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Abstract

The heart’s extraordinary metabolic flexibility allows it to adapt to normal changes in physiology 

in order to preserve its function. Alterations in the metabolic profile of the heart have also been 

attributed to pathological conditions such as ischemia and hypertrophy; however, research during 

the past decade has established that cardiac metabolic adaptations can precede the onset of 

pathologies. It is therefore critical to understand how changes in cardiac substrate availability and 

use trigger events that ultimately result in heart dysfunction. This review examines the 

mechanisms by which the heart obtains fuels from the circulation or from mobilization of 

intracellular stores. We next describe experimental models that exhibit either an increase in 

glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac 

metabolism and function. Finally, we highlight the importance of alternative, and relatively under 

investigated, strategies for the treatment of heart failure.

Introduction

The heart, the powerhouse of the body and the organ with the greatest energy requirement, is 

remarkably flexible when it comes to substrate use; it is this metabolic flexibility that 

confers the heart’s remarkable resiliency. The adult heart has the ability to switch energy 

sources as dictated by substrate availability, hormonal status, and physiological conditions 

[1, 2]. Sixty to 90% of the energy used by the adult fasting heart is provided by the 

mitochondrial oxidation of long-chain fatty acids (FAs), with the remainder supplied by 

oxidation of glucose, lactate and ketone bodies [3]. In contrast, fuel preference in fetal hearts 

is determined by the low oxygen environment, in which the oxidation of carbohydrate 

substrate is more energetically efficient per mole of oxygen consumed. Although the 

preferred cardiac metabolic substrate during embryonic development is glucose, lipid 

metabolism is also crucial. RXRα knockout embryos, in which expression of multiple lipid 

metabolic target proteins is downregulated, display malformations and developmental delays 

and die from cardiac failure in utero [4], suggesting a correlation between energy 
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homeostasis and signaling in the fetal heart. Maintaining cardiac lipid homeostasis is crucial 

throughout life, however, and alterations in lipid metabolism in the adult heart may underlie 

the contractile dysfunction associated with senescence. Thus, aging hearts display increased 

levels of saturated FAs in membrane phospholipids, a feature that has been associated with 

decreased membrane fluidity and transport [5]. In addition, reduced mitochondrial content of 

cardiolipin and alterations in cardiolipin FA composition observed in both aging hearts and 

the genetic disorder, Barth syndrome, have been linked to disturbances of the electron 

transport chain assembly and activity, decreased ATP production and increased formation of 

reactive oxygen species (ROS), and defective protein import and mitophagy, which 

ultimately lead to cardiovascular dysfunction [6].

Shortly after birth, the heart undergoes a major switch from the use of glucose and lactate 

towards the use of lipids [7, 8]. This switch in substrate use that occurs as the heart 

transitions to the adult stage is not permanent; healthy adult hearts retain the ability to revert 

to the fetal metabolic program in response to physiological stress [9]. While maintaining 

metabolic flexibility is essential for normal cardiovascular function, a reversion to fetal 

metabolism is also observed in failing hearts [10]. Thus, left ventricular hypertrophy (LVH), 

systemic hypertension, and myocardial ischemia are accompanied by increases in glucose 

use [11]. The loss of cardiac metabolic flexibility in favor of increased FA use is also 

detrimental to heart function, as elevated FA oxidation is observed in metabolic heart disease 

and diabetes [11]. Alterations in substrate use due to mutations in metabolic pathways that 

result in myocardial energy shortage and/or lack of crucial membrane components (e.g., 

cardiolipin deficiency in Barth syndrome [12]) can lead to cardiac hypertrophy and 

dysfunction, whereas an imbalance between FA uptake and oxidation can cause excess lipid 

accumulation, lipotoxicity and associated cardiac pathologies; pertinent studies will be 

summarized in the following sections. Thus, it remains unclear whether the shift in cardiac 

energy substrate is a cause or consequence of pathologic events, and whether this shift is 

beneficial or deleterious to cardiac function. Moreover, our understanding of the 

mechanisms that induce this switch and the regulatory level at which these changes occur 

remains limited. In this review we strive to summarize the abundant literature depicting both 

sides of the coin. The reader will note that we have cited mainly primary references; in 

doing so, we aimed to take a fresh look at the original findings and integrate them with novel 

concepts arising from more recent reports in order to further our understanding of this highly 

debated issue.

Cardiac substrate uptake and metabolism

Cardiac mechanical performance is preferentially sustained by the oxidation of FAs and 

glucose; however, lactate becomes important as a major metabolic substrate during exercise 

[13], and liver-derived ketones may also be used as cardiac fuel during fasting [14]. 

Differences in cardiac substrate use are also species-dependent, with isolated murine hearts 

relying primarily on ketone bodies (34%) and lactate (24%) for energy when exposed to a 

physiological mixture of glucose, glycerol, lactate, pyruvate, acetoacetate, and long-chain 

FAs in the presence of albumin [15]; it is unlikely, however, that acetoacetate and lactate are 

major substrates when VLDL-TAG, the favored suppler of FAs, is present [16, 17]. Thus, the 

heart has been described as a “true omnivore”- that is, functioning optimally when oxidizing 
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different substrates simultaneously [18]. The availability and transport of a substrate into 

cardiomyocytes therefore becomes the rate-limiting step that determines substrate selection, 

and metabolism of the imported substrate will limit the use of other energy sources.

In the immediate postprandial state in rodents fed a low-fat diet, when non-esterified FA 

levels are low and circulating concentrations of glucose and insulin increase, exogenous 

glucose becomes the cardiac fuel of choice [18]. The uptake of extracellular glucose into 

cardiomyocytes occurs along a steep concentration gradient and, due to the hydrophilic 

nature of the substrate, must be facilitated by the transmembrane glucose transporters 

GLUT4 and GLUT1 [19]. These transporters are translocated from intracellular stores to the 

sarcolemma via vesicular trafficking and in response to insulin and contraction [20], stimuli 

which activate independent signaling pathways. Insulin stimulation of cardiac glucose 

uptake occurs via phosphatidylinositol-3 kinase (PI3K) [21, 22], whereas contraction 

increases the intracellular AMP/ATP ratio, which activates AMP-activated kinase (AMPK) 

[23]. GLUT4, the insulin-sensitive transporter, is responsible for the sharp rise in cardiac 

glucose uptake after insulin stimulation or following a sudden increase in heart work [22, 

24]; moreover, AMPK activation can also increase cardiac glucose uptake via GLUT4 

translocation [25]. GLUT1 has generally been regarded as the basal cardiac glucose 

transporter due to its predominantly sarcolemmal location; however, both insulin and 

contraction signaling can trigger the recruitment of additional GLUT1 from intracellular 

pools to the sarcolemma [21, 26, 27], although this recruitment has only a minor effect on 

insulin-stimulated glucose uptake [28]. Increased presence of glucose transporters on the 

plasma membrane also occurs in experimental models of ischemia [29–31], as well as in 

mice with decreased cardiac FA activation caused by cardiomyocyte-specific knockout of 

long-chain acyl-CoA synthetase isoform-1 (Acsl1) [32]. Consequently, each of these models 

exhibits a net increase in the velocity of glucose import and metabolism. Internalized 

glucose is rapidly phosphorylated to glucose-6-phosphate and used primarily for glycolysis, 

although incorporation of glucose into glycogen also occurs, particularly in human 

myocardium [33], in hypertrophied and ischemic hearts [34, 35], under conditions in which 

lactate is the predominant substrate [36, 37], and during fasting [38]. Moreover, and in 

agreement with metabolic substrate preference, glycogen synthesis is high in fetal and 

newborn hearts, in which glycogen occupies 30% of total cardiomyocyte volume [39]. 

Differential cardiac metabolism of carbohydrate may also determine its cellular fate, since 

the heart converts excess extracellular glucose into lactate in the presence of glycogen, 

which, when available, is hydrolyzed to glucosyl moieties that are preferentially oxidized 

[40].

The import and oxidation of FAs becomes critical under fasting conditions when blood 

glucose is low and FAs are released from adipose stores into the circulation. In the fed state, 

however, cardiomyocytes acquire their lipid substrates almost exclusively from the 

lipoprotein lipase (LpL)-mediated hydrolysis of the triacylglycerol (TAG) carried in 

circulating lipoproteins; only a minor contribution comes from non-esterified FAs bound to 

plasma albumin [16, 17]. LpL is located on the luminal membrane of endothelial cells [41–

43], and although different mechanisms of transendothelial FA trafficking have been 

proposed [44–46], the process by which exogenous FAs move across an endothelial cell to 

its basolateral membrane remains unknown (Fig. 1). Also unknown is how FAs are then 
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transported into the subendothelial space in order to reach the cardiomyocyte sarcolemma. 

Despite the ability of amphipathic FAs to partition into biological membranes via passive 

diffusion [47], transport of FAs into cardiomyocytes is thought to occur via a protein-

facilitated process like that of glucose, in which recruitment of protein transporters to the 

sarcolemma plays a major regulatory role [20, 48]. Four proteins have been implicated in the 

uptake of FAs into cardiomyocytes: two plasma membrane proteins, the FA translocase FAT/

CD36 and the FA binding protein (FABPpm) [49], and two very-long-chain acyl-CoA 

synthetases (ACSVL), ACSVL4 and ACSVL2, otherwise known as FA transport proteins 

FATP1 [50] and FATP6 [51], respectively. The presence of the ACSVLs on intracellular 

organelle membranes (ER, mitochondria, and lipid droplets) rather than the plasma 

membrane suggests that they enhance transport by vectorial acylation, i.e. activation, of 

exogenous FAs to acyl-CoAs [52, 53]. In this regard, ACSL1 may also play a major role in 

FA import, given that it accounts for > 90% of total long-chain ACS activity in 

cardiomyocytes [54]. Like glucose transport, FA uptake into cardiomyocytes is stimulated 

by both insulin and contraction. While the effect of insulin on FA uptake is modest (1.5-fold 

for FAs [55] vs 2- to 14-fold for glucose [21, 22, 24, 56, 57]), the resulting increase in FA 

import is significant and CD36-dependent [55]. Contraction induces cardiac FA uptake via 

two related but distinct mechanisms involving the intracellular energy-sensing enzyme 

AMPK, the AMPK-mediated translocation of CD36 to the sarcolemma [58, 59], and the 

AMPK-mediated inhibition of acetyl-CoA carboxylase, which diminishes malonyl-CoA 

levels and thereby de-inhibits carnitine palmitoyltransferase I (CPT-1) [60], the enzyme 

responsible for the first step in mitochondrial FA import. The combined effect of 

contraction-mediated AMPK activation thus leads to an increased uptake of exogenous FAs 

that are preferentially channeled towards mitochondrial β-oxidation. Due to the potential 

toxicity of high intracellular concentrations of free FAs, exogenous FAs are rapidly activated 

upon entry by ACS-mediated esterification to acyl-CoA [61]. This activation step serves to 

effectively trap FAs within cardiomyocytes for their further metabolism, and may provide a 

potential regulatory step in determining their downstream metabolic fate. In line with this 

concept, ACSL1 preferentially targets FAs towards oxidation and away from TAG synthesis 

in heart [54, 62]. CD36 has also been implicated in the compartmentalization of exogenous 

FAs in skeletal myocytes [63]. Overexpression of CD36 in C2C12 myotubes and the 

consequent stimulation of FA transport does not invariably result in TAG accumulation. 

CD36-overexpressing myotubes incubated with exogenous palmitate accumulate TAG, 

whereas exposing the same cells to oleate results in the channeling of incoming FAs to a 

lipase-accessible TAG pool, thereby enhancing TAG turnover and preventing TAG 

accumulation. These data suggest that CD36-mediated transport itself could determine the 

metabolic fate of specific imported FAs, perhaps through the intrinsic properties of the 

distinct FA species that elicit differential interactions with CD36 and/or downstream cellular 

processes. Similarly, inhibiting cardiac LpL activity by either genetic manipulation or the 

use of pharmacological inhibitors results in defective lipid droplet formation even when FA 

uptake is increased [64], indicating that LpL maintains cardiac lipid homeostasis by 

enhancing the cycling of exogenous FAs into intracellular TAG stores. This finding 

challenges long-standing assumptions that cardiomyocytes have little capacity for TAG 

accumulation, or that exogenous non-esterified FAs constitute their major source of 

oxidative substrate. A requirement for FA cycling through an endogenous TAG pool prior to 
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hydrolysis for cardiac β-oxidation is demonstrated by the adipose triglyceride lipase (ATGL) 

deficient model and in isolated hearts. Mice with a global ATGL-deficient background 

exhibit massive cardiac TAG accumulation and develop a lethal cardiomyopathy [65] that 

can be reversed by cardiac-specific overexpression of ATGL [66]. Furthermore, isolated 

wild-type hearts perfused with a physiological mixture of substrates show that 60% of 

exogenous FAs are incorporated into TAG, while 40% of these FAs proceed directly to 

oxidation when mechanical demand is low [15]. This preference for FAs derived from 

intracellular lipid droplets is further enhanced by PPARα-overexpression, suggesting that it 

is mediated by PPARα [66, 67].

In addition to substrate transport and intracellular location of energy stores, cardiac fuel 

selection is regulated by metabolites derived from the degradation of specific substrates. 

Thus, the cardiac metabolism of glucose leads to increased acetyl-CoA production from 

pyruvate and subsequent malonyl-CoA inhibition of CPT-1, ultimately decreasing FA β-

oxidation [60, 68, 69]. Conversely, both the acetyl-CoA and NADH products of FA 

oxidation can allosterically activate pyruvate dehydrogenase kinase (PDK) [70] and directly 

inhibit pyruvate dehydrogenase (PDH) activity [71, 72], thereby reducing PDH flux and 

glucose oxidation. In addition, the Krebs cycle metabolism of the FA-derived acetyl-CoA to 

citrate blocks glycolysis by allosterically inhibiting phosphofructokinase 1 [73]. Thus, FA 

oxidation inhibits glucose oxidation, glycolysis and glucose uptake [26, 74].

Cardiac glucose metabolism: a double-edged sword?

The benefits of increased cardiac glucose use for obesity-related cardiomyopathy or heart 

failure remains a controversial topic [34, 54, 62, 75, 76]. Analysis of several rodent models 

suggests that left ventricular hypertrophy (LVH) precedes the metabolic changes that result 

in increased glucose use and reduced FA oxidation [35, 40, 75]. On the other hand, increased 

reliance on glucose for cardiac energy production has been linked to the development of 

LVH and impaired cardiac function [54, 62, 77–80], suggesting that enhanced glucose use 

precedes the onset of pathology. See Table 1 for a summary of all the models described.

The importance of glucose metabolism in the maintenance of cardiac function under stress 

conditions is underscored by studies of mice with a heart-specific genetic ablation of insulin-

stimulated glucose uptake. Mice deficient in cardiac GLUT4 (G4H−/−) lack insulin-

stimulated glucose uptake, and develop morphological alterations and compensated 

hypertrophy [28]. An observed increase in basal cardiac glucose metabolism is likely 

responsible for the preservation of contractile function in these hearts under normal 

conditions; however, G4H−/− hearts subjected to ischemia-associated stress develop severe 

systolic and diastolic dysfunction due to accelerated ATP depletion [81]. Similarly, mice 

with a cardiac-specific insulin receptor knockout (CIRKO) are defective in heart glucose 

transport and oxidation. CIRKO mice develop cardiac dysfunction during pressure overload-

induced hypertrophy, possibly as a result of insufficient energy production [82]. Thus, an 

adaptive shift in cardiac substrate selection towards the preferential oxidation of 

carbohydrates can be beneficial in an acute setting, and is advantageous in specific models 

of cardiomyopathy. For instance, cardiac-specific overexpression of GLUT1 protects against 

pressure-induced LVH or ischemic stress in the aging heart [83, 84]. Increased glucose 
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uptake and oxidation via cardiac GLUT1 overexpression is also beneficial in the context of 

PPARα deficiency (PPARα−/−) [85]. Metabolic remodeling towards increased glucose use in 

PPARα−/− hearts is sufficient for maintaining energy homeostasis and cardiac function 

under basal conditions, but not when the heart is subjected to an elevated workload; 

however, cardiac-specific GLUT1 overexpression can rescue this defect. Downregulation of 

PPARα and PGC-1α, the master regulators of FA oxidation and mitochondrial biogenesis, is 

widely observed in hypertrophied and failing hearts [86–88]; reductions in the expression of 

CPT-1 and medium-chain acyl-CoA dehydrogenase (MCAD) have also been reported [86, 

88, 89]. The metabolic switch to glucose oxidation in experimental models of hypertrophy is 

therefore presumed to be secondary to the impaired supply of FA. Thus, the improvement in 

cardiac function resulting from increased glucose use in the context of the specific 

cardiomyopathies described could be attributed to enhanced energy production efficiency 

rather than to glucose metabolism per se. However, these beneficial effects appear to be 

short-lived, as demonstrated by studies in hypertrophied myocardium [90] and observations 

in patients with dilated cardiomyopathy [91]. Such studies indicate that, in the long-term, the 

adaptive switch in cardiac metabolism towards increased glycolysis is not sufficient to meet 

the energetic demands of the diseased heart.

In contrast to the models described above in which enhanced glucose use is protective, 

obligate cardiac use of glucose due to genetic modification or forced glucose uptake is 

directly linked to the development of hypertrophy. For example, isolated beating hearts 

perfused with glucose exhibit metabolic changes that precede and mediate the onset of 

decreased cardiac power and output, suggestive of contractile dysfunction [77]. In addition, 

our work in models of altered cardiac FA oxidation resulting from either global or 

cardiomyocyte-specific ACSL1 deficiency suggests that it is the shift to glycolysis that 

promotes a reversion to the fetal metabolic program, the development of cardiac 

hypertrophy, and diastolic dysfunction [32, 54, 62]. Similar effects have been observed in 

hypertensive humans, in which glucose metabolic remodeling precedes the development of 

LVH [80]. Forced glucose uptake is also associated with LVH and cardiac failure in humans 

[92, 93]. This occurs with the administration of the tyrosine kinase inhibitor sunitinib, which 

increases cardiac glucose uptake and use in mice, together with the activation of the fetal 

gene program that is also observed in failing human hearts [94]. Taken as a whole, these 

results are compelling indicators that reliance on glucose is detrimental to cardiac function.

Glucose, mTORC1, and cardiac hypertrophy

A potential cause for the development of LVH and cardiac dysfunction in models of 

increased cardiac glucose use is the activation of mTORC1 (mechanistic target of 

rapamycin, complex 1), a major regulator of cell growth and proliferation [95]. The 

mTORC1 pathway is essential for embryonic heart development and postnatal adaptive 

cardiomyocyte growth and function [96]; however, derangements in mTORC1 signaling 

result in the development of LVH [54, 62, 97, 98]. Activated mTORC1 and subsequent 

phosphorylation of its target, S6 kinase (S6K), is observed in several models of cardiac 

hypertrophy, including spontaneous hypertensive rats [99], thyroid hormone-induced cardiac 

hypertrophy [100], and exercise-induced cardiac hypertrophy [101]. The mTORC1-S6K axis 

is potently activated by glutamine in neonatal cardiomyocytes [102] and by leucine in the 
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adult heart [103]; the link between glucose and mTORC1 activation is less well established. 

In ex vivo working hearts, hemodynamic stress alone can result in increased glucose use and 

mTORC1-responsive cardiac remodeling [104]. Moreover, phosphorylation of glucose and 

the concomitant accumulation of glucose-6-phosphate (G6P) is required and sufficient to 

elicit mTORC1 activation both in vivo and ex vivo [77, 79, 105]. Increased glucose uptake, 

mTORC1 activation, and G6P accumulation are also observed in ACSL1-deficient hearts 

[32, 54, 62], showing that this process occurs in vivo. Mechanical unloading in failing 

human hearts results in decreased G6P levels, further implicating cardiac glucose 

metabolism as a cause of load-induced mTORC1 activation [77].

The regulation of mTORC1 is complex. Among other nodes, mTORC1 activity is inhibited 

by the intracellular energy sensor AMPK [106]. Although AMPK is itself activated by an 

increased AMP/ATP ratio indicative of low cellular energy levels, AMPK levels are reduced 

in isolated rat hearts that have been subjected to an elevated workload, despite marked 

increases in glucose uptake and mTORC1 activation [77]. Similarly, the amount of activated 

AMPK is significantly reduced in Acsl1-deficient ventricles, even though the myocardial 

AMP/ATP ratio remains normal [54]. These studies suggest that an upregulation of glucose 

metabolism is sufficient to maintain energy homeostasis, or alternatively, that AMPK 

activation is reversed by high glucose flux. Although decreases in AMPK phosphorylation 

suggest that AMPK deinhibits mTORC1 in these models, mTORC1 activation may yet be 

unrelated to AMPK activity. In support of this notion, a recent study suggests that AMPK 

does not regulate carbohydrate-mediated S6K phosphorylation, the usual indicator of 

mTORC1 activation [105]. In addition, mTORC1 stimulation of physiological and 

pathological hypertrophy appears to be mediated by eukaryotic translation initiation factor 

4E-BP [107] rather than S6K [108]. Finally, we cannot exclude the possibility that mTORC1 

regulation might be mediated via unknown glucose-responsive effectors. Of note, cardiac 

hypertrophy is not induced by expression of constitutively active mTORC1 or by 

overexpression of wild-type mTORC1 [109, 110]. These findings suggest that mTORC1 

activation alone may not be sufficient to elicit hypertrophy, but that coordinated modulation 

and integration of multiple pathways must exist.

Glucose uptake and N-acetyl-D-glucosamine protein modification

Although the bulk of exogenous glucose is channeled towards oxidation and, to a lesser 

extent, towards glycogen synthesis, other pathways of glucose metabolism have been 

described in cardiomyocytes. The importance of these accessory glycolytic pathways on 

cardiac physiology is beginning to be appreciated, with N-acetyl-D-glucosamine 

modification (O-GlcNAcylation) gaining traction as a potential therapeutic target due to the 

fact that only two enzymes control it: O-GlcNAc transferase (OGT), catalyzing the O-linked 

attachment of N-acetyl-D-glucosamine to serine and threonine residues of nuclear, 

cytoplasmic and mitochondrial proteins; and O-GlcNAcase (OGA), mediating N-acetyl-D-

glucosamine removal [111–113]. Protein glycosylation via this process requires flux through 

multiple metabolic pathways, and, thus, O-GlcNAcylation has been postulated to function as 

a nutrient/metabolic sensor [114]; however, its role in cardiac function has remained 

relatively unknown. The last decade has seen an emergence of studies delineating the link 

between increased cardiac glucose uptake, O-GlcNAcylation and cardiac hypertrophy. 
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Experimental models of pressure-induced hypertrophy indicate that elevated glucose uptake 

results in increased flux through the hexosamine biosynthetic pathway [115]. Consistent 

with this notion, glucose toxicity and insulin resistance correlate with increased cardiac 

protein O-GlcNAcylation [116, 117]. Additionally, O-GlcNAc synthesis is required for the 

transcriptional activation and progression of cardiac hypertrophy [118], and cardiac-specific 

knockout of OGT and the concomitant decrease in O-GlcNAc levels prevent transaortic 

constriction (TAC)-induced hypertrophy [115, 119]. Conversely, protein O-GlcNAcylation is 

cardioprotective in the context of ischemic stress [120]. The paradoxical effects of O-

GlcNAcylation on cardiac hypertrophy and function can be explained by the diversity of 

cellular processes that can be controlled through this pathway. Thus, direct glucose-mediated 

regulation of protein function via O-GlcNAcylation of mitochondrial proteins leads to 

decreased mitochondrial oxygen consumption and ATP production rates [121], thereby 

contributing to cardiac dysfunction. On the other hand, glucose may exert its regulatory 

effects in a more indirect way through the O-linked glycosylation of specific transcription 

factors, eliciting a transcriptional response that leads to a reversion to the fetal metabolic 

program [115]. Finally, glucose-induced O-GlcNAcylation may provide the missing link 

between glucose uptake and AMPK-independent mTORC1 regulation in the development of 

hypertrophy and cardiac dysfunction, perhaps by direct modification and activation of 

mTORC1, or through the inhibition of mTORC1 phosphorylation at specific residues.

Decreased FA oxidation in cardiac function: friend or foe?

Increased cardiac TAG accumulation in human obesity-related cardiomyopathy has been 

associated with structural remodeling such as left ventricular and atrial hypertrophy, and 

functional changes like impaired myocardial contractility [122, 123]. Animal studies have 

recapitulated these findings in models of diet-induced obesity [124], in the genetic obesity 

ob/ob and db/db mouse models [124–127], in mice with cardiac-specific overexpression of 

ACSL1 [128] or FATP1 [129], and in mice with global ATGL deficiency [65]. Thus, 

decreasing the uptake and use of FAs in heart has been proposed as a potential strategy to 

prevent obesity-linked cardiomyopathies. Although decreasing cardiac use of FAs through 

inhibition of CPT-1a [130] or FA oxidation [131] is an interesting approach, data from 

human deficiencies in FA oxidation and animal models with impaired FA oxidative capacity 

have shown that a substantial decrease in FA oxidation results in cardiac hypertrophy [54, 

62, 132–135]. Initial studies of short-term CPT-1 inhibition by oxfenicine treatment in mice 

suggested that this manipulation protects against high fat diet (HFD)-induced insulin 

resistance [136]; however, prolonged HFD feeding causes lipid accumulation and impaired 

insulin signaling [137], effectively reversing the beneficial effects of short-term CPT-1 

inhibition. Partial CPT-1b deletion (CPT1b+/−) results in 80% mortality from congestive 

heart failure after TAC [138], while homozygous CPT-1b knockout mice display cardiac 

hypertrophy and premature mortality under basal conditions [139], illustrating the 

importance of FA oxidation for normal heart function. As described in previous sections, 

abolishing FA oxidation in ACSL1-deficient hearts leads to increased glucose uptake and 

mTORC1-mediated hypertrophy [54, 62]. Manifestations of impaired cardiac FA oxidation 

capacity caused by deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) in 

humans include myocardial TAG accumulation and the development of hypertrophic or 
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dilated cardiomyopathy [133, 135]. Rodents, which express both long chain acyl-CoA 

dehydrogenase (LCAD) and VLCAD [140], show no effect of LCAD or VLCAD deficiency 

under normal conditions, despite the presence of cardiac hypertrophy; however 

compensation fails upon fasting, cold exposure, and as a function of age, resulting in energy 

depletion and decreased cardiac performance [141–144]. Decreased FA oxidation capacity 

under conditions of normal or elevated FA availability likely results in the channeling of 

exogenous FA into storage and a concomitant decrease in cardiac performance, arguing 

against therapies that seek to decrease FA oxidation in failing hearts. In addition, the 

resultant increased concentrations of intracellular FA may lead to aberrant cardiac signaling 

and altered acetylation and palmitoylation of proteins. Numerous elegant studies on 

myocardial lipid accumulation, lipotoxicity and cardiac dysfunction have been published; 

for an extended overview on cardiac lipid accumulation and the role of FA in cardiac 

signaling and protein modification, the reader is referred to other articles in this issue. On 

the other hand, HFD interventions are advantageous in preventing and ameliorating cardiac 

dysfunction in several models of heart failure [145–147], and enhanced FA use does not 

necessarily alter cardiac function under basal conditions [148], further challenging the 

notion that enhanced use of FA is detrimental to cardiovascular health.

Perspectives

Decreased oxidation of FA, the preferred energetic substrate in the adult heart, results in 

increased glucose uptake and use. Although this switch in cardiac substrate use has been 

postulated to be beneficial in specific models of cardiomyopathy, increased glucose use may 

also precede the onset of hypertrophy. Suggestions for therapies to treat heart disease have 

focused on compensating the energy deficit in failing hearts by altering cardiac metabolism; 

however, a shift towards glucose use could generate permanent changes in protein function 

and gene expression via mechanisms that have not been fully elucidated. For instance, the 

uncoupling of glycolysis and glucose oxidation in this context allows excess glucose to be 

channeled into alternative glycolytic pathways. Thus, increased glucose flux through the 

hexosamine biosynthetic pathway results in O-GlcNAcylation activation, which can directly 

impact cardiac performance by modifying mitochondrial proteins [121]. More importantly, 

the glycosylation of transcription factors when O-GlcNAc levels are high has been 

postulated to be the central mechanism by which glucose induces a permanent return to the 

fetal metabolic program [94, 115]. Driving enhanced use of glucose also has consequences 

that extend beyond altered myocardial energetics or genetic reprogramming, such as changes 

in membrane composition [149] and mTORC1-mediated inhibition of autophagy [150]. On 

the other hand, decreased cardiac lipid metabolism can cause TAG to accumulate in 

cardiomyocytes and lead to aberrant lipid signaling [66], the production of ROS, ER stress, 

and impaired mitochondrial function. Thus, preserving cardiac metabolic flexibility is 

crucial in order to prevent, and perhaps even reverse, cardiovascular disease. Future efforts 

should therefore be directed towards understanding what controls the availability of cardiac 

substrates, and how this availability can be regulated to balance substrate supply and use 

under specific conditions without altering overall cardiac metabolism.

In this regard, the development of cardiovascular therapies demands a better understanding 

of the role of the endothelium in cardiac substrate selection. Although the facilitated uptake 
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of glucose and FAs at the cardiomyocyte surface has been studied extensively, the precise 

mechanisms that underlie nutrient flow through the subvascular compartment remains 

unknown. Endothelial cells occupy a strategic position between circulating metabolic 

substrates in the blood and cardiomyocytes, raising the intriguing possibility that uptake and 

metabolism within the endothelium may play a major role in determining the rate of 

substrate transport to cardiomyocytes, thereby controlling downstream cardiac substrate 

availability and use. In support of this theory, endothelial cells have been shown to regulate 

glucose uptake by the brain and heart [151]; however, the precise mechanism by which 

glucose is transported through the heart endothelium is yet to be elucidated. In this respect, 

communication between cardiomyocytes and endothelial cells would be essential for 

efficient regulation of substrate delivery. Indeed, a recent study has identified 

cardiomyocyte-derived exosomes loaded with glucose transporters and glycolytic machinery 

components as key in allowing for a rapid response from the endothelium in the coordinated 

regulation of glucose uptake by the heart [152]. Similar mechanisms may govern cardiac FA 

uptake and use. A recent report showed that endothelial cell expression of CD36 and LpL is 

regulated by the Meox2/Tcf15 transcriptional complex, facilitating FA uptake and transport 

across heart endothelial cells, and thereby affecting cardiac contractility [153]. 

Transendothelial FA trafficking may involve CD36, the FA binding proteins FABP4 and 

FABP5 [154], and the membrane-associated proteins FATP3 and FATP4, whose ACS 

activity enhances FA uptake [52, 53]. This raises the question as to whether ACSLs may 

play a similar, and perhaps coordinated, role in FA transport by endothelial cells. Supporting 

this idea, overexpressed FATP1 and ACSL1 interact functionally in yeast [155], and, when 

coexpressed in NIH 3T3 cells, synergistically increase FA import rates [156]. Given the 

distinct tissue expression and cellular locations of the different FATP/ACSVL and ACSL 

isoforms, it has been postulated that these enzymes may coordinately traffic FAs into 

discrete metabolic pools, acting in concert to confer selectivity and specificity to FA use by 

distinct metabolic pathways [157]. We posit that ACSL-mediated activation of FA in 

endothelial cells could perform a dual role: the generation of energy via β-oxidation to 

power FA transport, and the esterification of FA to TAG for storage or vesicular 

transendothelial trafficking to the endothelial cell basolateral membrane for export (Fig. 1). 

Regulation of FA transport through the endothelium via activation by ACSL or FATP/

ACSVL could modulate FA availability for β-oxidation in cardiomyocytes and ultimately 

control cardiac metabolic efficiency. Endothelial cell lipid metabolism therefore warrants 

serious investigation.
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Highlights

• The heart adapts to normal changes in physiology by switching 

metabolic substrates.

• Altered cardiac metabolism has also been identified under pathological 

conditions.

• Increased glucose use may precede the onset of various pathologies.

• Decreased fatty acid oxidation does not ameliorate dysfunction in 

multiple models.

• Alternative strategies investigating transendothelial fuel transport are 

warranted.

Pascual and Coleman Page 20

Biochim Biophys Acta. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Proposed role of endothelial metabolism in regulating cardiac substrate use. The metabolism 

of exogenous FA and glucose within endothelial cells may determine FA availability at the 

cardiomyocyte sarcolemma, thereby regulating cardiac substrate selection and 

cardiomyocyte energy metabolism. Albumin (Alb)-bound fatty acids (FAs) derived from the 

circulation and those hydrolyzed by lipoprotein lipase (LpL) at the cell surface enter 

endothelial cells assisted by the membrane proteins CD36 and FABPpm, a mechanism 

enhanced by acyl-CoA synthetase (ACS)-mediated vectorial acylation. ACS-mediated 

activation of FAs has additional roles: the generation of energy via FA β-oxidation for FA 

transport, or the esterification of FAs to complex lipids for storage and subsequent 

hydrolysis and vesicular or other transendothelial trafficking to the basolateral membrane for 

export. Glucose transport through endothelial cells requires both HIF1α and GLUT1, but the 

underlying mechanism has not been elucidated. Solid lines indicate published data supports 

this mechanism, whereas dashed arrows are used to denote an unknown mechanism.
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