNLP project 

[27], the Stanford parser [28], or the Weka machine learning framework [29], but the 

majority of their applications were still new developments. Reusing larger components or 

even existing NLP applications could allow for further development effort reduction. A good 

example was the application developed by Wellner et al. [30] for the 2006 i2b2 de-

identification task. It was based on the adaptation of two applications originally designed for 

recognizing named entities in newswire text. The process involved running two applications 

out-of-the-box as a baseline and then gradually introducing a few task-specific features, 

using bias parameters to control feature weights, and adding lists of common English words 

during development to improve performance. With minimal effort, they were able to obtain 

very high performance for the task. Although their attempt used applications out-of-the-box 

as baselines, they had to re-train the models with new task-specific features to achieve high 

performance. Our attempt focused on adapting existing tools that were developed to solve 

similar tasks in the past, and do it without feature engineering and re-training of machine 

learning models.
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3. Methods

3.1. Datasets

The i2b2 NLP shared task organizers distributed two annotated datasets (SET1 and SET2) to 

be used for development and training. These sets were released separately, with a few weeks 

interval. SET1 was composed of 521 de-identified clinical notes and SET2 was composed of 

269 de-identified notes; therefore, a total of 790 documents were available for training. The 

test set was released three days before final submission and consisted of a total of 514 de-

identified clinical notes.

3.2. NLP Application Overview

As already mentioned, our application was based on the Apache UIMA framework, with 

components adapted from two existing applications. Because of the various nature of 

information to be extracted in this task, we experimented with different approaches for 

different categories of information. For example, Textractor’s dictionary-based lookup 

component was used to detect mentions of chronic diseases, in addition to mentions of CAD 

events as defined in the annotation guidelines. The results of the lookup module were then 

filtered using lists of UMLS Metathesaurus concept identifiers CUIs for disease and risk 

factor concepts defined for the task. Smoking status was identified using the existing 

classifier available from cTAKES. Medications and the various test results (hemoglobin 

A1c, glucose, blood pressure, cholesterol, etc) were identified using pattern matching with 

regular expressions. Family history of CAD was detected by modifying the contextual 

analysis of the detected CAD mentions using ConText’s ‘experiencer’ analysis.

The application pipeline is depicted in Figure 1 and described below. The analysis of clinical 

text begins with a preprocessing stage that consists in segmenting the text into sections, 

splitting it into sentences, tokenizing and assigning part-of-speech tags to the input text with 

cTAKES. This is followed by running the smoking status classifier from cTAKES “out-of-

box” to classify each patient record to a smoking status category: CURRENT, PAST, EVER, 

NEVER, UNKNOWN. The existing cTAKES SMOKER label was changed to EVER, as 

defined for this i2b2 task.

The text analysis then continues with rule-based pattern matching modules for detecting 

medications and laboratory test results. Medications were detected with a manually curated 

terminology of synonymous terms and abbreviations linked to each medications category. 

These lists were compiled using UMLS Metathesaurus terminologies and lists of common 

abbreviations found in clinical narratives (manually built by local domain experts); and then 

manually grouping the concepts into medication categories. The number of terms used for 

each medications varied widely, ranging from as few as 3 (e.g. for metformin) to more than 

50 (e.g. for beta blockers and aspirin). Laboratory test results and vital signs were detected 

using regular expressions and the associated values were compared with abnormality 

thresholds defined in the guidelines. For instance, the phrase “Cholesterol-LDL 08/26/2091 

148” indicates an LDL cholesterol concentration of 148 mg/dL, which is above the normal 

concentration of 100 mg/dL and should therefore be included as a risk factor. Special 

attention was paid to avoid incorrect values that were part of other numeric expressions (e.g., 
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dates) by restricting regular expression matches to reasonable value ranges and imposing 

specific conditions on number boundaries (see examples in Table 1). Two regular 

expressions were used for each relevant laboratory test or vital sign indicator; one for 

capturing the term and the other for numerical value associated with the laboratory test or 

vital sign.

The application then proceeded with the UMLS Metathesaurus lookup module from 

Textractor. This module uses Apache Lucene-based [31] dictionary indexes to detect disease 

and risk factor terms. Before the dictionary lookup, acronyms were expanded and tokens 

normalized by removing unwanted stopwords. The lookup module then matched terms that 

belonged to one of the predefined UMLS semantic types for diseases (i.e., T019, T033, 

T046, T047 and T061). Matching was performed at the token level first, and then expanded 

to match at the noun phrase chunk level. All detected concepts were then filtered based on 

their CUIs to only include concepts belonging to one of the five disease and risk factor 

categories identified in the guidelines: CAD, Diabetes mellitus, Obesity, Hyperlipidemia, 

and Hypertension.

Finally, the application performed contextual analysis of all extracted and filtered 

information to exclude negated concepts, verify that the patient was the experiencer, and 

produce time attributes for each concept in relation to the DCT. Negation and experiencer 

analysis was performed using a local implementation of the ConText algorithm, as available 

in Textractor. Detection of family history of CAD was handled by considering all extracted 

CAD concepts with an experiencer other than the patient (e.g., “mother has history of 

CAD”) as a present family history of CAD. If all CAD concepts were identified as 

belonging to the patient, or if no CAD concepts were found in the clinical note, then family 

history of CAD was set to not present.

We experimented with various uses of ConText’s temporal analysis (i.e., concepts classified 

as recent, historical or hypothetical) in order to map them to the corresponding time attribute 

values (i.e., before DCT, during DCT or after DCT). However, initial results on the training 

data using this approach were not satisfying. As an alternative approach, we used the most 

common time value found for each category of information in the training data. For 

example, chronic diseases such as CAD and most medications were continuing (i.e., existed 

before, during, and after the hospital stay or visit) and therefore annotated with all three time 

attribute values in the reference standard. As another example, laboratory test results varied 

with examples like hemoglobin A1c and glucose tests that were mostly ‘before DCT’, and 

others like hypertension that were mostly ‘during DCT’.

4. Results

After development and refinement based on the training corpus (SET1 and SET2), the NLP 

application processed the testing corpus when made available, and the application output 

was sent to the shared task organizers for analysis. The application output was compared 

with the reference standard using the evaluation script provided by the shared task 

organizers and all extracted information classified as true positive (i.e., output matches with 

the reference standard), false positive, or false negative. Metrics used included recall, 
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precision, and the F1-measure (details in [1]). The results for each class of information are 

presented in Table 2. For overall averages, both macro- and micro-averages are included. 

Each separate class-indicator combination is reported using micro-averages only. The 

evaluation script contained an option to calculate results separately for each class of 

information using the –filter option. It also allowed computing specific class and indicator 

attribute values such as the class DIABETES and indicator attribute value of mention using 

the option –conjunctive. Results for each disease category are presented for mention and 

each disease-specific indicators separately as in the annotation guideline. The SMOKING 

category results are presented as status only, and MEDICATION results are aggregated for 

all the categories correctly identified in the clinical records. All results in the table were 

computed for all three values of time attribute for each class and no attempt made to separate 

‘before DCT’, ‘during DCT’ and ‘after DCT’ results for each class.

As shown in Table 2, the application achieved an overall micro-averaged F1-measure of 

87.47% and a macro-averaged F1-measure of 86.99%. In most disease categories, accuracy 

was highest for mentions of disease with micro-averaged F1-measures of 92.22%, 94.94%, 

96.96%, 90.11%, and 99.04% for CAD, family history of CAD, Diabetes, Hyperlipidemia, 

and Hypertension, respectively. Medications, mentions of Obesity and Smoking status 

identification accuracy reached micro-averaged F1-measures of 85.85%, 86.12% and 

86.55%, respectively. Accuracy was lower with other information categories such as 

laboratory tests, CAD events and symptoms with F1-measures ranging from 20.56% to %80.

5. Discussion

As presented above, the application accuracy for mentions of the various diseases, smoking 

status, medications and family history was higher than accuracy for any other indicator type 

defined in the annotation guidelines (e.g., laboratory tests, CAD events and symptoms). The 

dictionary lookup approach with terminological content from the UMLS Metathesaurus for 

detecting disease mentions was successful for this task. Similarly, the smoking status 

classifier from cTAKES successfully identified and classified smoking status information 

(F1-measure of about 87%) despite the fact that the model was used out-of-the-box, without 

any training on the new corpus for the current i2b2 NLP task. The identification of 

medications and their attributes reached an F1-measure of about 86% when using regular 

expressions and manually curated lists of terms, demonstrating the feasibility of this 

approach for the type of narrative notes used in this shared task. The precision obtained for 

medications was lower (83%) than recall (89%) and hence affected the final F1-measure. 

This is mainly due to the way we chose to generate the time attribute by using the continuing 

times scenario (i.e., generating ‘before DCT’, ‘during DCT’ and ‘after DCT’ temporal 

information tags for every medication detected in the notes). Obviously, there will be false 

positives associated with this approach when medications strictly occur for either one or two 

of the time values in the clinical notes. In addition, since the medication term lists were 

created manually, some spelling variations and terms could have been missed, therefore 

producing some false negatives and affecting overall recall. An example of spelling variation 

is the term ‘nitroglycerine’ in the nitrate group category, which appeared in both corpora as 

‘nitroglycerin’. The latter was not in the nitrate list used by our application and hence caused 

some false negatives. An example of completely missed terms was sublingual nitroglycerin 
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mentioned as ‘SL NTG’. Among disease mentions, the Hyperlipidemia class had the lowest 

recall (83%) and Obesity had the lowest precision (76%). The former was mostly due to 

some clinical reports containing annotations for Hyperlipidemia mentions appearing as 

‘elevated serum cholesterol’, ‘elevated lipids’ and ‘high cholesterol’ cholesterol? that were 

missed by our application because of inaccurate chunking. In addition, we did not have the 

corresponding CUI codes for some of them in our dictionary lookup module. There were at 

least two cases in the testing corpus where Hyperlipidemia was mentioned directly following 

a word with no space in between such as ‘hemodialysis Hyperlipidemia’ which our 

application missed also. The low precision with Obesity was caused by including the UMLS 

concept ‘overweight’ in our list of CUIs for Obesity. Although ‘overweight’ was used as 

indicator for obesity in one record in the reference standard corpora, its use produced many 

false positives since ‘overweight’ often does not indicate obesity. There were also false 

positive mentions of Obesity produced by our application in cases where ‘obese’ was 

mentioned without indicating Obesity (e.g., “abdomen is slightly obese” and “Abdomen: 

Moderately obese”). The other indicators for diseases and risk factors were quite challenging 

and our approach using regular expressions at the lexical level was not always effective. 

With the exception of hemoglobin A1c laboratory tests (for Diabetes), BMI (for Obesity), 

and cholesterol LDL (for Hyperlipidemia), the application performance was modest with an 

F1-measure ranging from 21% for the blood glucose indicator up to 65% for the blood 

pressure indicator. Some of the challenges with these indicators are summarized below,

• Lexical and spelling variations: Some laboratory indicators for diseases 

are mentioned with many lexical variations and acronyms. Table 1 shows 

the regular expressions used to capture blood glucose for diabetes and 

blood pressure for hypertension. As shown, glucose can be described with 

a variety of terms like BG, BS, FS and FG; and blood pressure can be 

described with terms like BP and b/p. This is an example of some of the 

limitations with our approach. and a comprehensive strategy to deal with 

this issue to enable better accuracy would be needed.

• Extracting laboratory numerical results accurately: When the 

application finds matching terms for laboratory or test indicators, it must 

proceed with extracting associated numerical values and compare them to 

threshold levels for abnormality. Extracting numerical values may be 

straightforward when they immediately follow the term and are expressed 

as single units such as in the phrase “FSBG was 353”. However, other 

phrases can be more challenging like “FG 120–199; now 68–172, although 

172 = outlier, mostly in the 70–130”. In this case, ranges of values are 

expressed with ‘–’, and multiple units are expressed with temporal and 

frequency modifiers (i.e. ‘now’ and ‘mostly’).

• Training data sparseness: The number of training examples available 

was sometimes too low to allow for the variety needed for adequate 

application generalization. For instance, in the case of cholesterol 

indicator for Hyperlipidemia, the total number of available annotations 

was only 9 in the whole set of 790 training documents. In contrast, there 

were about 33 annotations available for the LDL indicator.
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• Complex time analysis. Test and laboratory indicators require more 

sophisticated time attribute analysis and this is another limitation of our 

approach. Unlike chronic disease mention annotations which were mostly 

characterized with ‘continuing’ time attribute (i.e. before, during and after 

DCT), most of the laboratory and vital sign annotations were characterized 

by a variety of time attribute values. For instance, hemoglobin A1c and 

glucose tests were usually conducted in a prior visit and hence mostly 

annotated with ’before DCT’ while blood pressure (BP) was mostly 

measured during the patient visit and hence had mostly ’during DCT’ time 

value. To examine the impact of time attributes on performance of our 

application, we followed the “fixed” evaluation procedure described in 

[32] and produced results for some indicators after replacing the value of 

time attribute with ‘before DCT’ in all annotations from our application 

output and in the testing reference standard (see Table 3). This evaluation 

considers true positives, false positives and false negatives for each 

individual annotation while ignoring the time attribute (i.e. application 

output is not penalized for incorrect time values). As shown in table 3, the 

performance of our application improved when the time component was 

ignored in the evaluation (compare with results from Table 2). Our 

decision to use the most common time attribute values for each of these 

indicators caused a loss in precision and recall contributing to lower 

overall F1-measure score.

6. Conclusion

Our rapid approach, adapting resources from existing applications for the 2014 i2b2 

challenge, allowed for performance similar to other more sophisticated application 

developed for this task which used additional manual annotations or multiple machine 

learning classifiers [1]. We think that existing NLP resources should be reused, and most can 

be adapted and used at least as baseline for future tasks in the clinical domain. 

Improvements for future attempts shall focus on a comprehensive strategy to tackle spelling 

errors and variations, acronyms disambiguation, and more refined temporal analysis. Use of 

standard terminologies, as available in the UMLS Metathesaurus, should be the basis for 

these clinical information extraction tasks as they already contain well-defined concepts 

associated with multiple terms. Finally, regular expressions and pattern matching can be 

useful for extracting information such as name-value pairs from short phrases (e.g. 

‘Cholesterol- LDL 08/26/2091 148’). However, longer phrases containing complex syntactic 

structures require the use of advanced parsing techniques to identify constituents and 

relations between them. In the future, we plan to explore advanced techniques such as 

dependency parsing or semantic role labeling to reduce errors appearing with long phrases 

requiring deeper contextual analysis to be accurately extracted. For instance, in the following 

sentence: “Prior to her bypass surgery on the right leg, she underwent a Persantine MIBI 

which showed only 1 mm ST depressions and was considered not diagnostic”; it is important 

for an application to link the negated phrase “was considered not diagotstic” with the noun 
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phrase “Persantine MIBI” to conclude that although the patient had the MIBI test performed, 

the result was not diagnostic and therefore the test indicator (i.e. ‘MIBI’) ruled out CAD.
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Highlights

• We used natural language processing (NLP) to extract heart disease risk 

factors

• Components were adapted from two existing NLP applications

• We used existing tools without feature engineering or re-training of 

models

• Our system achieved an overall micro-averaged F1-measure of 87.47%

• Adapting existing tools allowed for performance comparable to 

sophisticated systems
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Figure 1. 
Overview of NLP application pipeline with adapted components from cTAKE and 

Textractor
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Table 2

Macro- and micro-averaged overall results including the micro-averaged breakdown of final results for every 

class of information given in terms of Precision, Recall and F1-measure.

Indicator Precision Recall F1-measure

CAD mention 0.883 0.9651 0.9222

symptom 0.2095 0.4429 0.2844

event 0.6457 0.5899 0.6165

test 0.4557 0.6102 0.5217

DIABETES mention 0.9512 0.9887 0.9696

A1C 0.8611 0.7561 0.8052

glucose 0.1486 0.3333 0.2056

HYPERLIPIDEMIA mention 0.9899 0.827 0.9011

high cholesterol 0.5714 0.3636 0.4444

high LDL 0.84 0.7241 0.7778

HYPERTENSION mention 0.9918 0.9891 0.9904

high BP 0.8571 0.5231 0.6497

OBESITY mention 0.7562 1.0 0.8612

BMI 0.9231 0.7059 0.8

SMOKING 0.8638 0.8672 0.8655

MEDICATION 0.8282 0.8911 0.8585

FAM. HIST. of CAD 0.9494 0.9494 0.9494

Macro-average 0.8494 0.8914 0.8699

Micro-average 0.8552 0.8951 0.8747
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Table 3

Results for Medications and some disease indicators after fixing the time attribute to the same value in both 

application output and testing reference standard.

Precision Recall F1-measure

Glucose 0.2568 0.6129 0.3619

High Cholesterol 0.7143 0.5 0.5882

High BP 0.8908 0.5792 0.702

MEDICATIONS 0.8791 0.8826 0.8808
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