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Abstract

This paper attempts to evaluate the capacity of immediate memory to cope with new situations in 

relation to the compressibility of information likely to allow the formation of chunks. We 

constructed a task in which untrained participants had to immediately recall sequences of stimuli 

with possible associations between them. Compressibility of information was used to measure the 

chunkability of each sequence on a single trial. Compressibility refers to the recoding of 

information in a more compact representation. Although compressibility has almost exclusively 

been used to study long-term memory, our theory suggests that a compression process relying on 

redundancies within the structure of the list materials can occur very rapidly in immediate 

memory. The results indicated a span of about three items when the list had no structure, but 

increased linearly as structure was added. The amount of information retained in immediate 

memory was maximal for the most compressible sequences, particularly when information was 

ordered in a way that facilitated the compression process. We discuss the role of immediate 

memory in the rapid formation of chunks made up of new associations that did not already exist in 

long-term memory, and we conclude that immediate memory is the starting place for the 

reorganization of information.

Individuals have a tendency to make information easier to retain by recoding it into chunks 

(e.g., Cowan, Chen, & Rouder, 2004). The process of chunking simplifies memorization by 

taking advantage of knowledge to reduce the quantity of information to be retained (Miller, 

1956). As a key learning mechanism, chunking (or grouping) has had considerable impact 

on the study of expertise (e.g., Chase & Simon, 1973; Ericsson, Chase, & Faloon, 1980; Hu 
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& Ericsson, 2012), immediate recall (e.g., Chen & Cowan, 2005; Farrell, Wise, & Lelièvre, 

2011), and memory development (e.g., Cowan et al., 2010; Gilchrist, Cowan, & Naveh-

Benjamin, 2009).

For chunking to benefit memory, people need to be able to retrieve the chunks they stored. 

One way people retrieve chunks is via long-term memory processes (French, Addyman, & 

Mareschal, 2011; Gobet et al., 2001; Guida, Gobet, Tardieu, & Nicolas, 2012; Reder, Liu, 

Keinath, & Popov, in press). Consider the letter string IBMCIAFBI. As Miller discussed, 

this letter string can be easily simplified to form three chunks if one uses long-term memory 

to recall the U.S. agencies (Miller, 1956) whose acronyms are IBM, CIA, and FBI.

Previous work on chunking has focused on how long-term memory aids chunk creation. 

However, immediate memory might also play a fundamental role in the creation of chunks. 

People may form chunks in immediate memory by rapidly encoding patterns before any 

consolidation in long-term memory occurs. For example, it is easy to remember the letter 

string AQAQAQ using a simple rule of repetition (e.g., AQ three times). This type of 

simplification does not necessarily depend on the use of long-term memory to recall past 

knowledge that relates items to each other2. Instead, this process depends on the 

apprehension of regularities inherent to the stimulus at hand, i.e., compression.

This idea that immediate memory might play a fundamental role in the creation of chunks 

has generally been overlooked. Some previous findings are consistent with the proposal that 

chunks can increase memory capacity (Brady, Konkle, & Alvarez, 2009; Feigenson & 

Halberda, 2008). However, these studies have mostly focused on how long-term-memory 

representations contribute to encoding in immediate memory. In contrast, our goal is to 

provide a principled quantitative approach to how immediate memory relates to the 

formation of chunks. Getting a larger picture of chunking as a process originating in 

immediate memory needs a precise conceptualization, and the concept of compressibility 

could help in doing so.

We propose a two-factor theory of the formation of chunks in immediate memory. The first 

factor is compressibility (i.e., the idea that a more compact representation can be used to 

recode information in a lossless fashion3). Compressibility could predict chunking because 

it measures the degree to which the material is patterned, and hence the degree to which the 

material can be simplified. Memory for compressible sequences should be superior to 

memory for non-compressible sequences (the same way that studies in the domain of 

categorization have shown that compressible material is better learned over the long term; 

see Feldman, 2000).

The second factor is the order of the information to memorize. Presentation order might 

influence the ease with which patterns or regularities in the stimuli can be discovered, and 

compression algorithms typically depend on this kind of information. A presentation order 

2Long-term memory is needed to retrieve the individual items (e.g., A, Q, ×, and 3), but it is not needed to retrieve combinations of 
them.
3By this, we mean a compression process without loss of information (the original data can be accurately reconstructed from the 
compressed data), and not a “lossy” form of compression (which brings to mind many of the applications in information technology 
used today to achieve a more substantial reduction of data); see Li & Vitányi, 1997.
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that aligns with the process of simplifying the material may increase the likelihood that 

chunking occurs. In contrast, presentation orders that do not aid in the discovery of 

regularities, might result in failure to chunk compressible materials, causing them to be 

remembered in a way similar to non-compressible materials. Presentation order should 

therefore interact with compressibility. As a simple example, one can compress the set “2, 3, 

4, 5, 6” with the rule, “all numbers between 2 and 6”, whereas with the series “2, 4, 6, 3, 5”, 

that same rule might not be noticed by the participant, so compression might not take place.

This two-factor theory is adapted from the domain of categorization, which has provided a 

framework for studying category formation in long-term memory, with explanations based 

on the compressibility of descriptions (Bradmetz & Mathy, 2008; Feldman, 2000, 2003; 

Goodwin & Johnson-Laird, 2013; Lafond, Lacouture, & Mineau, 2007; Vigo, 2006) using 

different types of presentation orders (based on rules, similarity, or dissimilarity; see Elio & 

Anderson, 1981, 1984; Gagné, 1950; Mathy & Feldman, 2009; Medin & Bettger, 1994). 

This framework nicely accounts for a wide range of categorization performance in long-term 

memory, but could in principle provide similar predictions for immediate memory. Our 

theory is that a compression model (e.g., Feldman, 2000) can be adapted to immediate 

memory. The rationale is that elementary structures, i.e., the redundancies that make a 

structure compressible, are simple enough to be used rapidly in immediate memory to cope 

with new situations.

We conducted an experiment to test the proposal outlined above, namely, that chunk 

formation occurs in immediate memory to optimize capacity before any consolidation 

process in long-term memory occurs. Our prediction is that immediate-memory span is 

proportional to stimulus compressibility, but only when the order of the information allows 

the participant to spontaneously detect redundancies such as pairs of similar features.

In the Discussion, we provide ample evidence that there are two major classes of concurrent 

models that cannot provide correct predictions for our results. The first class is Interference-

based models of short-term memory, which predict poorer performance when participants 

see sequences containing similar features, whereas our model predicts that participants can 

take advantage of these similarities to compress information. The second class includes the 

minimal description length (MDL) approaches to long-term memory, which rely on the 

repetition of trials, and as such, offer no predictions about the compression process at play in 

our task.

Method

Two key aspects were investigated in the present experiment: compressibility of a sequence 

and presentation order within a sequence. These two factors were studied using 

categorizable multidimensional objects, with discrete features, such as small green spiral, 

large green spiral, small red square. The sequences used could not conform to already-

learned chunks. Although the features themselves are part of basic knowledge, we are 

reasonably confident, for instance, that none of our participants had the exact sequence of 

items “a small green spiral followed by a large purple pentagon and a small yellow 

pentagon” in long-term memory before starting our experiment. The procedure used a serial 
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recall task, which allowed to study the incremental encoding of chunks. The duration of the 

display of the memory items and the number of memory items were two other manipulated 

factors we thought would help us look into the incremental encoding of the chunks.

Participants

Sixty-seven students enrolled at the University of Franche-Comt, M = 22 years old (sd = 

2.7), volunteered to participate in the experiment.

Stimuli

Our stimuli could vary according to three dimensions: shape, size and color. A combination 

of two shapes, colors, and sizes makes a set of eight different objects. There were eight 

different values for the shape dimension and the color dimension (Fig. 1a). However, we 

restricted the size dimension to two values (large vs. small, or 280 × 280 pixels vs. 140 × 

140 pixels). Shape, size and color are typically used by category learning researchers to 

build canonical stimulus sets because these dimensions can be easily and clearly partitioned.

For a given sequence, the program randomly chose two out of eight shapes and two out of 

eight colors (see Fig. 1, top panel), in order to create a set of eight objects. For example, if 

the values “triangle”, “square”, “white”, and “black” were drawn, the program generated 2 × 

2 × 2 = 8 stimuli by combining three features for each stimulus (e.g., small white triangle, 

large white triangle,, large black square). These values allowed for 1568 possible sets of 

eight objects, so that the probability of a participant coming across two identical sets during 

the experiment would be very low. The stimuli were presented against a gray background.

Categories

We selected different categories of objects, which were to be displayed and recalled serially. 

An example is the sequence □ ■ ▫ ▪ ▵ ▴, which can be represented by six individual 

exemplars (i.e., large white square, large black square, small white square, small black 

square, small white triangle, and small black triangle). Following Feldman (2000), this 

sequence can be redescribed accurately by a shorter logical rule provided that order does not 

matter (‘squares or small’, using inclusive disjunction, or ‘not[large and triangle]’ using 

conjunction, which by de Morgan’s law are equivalent). Another example is the sequence ▪ 
▴ ▫ ▵ (‘small black square, small black triangle, small white square, small white triangle’), 

which can be simplified by abstracting the feature common to the four objects: “small”. 

Hence, the information for this category is even more compressible and does not require 

much mental effort to be retained. The to-be-recalled categories of stimuli were chosen on 

the basis of the exhaustive list of the 21 categories shown in the Appendix.

Ordering of the categories in the sequences

Our measure of complexity only serves here to predict the chunkability of the category set, 

not the memorization of the sequence. Controlled presentation orders were thus used to 

manipulate category compressibility. This second manipulation consisted of ordering the 

objects according to three main types of orders previously developed in the categorization 

research: rule, similarity, and dissimilarity.
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In the Rule condition (Fig. 2), the objects were grouped by clusters (sub-categories). The 

differences were minimal within the clusters, but more marked between clusters (whenever 

clusters could be found). A minimal degree of similarity between clusters contributes to 

greater discrimination of the clusters into distinguishable units, thus favoring the discovery 

of a logical rule. Figure 2 shows the example of an organized sequence in the Rule 

condition. The shortest rule for describing the set of objects is “square or small”. In Figure 2, 

the first cluster is made up of the large white square (first item) and the large black square 

(second item), which differ by only one feature. The small white square (third item) that 

follows the large black square (second item) marks a separation between the first and second 

clusters because the two contiguous items differ by two features. In the Rule condition, such 

leap can facilitate the identification of clusters and therefore might induce the formation of 

chunks based on the clusters (see Fig. 2, bottom, which shows two leaps as a function of 

time, one after the second item and the other after the fourth item). In this condition, the 

participants should have the best recall performance, particularly if they attempt to form 

small groups of objects by compressing information locally4.

In the Similarity condition (Fig. 2), a sequence was chosen to favor a minimal overall (i.e., 

for the entire sequence) inter-stimulus distance. The objects were then presented as a string 

following the principle that there was maximal similarity between two successively 

presented objects. Figure 2 shows an example of a similarity order for the same category of 

objects. Notice that adopting a similarity-based grouping process for this sequence would 

result in retaining a single long chunk of six items.

Finally, in the Dissimilarity condition (Fig. 2), the set of objects was chosen so as to favor a 

maximal total inter-stimulus distance. Each object presented minimal similarity with the 

preceding one. This condition deliberately disorganizes the presentation to make the 

associations between stimuli more difficult, and should hinder the chunking process. Using a 

dissimilarity-based strategy would result in retaining several separate small chunks of 

independent items. Consequently, recall performance should be lower than in the other two 

conditions. Figure 2 shows an ordered sequence in the dissimilarity condition using the same 

example as above.

The 21 categories of objects shown in Fig. 5 in the Appendix were transformed into 51 

sequences, according to these three presentation orders. The number 51 results from the fact 

that the order of six categories could not be manipulated. This was the case for four 

categories made up of one or two objects (once the first object is drawn, only the second 

object remains), and for two categories, for which the distances are identical between any 

two objects in a pair (this is the case for the category in the left column of Fig. 5, in which 

FC (Feldman’s measure of complexity) = 8 and FC = 10)5. These six categories were coded 

4This rule-based presentation order is a bit different from the one used by Mathy and Feldman (2009), in which the order of the 
objects within the clusters was random. Because our task is serial, our choice here consisted of ordering the objects logically within 
the clusters to encourage participants to connect the objects serially using the shortest description.
5In fact, the most incompressible categories provided fewer possibilities for order manipulation. For instance, the concept ▵ □ ▲ 
(i.e., white [small triangle or large square] or large black triangle, in the 7th cell in the left column of Figure 5) was typical of a 
complex concept for which different presentation orders could not be specified. The reason is that the objects in every pair of stimuli 
have a single feature in common. In this particular case, once a first object is chosen, there is no other choice than to pick a second 
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“order condition = None”. The Rule, Similarity and Dissimilarity conditions were applied to 

the 15 remaining categories. Each participant saw all 51 sequences (3 × 15 + 6).

Procedure

For each participant, the 51 sequences were presented in random order to avoid ascending 

list length or complexity. We established six possible rotations for each category structure 

that corresponded to six possible ways to place the objects on the diagram while keeping the 

same structure. One rotation (among the six) was randomly drawn for each sequence 

presented so as to multiply the possible combinations in dimensional terms (shapes, sizes 

and colors). Thus, the participant never knew in advance which dimension would be the 

most relevant for the categorization process. For the experiment as a whole, 3417 sequences/

trials (51 × 67 participants) were presented.

Serial report was investigated using a procedure similar to that used in the visual STM serial 

report task (Avons & Mason, 1999; Smyth, Hay, Hitch, & Horton, 2005), except that the 

stimuli were mixed with distractors on the response screen. Depending on the sequence, one 

to eight stimuli were displayed serially in the center of the screen (see Fig. 1, middle panel) 

at intervals of one second (41 participants) or two seconds (26 participants) per stimulus, 

depending on the condition6. During the recall phase (see Fig. 1, bottom panel), the original 

set of eight stimuli was displayed randomly on the screen. The stimuli were underlined 

(using a white line) when the user clicked on them. After the user validated his/her answer 

with the space bar, a feedback screen indicated if the recall was correct (i.e., both item 

memory and order memory had to be correct), and then a screen with a GO window 

appeared and the user moved on to the following sequence by pressing on the space bar. The 

experiment lasted an average of 25 minutes.

Results

The analyses were conducted on correct (1) or incorrect (0) serial-recall scores for each trial 

(a response was scored correct when both the items and the positions were correctly 

recalled), and for the average recall score across conditions (proportion correct). The data 

was first aggregated for a given variable, e.g., ‘presentation time’, in order to run a separate 

univariate ANOVA for each dependent variable (e.g., the mean proportion correct for all 

trials pooled).

Summary of the expected results

(1) Recall performance should depend on sequence length to the extent that longer 

sequences require a representation with more chunks. (2) A higher compressibility of 

information (i.e., lower FC within sequences of the same length) should result in better 

object that is two-features away from the first, and so on. As a result, the rule-based/similarity-based/dissimilarity-based distinction is 
no longer relevant. However, because the chosen order cannot benefit from any simple logical rule, or any simple similarity-based 
relationship, the order can be considered dissimilarity-like.
6The 1 s vs. 2 s duration was a between-subject factor. The one-second condition tends to be the standard condition for measuring 
memory span, so we used this condition with a large number of participants. However, we still wanted to modulate the time allotted to 
chunking by extending the display duration (i.e., 2 s) with a smaller group of participants, because display duration can affect 
memorization strategies (Hockey, 1973). The two-second condition was run with only 26 participants to make sure the participants in 
the more standard one-second condition had sufficient time to parse the stimuli and achieve similar performance.
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recall because higher compressibility enables better recoding of the entire set of items. (3) A 

greater degree of regularity in the presentation order (rule-based, followed by similarity-

based, followed by dissimilarity-based) should favor the compression of the available 

regularities into newly formed chunks. (4) For the less important factor, display duration, we 

expected better recall performance for the longer duration.

Proportion correct

Regarding the 2 s vs. 1 s conditions, a preliminary between-subject analysis on proportion 

correct (averaged across trials) showed that stimulus duration was significant (t(65) = −2.5, p 
= .014, η2 = .09), with respective means equal to .33 (sd = .11) and .27 (sd = .08). However, 

because recall was only slightly higher in the 2 s condition, with a rather small size effect, 

we chose not to keep the 1 s vs. 2 s factor as a moderator in the subsequent analyses.

Figure 3 shows the mean proportion of correct responses as a function of the length of the 

sequence presented, by the type of presentation order. Overall, a nonlinear regression (using 

an s-shaped sigmoid function of the form a − 1/(1 + exp(− b × x + c)) of the mean points on 

this figure (along the x-axis) showed that 78% of the performance variance was explained by 

sequence length (R2 = .78). Regardless of order, the memory-span estimate at a threshold of 

50% correct responses was 3.5 objects. When the length of the sequence increased from 

three to four objects, mean performance dropped from .64 to .33. It also diminished by half 

again as much between four and five items to recall (from .33 to .14). This impressive drop 

resulted in performance at the lower end of Cowan’s (2001) memory-span estimate of 3–5 

items, and is similar to other more specific estimates of 3–4 items (Broadbent, 1975; Chen & 

Cowan, 2009; Luck & Vogel, 1997).

However, a multiple linear regression analysis on mean proportion correct showed that each 

of the three factors contributed significantly to the drop in performance. The percentages of 

variance explained were as follows: sequence length (βirY i = 67%), compressibility/FC 

(βirY i = 9%, which included eight unique values, that is 1, 2, 3, 4, 5, 6, 8, 10), presentation 

order7 (βirY i = 12%), and presentation time (βirY i = 1%), totaling 89%, F(6, 89) = 110, p 
< .001, R2 = .89. The effects of length and presentation order on performance are clearly 

visible in Figure 3, whereas the effect of compressibility is shown in Figure 4. Regarding the 

effect of FC, a partial correlation analysis showed that at a constant sequence length, 

compressibility and correct proportion were negatively correlated (r = −.28, p < .001). 

Indeed, the more complex the sequence, the lower the performance (see Fig. 4, left). The 

ANOVA with repeated measures, with FC as a within-subject factor and proportion correct 

as the dependent variable yielded a significant effect of FC for most sequence lengths: F(2, 

132) = 2.9, p = .054,  for two-object sequences; F(2, 132) = 11.5, p < .001, 

for three-object sequences; F(3, 198) = 45.6, p < .001,  for four-object sequences; 

F(2, 132) = 18.8, p < .001,  for five-object sequences; and F(2, 132) = 45.1, p < .001, 

7Because the use of dummy variables is more appropriate for representing multiple groups (Cohen & Cohen, 1983), the Rule, 
Similarity, Dissimilarity, and None conditions were recoded using dummy variables.
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 for six-object sequences. Figure 4 shows the linear trend that we obtained using data 

collapsed across participants, complexity, and sequence length.

The proportions of correct recall for the Rule, Similarity, and Dissimilarity orders were 

respectively, .35 (sd = .16), .25 (sd = .13), and .16 (sd = .09). The ANOVA with repeated 

measures yielded a significant effect, F(2, 132) = 80, p < .001, . We also observed 

significant differences between the Rule and Similarity conditions, t(66) = 6.8, p < .001, and 

between the Similarity and Dissimilarity conditions, t(66) = 7.8, p < .001, even after 

Bonferroni correction.

At lengths 3 and 4 (the conditions for which the four types of orders applied), the reason for 

the lower score in the None order is linked to the complexity of the heterogeneous 

categories, for which FC = 8 and FC = 10. In these conditions, the proportions of correct 

recall for the Rule, Similarity, Dissimilarity, and None orders were respectively, .52 (sd = .

03), .47 (sd = .03), .32 (sd = .02), and .28 (sd = .04). The ANOVA with repeated measures 

yielded a significant effect, F(3, 198) = 25, p < .001, . We also observed significant 

differences between the Rule and Similarity conditions, t(66) = 2.11, p = .04, and between 

the Similarity and Dissimilarity conditions, t(66) = 6.7, p < .001, but the difference between 

the Dissimilarity and None conditions was not significant. At lengths 3 and 4, the only pair 

left significant after Bonferroni correction was Similarity-Dissimilarity.

A repeated-measures ANOVA was run on presentation order (with the rule-based, similarity, 

and dissimilarity levels) and FC (with levels 1, 2, 3, 4, 5, 6, and 8; note that the value 10 

could not interact with presentation order, and also, the N/A value could not be included to 

test a linear trend). Feldman’s complexity significantly affected the mean proportion correct, 

F(6, 396) = 76, p < .001, , and we found a linear trend for this factor, F(1, 66) = 235, 

p < .001, . We also found a significant interaction between the two factors, F(12, 792) 

= 8.5, p < .001, , which tended to show that the Rule-order benefited the participants 

more when FC was low.

Transitional error probabilities

Transitional error probabilities (N. F. Johnson, 1969a, 1969b) can provide further evidence 

as to whether the participants actually used the available chunks. Without such an analysis, 

there is no clear evidence of what chunks were adopted during the task. Based on the 

Johnson’s analyses, one can explore the relationship between performance on two adjacent 

items when they can be assumed to fall within the same chunk, rather than on opposite sides 

of a chunk boundary. For instance, the sequence ▫ ▪ ■ □ could be chunked into ▫ ▪ and ■ 
□ using a logical rule. This sequence thus contains two potential within-chunk transitions 

(e.g., ▫ to ▪ and ■ to □) and a single between-chunk transition (▪ to ■). The prediction was 

that within-chunk transitions would more often be made correctly than between-chunk 

transitions would, under the assumption that participants use the available chunks and store 

them under the same memory code.
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For all adjacent items, a transition was scored correct when the second element was recalled, 

provided the first item had been correctly recalled. A transition error was counted whenever 

the second element was not recalled but the first item had been correctly recalled. If the 

participant’s response was ▫ ▪ ■, the analysis indicated that there was only one out of two 

correct within-chunk transitions and that the single between-chunk transition was correctly 

made. A transition was not counted when the first item of an adjacent pair was not recalled.

The results reported in Table 1 show that a greater proportion of transitions were correctly 

made within chunks than between chunks, and that this difference was particularly great for 

the rule-based presentation order. Another expected result was that recall decreased more for 

within-chunk pairs than for between-chunk pairs across all orders. The reason is that rule- 

and similarity-based orders are assumed to facilitate chunk encoding more. Table 1 shows 

this interaction between presentation order and the two types of pairs. A repeated-measures 

ANOVA using order (rule-based, similarity-based, dissimilarity-based) and type of pair 

(within-chunk vs. between-chunk) as two within-subject factors confirmed this interaction, 

F(2, 132) = 7.2, p =< .001, , as well as a main effect of these two factors (F(2, 132) = 

158, p =< .001, , and F(1, 66) = 326, p =< .001, , respectively).

Note that the above analyses argue in favor of the idea that chunk identification was rule-

based. To better account for the formation of chunks in the rule-based order and the 

similarity-based order, a more precise and neutral description of how chunks might be 

incrementally encoded during the task is presented below

Incremental encoding of chunks of varying lengths using strict position scoring

Finally, we look at how much information participants may have encoded irrespective of 

whether or not the response was perfectly recalled. To evaluate the actual number of items 

encoded, we present a microanalytical characterization of how chunks can be encoded 

incrementally during the task. First, we identified the chunks that could theoretically be 

formed by binding two or more adjacent objects based on their similarity. This new analysis 

is more neutral than the previous ones in that it does not favor the rule-based process. We 

posited that the probability of forming a chunk was maximal when two adjacent objects 

differed by only one feature. Each study sequence was decomposed into chunks when at 

least two adjacent objects were considered similar. A chunk could, however, contain three 

objects if the third object also differed by only one feature from the second object, and so 

on, when more than three objects could be strung together. Put differently, a new chunk was 

formed whenever an object differed by at least two features from the preceding object. A 

single-object chunk was formed whenever there was no way of grouping two objects 

together. Using this method, chunk size therefore ranged between one object long and eight 

objects long.

For instance, the following study sequence ▫ ▪ ■ ▴ ▲ □ was split as follows to form a new 

chunked sequence: ▫ ▪ ■ — ▴ ▲ — □, using three chunks of varying lengths (3, 2, 1, 

respectively) and totaling six encoded objects. The ratio of six objects to three chunks (i.e., 

two objects per chunk on average) indicates the compression achieved by the recoding 

process.
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To find the number of chunks that the participants encoded, their response sequences were 

split using the same encoding process before being aligned to the chunked study sequence. 

A partial-credit scoring system was used to get the sum of the chunks correctly recalled in 

their correct positions. For instance, had the participant recalled ▫ ▪ ■ ▴ □, this response 

sequence was split into ▫ ▪ ■ — ▴ — □ before being aligned to the chunked study 

sequence ▫ ▪ ■ — ▴ ▲ —□. The alignment would only score the first and third chunks as 

correctly recalled in their correct positions. The dissimilarity-order condition was removed 

from this analysis because, by construction, it generally contained one-object chunks. 

Across all sequence lengths, the theoretical average of to-be-encoded chunks in the rule-

based order was 2.9 vs. 1.5 in the similarity-based order. Conversely, the number of objects 

that could be unpacked from one chunk had a theoretical average that was greater in the 

similarity-based condition (4.0) than in the rule-based condition (1.7). By construction, the 

similarity-based condition favored longer chunks (and consequently fewer chunks), whereas 

the rule-based condition rarely offered the opportunity to form chunks made of more than 

two objects.

The results indicated a larger number of chunks encoded in the rule-based order (M = 1.28, 

sd = .42) than in the similarity-based order (M = .45, sd = .20), after averaging the 

participants’ performance across sequence lengths (t(66) = 20.2, p =< .001, ). The 

participants recalled an average of 2.27 objects in the rule-based order versus 1.13 objects in 

the similarity-based order, and this difference reached the same significance level. The ratio 

between these two counts indicates that the participants encoded an average of 2.27/1.28 = 

1.77 objects per chunk in the rule-based order and 1.13/.45 = 2.5 objects in the similarity-

based order. This difference was also significant after averaging participants’ performance 

across sequence lengths (t(66) = 13.7, p =< .001, ). In comparison to the theoretical 

number of objects that could be encoded in chunks in the rule-based condition (1.7, as 

indicated above), the participants could potentially encode these chunks perfectly (1.77 

objects per chunk), while retaining fewer chunks than available (1.28 instead of 2.9). 

Information was therefore correctly encoded into in chunks but the number of chunks was 

subject to a capacity limit.

Incremental encoding of chunks of varying lengths, regardless of position

We used a less stringent free-position scoring system that counted a chunk as correctly 

recalled no matter where it was in the response sequence. We then determined the number of 

objects that could be unpacked from the recalled chunks. Using this method, the number of 

objects unpacked from the chunks found in the participants’ responses was significantly 

greater in the rule-based condition (M = 2.99, sd = .65) than it was when strict position 

scoring was used (M = 2.27, sd = .74), t(66) = 18.4, p =< .001, , and as such, a more 

plausible estimation of the expected 4±1 span was attained. Recall in the similarity-based 

condition was also slightly greater, increasing from 1.13 to 1.34 (t(66) = 12.4, p =< .001, 

).
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Incremental encoding of chunks corresponding to pairs of items in the similarity-based 
condition

We carried out a final test to see whether participants in the similarity-based condition 

encoded smaller chunks than those available, using an encoding process similar to the one 

induced in the rule-based condition (i.e., encoding objects by pairs). For instance, the 

sequence ▫ ▪ ■ □ is potentially a single four-object chunk since none of the transitions 

between adjacent objects involves more than one feature. Because such a long chunk is 

probably more difficult to encode than two smaller two-object chunks, we separated these 

long chains by pairing the objects, as follows: ▫ ▪ and ■ □. This method was less strict for 

scoring participants’ performance. For instance, based on the ▫ ▪ ■ □ study sequence, a ▫ 
▪ chunk would be identified in ▫ ▪ ■ (the participant’s response sequence), whereas no 

chunk would be credited to the participant if ▫ ▪ ■ □ was coded as the only available 

chunk in the study sequence. In comparison to the first method for identifying the chunks in 

the sequences, the number of objects recalled in the similarity condition increased from 1.13 

to 2.07 using strict-position scoring (t(66) = 24, p =< .001, ), and from 1.34 to 2.5 

using free-position scoring (t(66) = 31.1, p =< .001, ). This method could not, 

however, affect the rule-based condition much, because, by construction, none of the chunks 

could include more than two objects in this condition.

Overall, the number of objects recalled was greater in the rule-based condition, meaning that 

the participants were more inclined to encode a greater number of smaller chunks than a 

smaller number of chunks made of a longer chain of similar objects (even though the long 

chain could be split into several contiguous pairs).

To come back to the analysis of the transitional error probabilities (now that we know that 

the analysis does no longer favors the identification of chunks that are rule-based), we again 

divided the frequency of correct transitions by the total number of times that the first item 

was correctly recalled for a given pair of adjacent items. We then averaged the frequencies 

of the within-chunk and between-chunk transitions across participants in order to run a 

repeated-measures ANOVA using order (rule-based vs. similarity-based) and type of pair 

(within-chunk vs. between-chunk) as within-subject factors. This analysis showed that a 

greater number of transitions were correctly made (in comparison to Table 1) for the within-

chunk transitions (p = .64) than for the between-chunk transitions (p = .48), F(1, 66) = 245, 

p =< .001, , and that more transitions were correctly made in the rule-based condition 

(p = .60) than in the similarity-based condition (p = .52), F(1, 66) = 31, p =< .001, , 

with no interaction between the two factors. Overall, there were 2178 correct transitions 

versus 1260 transitional errors in the within-chunk condition, but only 1432 correct 

transitions versus 1685 transitional errors in the between-chunk condition, corresponding to 

an odds ratio of 1.4.

Discussion

We explored the ability of untrained participants to increase their immediate memory by 

parsing sequences of objects into newly-formed chunks. The main reason for exploring 
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chunk formation in immediate memory is that a chunk is too often thought of solely as a 

product of an already-formed long-term representation. Showing that recoding can occur 

very rapidly in immediate memory is a different undertaking. This idea may seem merely 

intuitive, but no other model can give a precise quantitative account of how information is 

apprehended to determine exactly what patterns can be extracted rapidly to increase memory 

capacity. Chunking demands a more principled explanation than one simply saying that 

individuals demonstrate chunking when they group items together while performing a 

memory task. The chunking memory-span task presented in this study provides a way to 

explore the formation of a chunk in immediate memory, without relying on chunking that 

has become familiar via repeated exposure.

Our theory was that a compressibility metric could estimate the opportunities available to 

participants for immediate recoding of the to-be-recalled material. A first result showed a 

capacity of about three objects for the most noncompressible sets of objects, at a 50% 

threshold (see Fig. 3, which corresponds to the lower limit of the 4 ± 1 estimate; Cowan, 

2001). This result is consistent with the literature (e.g., Broadbent, 1975; Chen & Cowan, 

2009), despite Cowan’s slightly higher estimate (2001). However, in line with our 

prediction, this capacity limitation is overcome whenever a form of relational information 

can be computed, that is, when compressible sets of objects are used. The proportion of 

sequences retained increased with compressibility, particularly when presentation order 

facilitated the recoding of the sequences (up to about four objects at a 50% threshold; see 

Fig. 3 for the rule-based order). Overall, this finding showed a minimal span of about three 

objects that increased monotonically as a function of sequence compressibility.

More refined analyses showed that the objects were most often chunked into pairs, in an 

incremental fashion. The results also showed that recoding occurred more often in the rule-

based order (which favors short, well-clustered logical chunks of two objects) than in the 

similarity-based order (which favors longer chunks of very similar objects). The 

dissimilarity condition was less likely to induce chunking because it tended to cluster the 

objects individually. However, it is more difficult to tell exactly what a chunk or rule is in 

immediate memory. More specifically, because our method targets a process that occurs 

before any consolidation process, there is no clear-cut empirical measure of the presence of 

chunks or rules. Beyond that, however, by calculating the transition-error probabilities and 

analyzing how chunks were incrementally encoded, we do provide clues as to the nature of 

the chunks formed.

Chunking in the present study probably emerged in immediate memory thanks to the 

identification of elementary structures of repetition in the input stream. This is why the 

present study goes beyond those that have used digit sequences to study chunking (Bor & 

Owen, 2007; Mathy & Feldman, 2012), insofar as regular digit sequences such as 123 may 

already have been represented in the participants’ long-term memory (see Jones & Macken, 

2015). Also, the chunking memory referred to in our tasks does not correspond exactly to 

Potter’s (1993, 2012) notion of conceptual short-term memory. In her theory, short-term 

memory operates by allowing meaningful patterns stored in long-term memory to be 

unconsciously identified in short-term memory. Our results are closer to those of a previous 

study in which untrained participants could improve memorization of a set of spatially-
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grouped objects organized into smaller units by using hierarchically nested levels (Feigenson 

& Halberda, 2008).

However, we have not lost sight of the fact that some individual strategies devoted to 

describing the sequences can escape predictions. For instance, we took the risk that some 

verbal processes usually shown to be critical to short-term memorization (Burgess & Hitch, 

1999; Baddeley, Thomson, & Buchanan, 1975; Estes, 1973; Zhang & Simon, 1985) are left 

uncontrolled in our study because the items can be recoded verbally. Still, we intentionally 

let the participants recode (verbally or otherwise) our visual-based material because we 

thought that implementation of articulatory suppression could also affect attention and 

subsequent encoding of regularities. It was our goal to let the participants encode the objects 

freely.

The next sections evaluate competing theoretical accounts of the compression effects we 

found. We will discuss in detail the under estimated role of immediate memory in the 

formation of chunks and why the compressibility of information is a good theory to capture 

grouping effects. We begin with the idea that although interference-based models can easily 

account for forgetting, they cannot account for the potential chunking processes at play in 

our data. Indeed, the non-distinctiveness of the stimuli can paradoxically be both detrimental 

to retaining similar items (when it is considered to produce an interference-based forgetting 

process) and beneficial to grouping (in our study, when it produces a chunking process).

Interference-based models and local distinctiveness account

We believe that short-term memory models based on the stimulus distinctiveness do not 

explain our presentation-order effects. These models contend that similar items interfere 

with each other (Lewandowsky, Duncan, & Brown, 2004; Nairne, 1990, 2002; Oberauer & 

Kliegl, 2006). At best, these models predict no difference between presentation orders, 

because the overall similarity of items is identical in our three orders. At worst, these models 

incorrectly predict poorer performance in the similar condition than in the dissimilar 

condition because of the possible negative effect of similarity between adjacent items.

In contrast to both of these predictions, we correctly predicted better performance in the 

similarity-based order than in the dissimilarity-based order because the particular kind of 

similarity we presented allowed for easier compression of the material based on feature 

continuity between adjacent items. This result supports a more general finding that similarity 

can be either beneficial or detrimental to memory (Gupta, Lipinski, & Aktunc, 2005; Hunt & 

McDaniel, 1993; J. S. Johnson, Spencer, Luck, & Schöner, 2009; Lin & Luck, 2009; Nairne 

& Kelley, 1999). Moreover, we correctly predicted the best performance when the materials 

lent themselves directly to explicit rules of transition. The similarity condition did have 

longer potential chains of similarity between contiguous items, but the basis of the similarity 

kept shifting, so participants were generally unable to use those contiguities as consistently 

as they could in the rule-based condition. The logical content of our task might explain why 

an associative process based on similarity occurred less often in our data than a rule-based 

process did (Sloman, 1996).
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For instance, the SIMPLE model (Brown, Neath, & Chater, 2007) suggests that the retrieval 

of items in memory is a discrimination process at all periods of time (short-term and long-

term). In SIMPLE, items may be hard to retrieve when their temporal distance is short, for 

the same reason that similar items are hard to identify. SIMPLE usually captures the idea 

that items are more discriminable when they occupy isolated locations on the temporal 

dimension. Here in our study, it was adapted to capture the idea that items are more 

discriminable when they are both physically and temporally isolated. The following equation 

derived from context models (Nosofsky, 1984, 1986) is simple enough to discriminate the 

effect of our three presentation orders:

(1)

The preceding equation can be used to evaluate both the physical distance and the temporal 

distance between two items in a pair. For instance, let dij = 2 when a ■ is presented one 

second after a □ (in this case, the total distance is: one feature + one second = 2 

differences). The following exponential decay function can be used to relate stimulus 

similarity to psychological distance (Nosofsky, 1986; Shepard, 1987):

(2)

Finally, SIMPLE assumes that the discriminability Di of a memory trace is inversely 

proportional to its summed similarity to the n memory traces:

(3)

The probability of recalling item i in its correct temporal position is simply its 

discriminability.

It appears that our results cannot be modelled by SIMPLE, in which performance may be 

accounted for by an interference process that would favor the dissimilarity-based order. 

Looking at Fig. 2, our simulation showed that the overall discriminability (Σ Di) of the six 

items in the rule-based order was 3.90 (.69, .64, .62, .62, .64, .69 for the respective six items 

respectively, summing to 3.9), versus 3.27 for the similarity-based order and 4.79 for the 

dissimilarity-based order, when only the items’ physical dimension was taken into account. 

Adding the temporal dimension did not change this ranking and we simply obtained larger 

overall discriminability values: 5.09, 4.80, and 5.50, respectively. In this interference-based 

model, the dissimilarity-based order is predicted to produce maximal local distinctiveness 

(hence better recall), whereas the similarity-based order is predicted to produce maximal 

interference in memory and subsequently a negative effect on memorization. The rule-based 

model has an intermediate status in the model, although our results clearly showed its 

superiority. SIMPLE cannot account for how chunking operates in immediate memory with 
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the present data (even if the predictions are reversed to consider similarity as beneficial, the 

rule-based order still has an intermediate status).

Compressibility of information

In the present study, recall performance was significantly enhanced for compressible 

sequences as compared to less compressible ones. Brady et al. (2009) introduced statistical 

regularities in some sequences of visually presented stimuli in order to study the effect of 

redundancy on memorization. The authors reported that the observers recalled more 

information when the stimuli exhibited regularities. They explained this advantage by the 

fact that several items associated in memory formed a single chunk, leaving more room in 

memory for storing other stimuli. A compression process using statistical regularities (Brady 

et al., 2009) can be perfectly modeled with a minimum description length (MDL) type of 

approach (Rissanen, 1978). MDL is based on an algorithmic notion of compressibility that 

seems more versatile than Feldman’s (2000). However, the MDL approach seems to offer no 

advantage for recoding a single short sequence such as the ones used in the current study. A 

simple example is the difficulty applying MDL to a short sequence such as 12349876. In this 

case, its recoding into a = 1234 and b = 9876 does not lead to any compression (i.e., the 

length of the representation “a = 1234 and b = 9876, ab” is greater than the original 

sequence, because the redescription process needs to be taken into account), whereas it can 

be clearly useful for a sequence that is slightly longer, such as 123123123123123123123, for 

which we can use a shorter representation a = 123, aaaaaaa (the a = 123 part corresponds to 

what is written in the lookup table, and aaaaaaa corresponds to the recoded sequence, but 

combined, it is shorter than the original string). The same advantage for a = 123 occurs if 

123 is repeated many times in the long-term mixed in with other sequences (e.g., 123, 4, 

123, 123, 5, 6, 2, 1, 123, 123, 123, etc.). We concentrate here on a practical version of MDL. 

However, MDL is ideally an algorithmic approach to compression that does not have to rely 

on frequently repeated patterns, and as such, it is not impossible that MDL could recode a 

small individual sequence like 12349876 based on a particular appropriate programming 

language.

We agree with Brady, Konkle, and Alvarez’s (2009) suggestion that chunking can be used as 

an approximation of an algorithm of psychological compression. However, our results go 

beyond that earlier work by showing that a short amount of time is sufficient to allow a 

compression process to occur on the fly. Our interpretation is that compression can be 

efficient if it makes use of primitive repetition structures, which can be detected and used 

rapidly in immediate memory. As such, Feldman’s model of compressibility is more suited 

than MDL for capturing the recoding of single short sequences like the ones in the current 

study. For instance, for the set ■ ▫ ○ ●, compressibility is very limited and requires a more 

extensive description in working memory than a more compressible set. When almost no 

compression is possible, the representation must contain almost as many features as in the 

original list of objects.

A last point concerns the relationship between compressibility and presentation order. When 

the members of a compressible set (e.g., one where FC = 1, such as △ ▴ ▵ ▲) are 

unordered, their memorization can be facilitated by using the rule “triangles”. However, the 
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memorization of the ordered objects △ ▴ ▵ ▲ requires a longer description than 

“triangles”. Therefore, a compressible category that is not ordered in a regular way can be as 

difficult to memorize as a noncompressible one. This is noticeable in Fig. 3 in which the 

mean data point for FC = 10 (this data point is represented by the black curve where length 

= 4) is very close to the mean data point for the green dissimilarity curve. However, when no 

compressibility is allowed in the first place, order does not matter anymore.

Conclusion

One common idea is that working memory simply uses pointers to retrieve chunks in long-

term memory, and that chunks are only consolidated pieces of information stored in long-

term memory. We believe that we observed a chunking process that seems to result from the 

temporary creation of new representations. Recall performance in the current study was as 

small as about three items, but the total increased when the sequential order of the items was 

favorable to the formation of new chunks, i.e., compression of the sequence based on rules 

discovered within it. One potential strong conclusion is that these variations in performance 

mean that chunking processes can operate during short-term memorization. It follows from 

this conclusion that chunks must not be considered solely as permanent groupings of 

information in long-term memory. It is possible that our participants spontaneously 

compressed information without much mediation of long-term memory chunks, since it is 

probable that none of our participants had ever encountered the particular sequences of 

objects seen in our experiment.

The experiment presented in this paper allows us to draw the conclusion that information 

can be compressed in a few seconds in immediate memory by capitalizing on the regularities 

within the materials presented. Our research challenges us to consider that the notion of 

compression in immediate memory is central to defining grouping, chunking, and probably 

learning.

References

Avons S, Mason A. Effects of visual similarity on serial report and item recognition. Quarterly Journal 
of Experimental Psychology: Section A. 1999; 52:217–240.

Baddeley A, Thomson N, Buchanan M. Word length and the structure of short-term memory. Journal 
of Verbal Learning & Verbal Behavior. 1975; 14:575–589.

Bor D, Owen AM. A common prefrontal-parietal network for mnemonic and mathematical recoding 
strategies within working memory. Cerebral cortex. 2007; 17:778–786. [PubMed: 16707737] 

Bradmetz J, Mathy F. Response times seen as decompression times in Boolean concept use. 
Psychological Research. 2008; 72:211–234. [PubMed: 17093950] 

Brady TF, Konkle T, Alvarez GA. Compression in visual working memory: Using statistical 
regularities to form more efficient memory representations. Journal of Experimental Psychology: 
General. 2009; 138:487–502. [PubMed: 19883132] 

Broadbent, D. The magic number seven after fifteen years. In: Kennedy, A.; Wilkes, A., editors. 
Studies in long-term memory. New York: Wiley; 1975. 

Brown GDA, Neath I, Chater N. A temporal ratio model of memory. Psychological Review. 2007; 
114:539–576. [PubMed: 17638496] 

Burgess N, Hitch G. Memory for serial order: A network model of the phonological loop and its 
timing. Psychological Review. 1999; 106:551–581.

Chase WG, Simon HA. Perception in chess. Cognitive Psychology. 1973; 4:55–81.

Chekaf et al. Page 16

Cognition. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chen Z, Cowan N. Chunk limits and length limits in immediate recall: A reconciliation. Journal of 
Experimental Psychology: Learning, Memory, and Cognition. 2005; 31:1235–1249.

Chen Z, Cowan N. Core verbal working-memory capacity: the limit in words retained without covert 
articulation. Quarterly Journal of Experimental Psychology. 2009; 62:1420–1429.

Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. 
Behavioral and Brain Sciences. 2001; 24:87–185. [PubMed: 11515286] 

Cowan N, Chen Z, Rouder JN. Constant capacity in an immediate serial-recall task: A logical sequel to 
miller (1956). Psychological Science. 2004; 15:634–640. [PubMed: 15327636] 

Cowan N, Hismjatullina A, AuBuchon AM, Saults JS, Horton N, Leadbitter K, Towse J. With 
development, list recall includes more chunks, not just larger ones. Developmental Psychology. 
2010; 46:1119–1131. [PubMed: 20822227] 

Elio R, Anderson JR. Effects of category generalizations and instance similarity on schema 
abstraction. Journal of Experimental Psychology: Human Learning and Memory. 1981; 7:397–
417.

Elio R, Anderson JR. The effects of information order and learning mode on schema abstraction. 
Memory & Cognition. 1984; 12:20–30. [PubMed: 6708807] 

Ericsson KA, Chase W, Faloon S. Acquisition of a memory skill. Science. 1980; 208:1181–1182. 
[PubMed: 7375930] 

Estes WK. Phonemic coding and rehearsal in short-term memory for letter strings. Journal of Verbal 
Learning & Verbal Behavior. 1973; 12(4):360–372.

Farrell S, Wise V, Lelièvre A. Relations between timing, position, and grouping in short-term memory. 
Memory & cognition. 2011; 39:573–587. [PubMed: 21264584] 

Feigenson L, Halberda J. Conceptual knowledge increases infants’ memory capacity. Proceedings of 
the National Academy of Sciences of the United States of America. 2008; 105:9926–9930. 
[PubMed: 18626025] 

Feldman J. Minimization of Boolean complexity in human concept learning. Nature. 2000; 407:630–
633. [PubMed: 11034211] 

Feldman J. A catalog of Boolean concepts. Journal of Mathematical Psychology. 2003; 47:75–89.

French RM, Addyman C, Mareschal D. TRACX: A recognition-based connectionist framework for 
sequence segmentation and chunk extraction. Psychological Review. 2011; 118:614–636. 
[PubMed: 22003842] 

Gagné RM. The effect of sequence of presentation of similar items on the learning of paired associates. 
Journal of Experimental Psychology. 1950; 40:61–73.

Gilchrist AL, Cowan N, Naveh-Benjamin M. Investigating the childhood development of working 
memory using sentences: new evidence for the growth of chunk capacity. Journal of Experimental 
Child Psychology. 2009; 104:252–265. [PubMed: 19539305] 

Gobet F, Lane PC, Croker S, Cheng PCH, Jones G, Oliver I, Pine JM. Chunking mechanisms in human 
learning. Trends in Cognitive Sciences. 2001; 5:236–243. [PubMed: 11390294] 

Goodwin GP, Johnson-Laird PN. The acquisition of boolean concepts. Trends in cognitive sciences. 
2013; 17:128–133. [PubMed: 23428936] 

Guida A, Gobet F, Tardieu H, Nicolas S. How chunks, long-term working memory and templates offer 
a cognitive explanation for neuroimaging data on expertise acquisition: a two-stage framework. 
Brain and cognition. 2012; 79:221–244. [PubMed: 22546731] 

Gupta P, Lipinski J, Aktunc E. Reexamining the phonological similarity effect in immediate serial 
recall: the roles of type of similarity, category cuing, and item recall. Memory & Cognition. 2005; 
33:1001–1016. [PubMed: 16496721] 

Hockey R. Rate of presentation in running memory and direct manipulation of input-processing 
strategies. The Quarterly Journal of Experimental Psychology. 1973; 25:104–111.

Hu Y, Ericsson KA. Memorization and recall of very long lists accounted for within the long-term 
working memory framework. Cognitive Psychology. 2012; 64:235–266. [PubMed: 22306890] 

Hunt RR, McDaniel MA. The enigma of organizatio and distinctiveness. Journal of Memory and 
Language. 1993; 32:421–445.

Chekaf et al. Page 17

Cognition. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Johnson JS, Spencer JP, Luck SJ, Schöner G. A dynamic neural field model of visual working memory 
and change detection. Psychological Science. 2009; 20:568–577. [PubMed: 19368698] 

Johnson NF. Chunking: Associative chaining versus coding. Journal of Verbal Learning & Verbal 
Behavior. 1969a; 8:725–731.

Johnson NF. The effect of a difficult word on the transitional error probabilities within a sequence. 
Journal of Verbal Learning & Verbal Behavior. 1969b; 8:518–523.

Jones G, Macken B. Questioning short-term memory and its measurement: Why digit span measures 
long-term associative learning. Cognition. 2015; 144:1–13. [PubMed: 26209910] 

Lafond D, Lacouture Y, Mineau G. Complexity minimization in rule-based category learning: Revising 
the catalog of boolean concepts and evidence for non-minimal rules. Journal of Mathematical 
Psychology. 2007; 51:57–74.

Lewandowsky S, Duncan M, Brown GDA. Time does not cause forgetting in short-term serial recall. 
Psychonomic Bulletin & Review. 2004; 11:771–790. [PubMed: 15732687] 

Li, M.; Vitányi, P. An introduction to Kolmogorov complexity and its applications. New York, NY: 
Springler Verlag; 1997. 

Lin PH, Luck SJ. The influence of similarity on visual working memory representations. Vis cogn. 
2009; 17:356–372. [PubMed: 19430536] 

Luck SJ, Vogel EK. The capacity of visual working memory for features and conjunctions. Nature. 
1997; 390:279–281. [PubMed: 9384378] 

Mathy F, Feldman J. A rule-based presentation order facilitates category learning. Psychonomic 
Bulletin & Review. 2009; 16:1050–1057. [PubMed: 19966254] 

Mathy F, Feldman J. What’s magic about magic numbers? Chunking and data compression in short-
term memory. Cognition. 2012; 122:346–362. [PubMed: 22176752] 

Medin DL, Bettger JG. Presentation order and recognition of categorically related examples. 
Psychonomic Bulletin & Review. 1994; 1:250–254. [PubMed: 24203473] 

Miller GA. The magical number seven, plus or minus two: Some limits on our capacity for processing 
information. Psychological Review. 1956; 63:81–97. [PubMed: 13310704] 

Nairne JS. A feature model of immediate memory. Memory & Cognition. 1990; 18:251–269. 
[PubMed: 2192233] 

Nairne JS. Remembering over the short-term: the case against the standard model. Annual Review of 
Psychology. 2002; 53:53–81.

Nairne JS, Kelley MR. Reversing the phonological similarity effect. Memory & Cognition. 1999; 
27:45–53. [PubMed: 10087855] 

Nosofsky RM. Choice, similarity, and the context theory of classification. Journal of Experimental 
Psychology: Learning, Memory, and Cognition. 1984; 10:104–114.

Nosofsky RM. Attention, similarity, and the identification-categorization relationship. Journal of 
Experimental Psychology: General. 1986; 115:39–57. [PubMed: 2937873] 

Oberauer K, Kliegl R. A formal model of capacity limits in working memory. Journal of Memory and 
Language. 2006; 55:601–626.

Potter MC. Very short-term conceptual memory. Memory & Cognition. 1993; 21:156–161. [PubMed: 
8469123] 

Potter MC. Conceptual short term memory in perception and thought. Frontiers in Psychology. 2012; 
3:113. [PubMed: 22557984] 

Reder L, Liu X, Keinath A, Popov V. Building knowledge requires bricks, not sand: The critical role of 
familiar. Psychonomic bulletin & review. in press. 

Rissanen J. Modeling by shortest data description. Automatica. 1978; 14:465–471.

Shepard RN. Toward a universal law of generalization for psychological science. Science. 1987; 
237:1317–1323. [PubMed: 3629243] 

Sloman SA. The empirical case for two systems of reasoning. Psychological Bulletin. 1996; 119:3–22.

Smyth MM, Hay DC, Hitch GJ, Horton NJ. Serial position memory in the visual— spatial domain: 
Reconstructing sequences of unfamiliar faces. Quarterly Journal of Experimental Psychology: 
Section A. 2005; 58:909–930.

Chekaf et al. Page 18

Cognition. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vigo R. A note on the complexity of Boolean concepts. Journal of Mathematical Psychology. 2006; 
50:501–510.

Zhang G, Simon HA. Stm capacity for chinese words and idioms: Chunking and acoustical loop 
hypotheses. Memory & Cognition. 1985; 13:193–201. [PubMed: 4046819] 

Appendix

Notes on Feldman’s (2000) compressibility metric

To use Feldman’s (2000) compressibility metric, the stimuli must be split into categories. 

Categories (or simply groups of stimuli) from 1 to 8 stimuli were drawn from the initial set 

of 8 stimuli. The k chosen stimuli represented the class of to-be-recalled stimuli, while the 8 

– k remaining objects represented the opposite class that did not have to be recalled after 

stimulus presentation but were shown in the recall screen. Using all of the eight stimuli in 

the procedure was thought to preserve the complexity metric on which the present study was 

based. Had the participants been only requested to reconstruct the order of the chosen 

stimuli (e.g., ▫ followed by ▪) without contrasting them to the opposite category, the 

participant would only have to encode the color feature to succeed (e.g., using a “white first” 

representation of the sequence). For instance, to follow the metric that was first thought to 

account for categorization processes, the ▫ ▪ sequence, needs to be contrasted to the 

opposite class (i.e, ▵ ▴ □ ■ △ ▲) by the participants. In this respect, the minimal 

representation of the category is “small squares”, and the right order (“white first”) applies 

specifically to the “small squares” category. The minimal representation (“small squares”) 

that inter-relates the individual stimuli is the compressibility of the category because it is 

shorter than “small white square or small black square”. The minimal representation that 

includes order information is “small squares, white first”. Note that it is principally because 

participants need to remember a sequence in the correct order that the task goes beyond what 

a categorization task would require.

Figure 5 gives Feldman’s (2000) measure of complexity (FC) for each category, which was 

used as a measure of compressibility. This measure indicates the number of features in the 

shortest logical formula allowing one to describe the stimuli, which are indicated by a black 

dot. The black dots positioned on the cubes illustrate the relationship between the objects 

that could be used by the participants to associate the stimuli to be recalled in our 

experiment. Each of the stimuli selected for a category were presented sequentially and their 

location remained constant in the middle of the screen, so no reference was made during the 

experiment to the spatial organization shown in this figure (this was done here to bring out 

the similarity structure between objects for the reader). For instance, the eighth cell on the 

left indicates that four triangles were used to construct the memory list (see bottom right 

cube above ‘Reference’ for retrieving the stimuli to which the black dots in the eighth cell 

on the left are pointing). The “triangle” category representation would be sufficient for free 

recall of the list.

FC is indicated in the middle column because the FC numbers for a given line fit both the 

category structures on the left and those on the right. Note that FC is not confounded with 

sequence length for sequences equal to 2, 3, 4, 5, or 6 objects. However, for the categories 

made of 1, 7, or 8 objects, no variations in complexity could be manipulated. When a set was 
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composed of eight objects, categorization was no longer involved. In this particular case, the 

shortest formula was trivial (“all objects”) and it was associated with a ‘Not Applicable’ 

(N/A) FC value.

Chekaf et al. Page 20

Cognition. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Screen shots showing a sample of possible stimuli (top panel), a to-be-recalled patterned 

sequence of stimuli (middle panel), and an example of a response screen that asked the 

participant to recognize the previous stimuli and to order them by clicking on a mouse 

(bottom panel).
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Figure 2. 
Example of three sequences from the category structure “square or small”, representing six 

items (top left cube). Note. The six items are replaced by black numbered circles on each of 

the three cubes to simulate their sequencing. In each of the three cubes, the presentation 

order is indicated by the numbers from one to six and by the arrows. The distance between 

two consecutive objects is described by the type of arrow: solid (one edge, or one feature 

difference), dashed (two edges), or dotted (three edges). In the Rule condition, the objects 

are presented in three clusters, within which the solid arrows are parallel and go in the same 

direction. The regularity of the rule is related to two factors: the separation of the clusters 

(dashed arrows) and the similarity between the objects in the same cluster (solid arrows), 

both of which facilitate the formation of small groups. In the Similarity condition, the inter-

stimulus distance is minimal. All the objects are linked to each other by solid arrows, which 

can potentially make a unique chunk of six objects. In the Dissimilarity condition, the 

sequence is characterized by a maximal inter-stimulus distance. The three plots at the bottom 

show the distances between the stimuli as a function of presentation time (1 second per 

item). For instance, the first plot shows two distance leaps in the Rule condition, which can 

facilitate the identification of three chunks. The leaps are more numerous, larger, and less 

regular in the Dissimilarity condition, while there are no leaps at all in the Similarity 

condition.
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Figure 3. 
Proportion of correct sequences recalled as a function of the sequence length (number of 

objects), for each presentation order. Note. The error bars show ±1 standard error.
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Figure 4. 
Proportion of correct sequences recalled as a function of Feldman’s Complexity (FC), across 

each sequence length (left plot) and collapsed (right plot). Note. The analysis shown in the 

right plot is based on the 3217 trials, to include the entire variance. The error bars show ± 

one standard error.
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Figure 5. 
Feldman’s (2000) minimization of Boolean complexity. Note. Column FC indicates 

Feldman’s (2000) measure of logical compressibility for each of the categories in the left or 

right column.
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Table 1

Average proportion (all participants pooled) of adjacent two-stimulus sequences recalled, as a function of 

presentation order and pair type.

Type of pair Rule-based Similarity-based Dissimilarity-based

Within-chunk .56 (.14) .45 (.13) .29 (.11)

Between-chunk .43 (.15) .35 (.13) .21 (.09)

Note. Parentheses indicate SDs.
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