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Abstract

Diagnosis, clinical management and research of psychiatric disorders remains subjective - largely 

guided by historically developed categories which may not effectively capture underlying 

pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying 

and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using 

both unsupervised and supervised machine learning techniques. First, neurocognitive data were 

analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes 

identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were 

pre-processed using the tract-based spatial statistics (TBSS) method and ‘skeletonized’ white 

matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The ‘skeletonized’ 

white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to 

distinguish individual subjects' phenotypic labels (e.g. phenotype I vs phenotype II). This 

calculation was performed to ascertain whether the identified clinical phenotypes were 

biologically distinct. Original neurocognitive measurements distinguished individual subjects' 

phenotypic labels with 94% accuracy (sensitivity = 92%, specificity = 97%). TBSS derived FA 

and MD measurements predicted individual subjects' phenotypic labels with 76% and 65 % 

accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were 

distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task 

variables identified as most relevant in distinguishing phenotypic labels included; affective go/no-

go (AGN), Cambridge gambling task (CGT) coupled with inferior fronto-occipital fasciculus and 

Corresponding Author: Benson Mwangi, PhD, Department of Psychiatry & Behavioral Sciences, The University of Texas Health 
Science Center, 1941 East Road, Houston, TX, 77054, USA, Phone: +17134862624, Fax: +17134862553, 
benson.irungu@uth.tmc.edu.
*These authors contributed equally to this work.

Financial Disclosures: Jair C. Soares has participated in research funded by Forest, Merck, BMS, GSK and has been a speaker for 
Pfizer and Abbott. Marsal Sanches has received research grants from Janssen. All other authors report no conflicts of interest to 
declare.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 January 15.

Published in final edited form as:
Neuroimage. 2017 January 15; 145(Pt B): 254–264. doi:10.1016/j.neuroimage.2016.02.016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



callosal white matter pathways. These results suggest that there may exist two biologically distinct 

clinical phenotypes in bipolar disorders which can be identified from healthy controls with high 

accuracy and at an individual subject level. We suggest a strong clinical utility of the proposed 

approach in defining and validating biologically meaningful and less heterogenous clinical sub-

phenotypes of major psychiatric disorders.
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Introduction

Diagnosis and clinical management of psychiatric disorders largely relies on traditional 

symptom-based classification systems such as the diagnostic and statistical manual (DSM) 

and the international classification of disease (ICD). However, it has been suggested that 

these symptom-based classification systems do not necessarily align with pathophysiological 

mechanisms of dysfunction (Cuthbert and Insel, 2010; Frangou, 2013; Hickie et al., 2013; 

Insel et al., 2010; Insel and Cuthbert, 2015; Morris and Cuthbert, 2012). Furthermore, 

current classification systems consider psychiatric disorders as unique phenotypic entities – 

whilst there is evidence of symptom overlap and diagnostic heterogeneity within disorders 

(Wardenaar and de Jonge, 2013). The current impasse has undoubtedly slowed down 

development of objective diagnostic markers of disease and effective treatments. To address 

this issue the National Institute of Mental Health (NIMH) has recently proposed the 

Research Domain Criteria (RDoC) initiative which is aimed at “developing, for research 

purposes, new ways of classifying mental disorders based on dimensions of observable 

behavior and neurobiological measures” (National Institute of Mental Health, 2008). 

Notably, the RDoC framework offers a promising alternative to standard classification 

systems as it views psychiatric disorders from a multidimensional viewpoint and integrates 

molecular, behavioral, motivational and cognitive data (Insel, 2014). To date, few studies 

have adopted the RDoC classification system to describe the clinical status and 

neurocognitive functioning of patients with neuropsychiatric disorders.

In line with this goal, the two main objectives of this study were; first, to determine whether 

we can identify distinct clinical phenotypes based on a composite representation of 

neurocognitive data. Second, investigate whether neuroimaging measurements acquired 

from diffusion weighted scans are predictive of identified phenotypes at an individual 
subject level and with above chance level accuracy. Notably, in this study we refer to disease 

phenotypes as subgroups or sub-classifications of patient groups with unique patterns of 

neurocognitive functioning. As a first step, this approach was applied on a sample of patients 

with bipolar disorders and validated against matched healthy controls.

Bipolar disorder (BD) is a common psychiatric disorder characterized by mania or 

hypomania, mostly alternating with depression and ranked amongst top 20 causes of 

disability worldwide (Hirschfeld and Vornik, 2005; Murray et al., 2013; Rajkowska et al., 

2001). BD is associated with a high socioeconomic burden including suicidality, substance 
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abuse and comorbidity with other disorders (Galvez et al., 2014; Hirschfeld and Vornik, 

2005; Müller-Oerlinghausen et al., 2002). Clinically, BD is categorized into two main 

subtypes; 1) bipolar I disorder (BD I) – characterized by one or more manic or mixed 

episodes, accompanied by one or multiple depressive episodes (Association, 2000; Müller-

Oerlinghausen et al., 2002). 2) Bipolar II disorder (BD II) – characterized by one or more 

hypomanic episodes with recurrent depressive episodes (Association, 2000; Müller-

Oerlinghausen et al., 2002). Noticeably, these clinical subtypes are based on observed and 

potentially heterogeneous ‘signs and symptoms’ as opposed to measureable neurobiological 

or behavioral characteristics. Consequently, the main motivation of this study was not to 

investigate neurobiological differences across subtypes of BD but to investigate distinct 

neurobiologically relevant phenotypes within the entire bipolar disorders spectrum. 

Markedly, identifying neurobiologically distinct phenotypes may lead to development of 

more effective, better-targeted treatments and most importantly personalized or 

individualized treatments. Indeed, this is also inline with the recently proposed P4 

(predictive, preventive, personalized and participatory) medicine framework in investigating 

major medical conditions (Hood and Friend, 2011).

Multiple neurocognition studies have reported impaired cognition in BD patients as 

compared to healthy individuals. For example, a recent meta-analysis summarizing 42 

studies observed significant impairments in BD patients across multiple domains such as 

attention, working memory, verbal/non-verbal memory, visuospatial function, psychomotor 

speed, language and executive function (Kurtz and Gerraty, 2009). Most recently, several 

studies have successfully identified unique neurocognitive subgroups using data-driven 

machine learning algorithms (Brodersen et al., 2014; Burdick et al., 2014; Fair et al., 2012; 

Heinrichs and Awad, 1993; LEE et al., 2014). Distinctively, a recent longitudinal study 

reported a data-driven approach able to identify neurocognition subgroups which proved to 

be useful in predicting longitudinal functional outcomes (Hermens et al., 2011). However, 

whilst these studies have undoubtedly offered significant insights on unique and objective 
phenotypes of psychiatric disorders - the association between these data-driven phenotypes 

and other neurobiological measurements (e.g. white matter tissue diffusivity) remains 

largely unexplored. Furthermore, a significant advance would be to demonstrate that 

neuroimaging measurements are highly predictive of identified disease phenotypes albeit at 

an individual subject level. Notably though, there is active research work in this area 

(Brodersen et al., 2014; Geisler et al., 2015; Karalunas et al., 2014).

Multiple studies have recently demonstrated the utility of machine learning or pattern 

recognition algorithms in making clinically relevant predictions at an individual subject level 

(Johnston et al., 2014; Lavagnino et al., 2015; Mwangi et al., 2012a; Mwangi et al., 2012b; 

Mwangi et al., 2014b; Rocha-Rego et al., 2014). Specifically, previous studies have 

attempted to discriminate DSM defined categories from matched healthy controls using 

neuroanatomical scans (Mwangi et al., 2012a; Oliveira et al., 2013; Schnack et al., 2014). 

However, whilst these algorithms have been received within the neuropsychiatric community 

with great optimism – a major criticism has been that these algorithms are ordinarily 

‘trained’ to categorize patients based on symptom-based DSM defined categories – an 

assumption which may lead to circularity (Mwangi et al., 2014a; Savitz et al., 2013). In this 

study though, we somewhat circumvent this limitation by first; identifying distinct 
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behavioral phenotypes using neurocognitive data and an unsupervised machine-learning 

technique. Second, using diffusion weighted neuroimaging scan data such as mean 

diffusivity (MD) and fractional anisotropy (FA) we ‘train’ a machine learning algorithm to 

ditinguish individual subjects' among clinical phenotypes as well as healthy controls. 

Importantly, to allow inter-subject comparisons diffusion weighted imaging FA and MD 

maps were pre-processed using the tract-based spatial statistics (TBSS) method (Smith et al., 

2006). This entailed spatial normalization of subjects' FA and MD volumes into a 

standardized template coupled with a ‘tract skeletonization’ process to account for any 

residual misalignments and resulting FA and MD volumes used in the machine learning 

analyses and phenotype validation.

Materials and Methods

Subjects

This study was approved by the local Institutional review board (IRB) at The University of 

North Carolina at Chapel Hill. Study participants included 70 patients with DSM-IV 

diagnosis of BD as shown in Table 1. A diagnosis of BD in patients was established through 

administration of the structured clinical interview for the diagnostic and statistical manual of 

mental disorders axis I (SCID I) (First et al., 2012). Subjects were excluded if they met 

criteria for substance abuse or dependence in the last 6 months preceding their participation 

in the study. Additional exclusion criteria were positive pregnancy test, neurological 

disorders, head injury with loss of consciousness and family history of hereditary neurologic 

disorders. Participants' affective state was assessed with the Hamilton Depression Rating 

Scale (HDRS) - 21 items and the Young Mania Rating Scale (YMRS) (Young et al., 1978), 

and the Montgomery-Asberg Depression Scale (MADRS) (Davidson et al., 1986).

Neurocognitive data

Participants performed the computerized Cambridge Neurocognitive Test Automated 

Battery (CANTAB - http://www.cantab.com). This cognitive battery was chosen based on 

the established sensitivity to cognitive impairments in psychiatric disorders (Sweeney et al., 

2000). Participants completed tests evaluating visuomotor speed (Choice Reaction Time – 

CRT, Motor Screening –MOT), selective and continuous visual attention (Match to Sample 

Visual Search – MTS, Rapid Visual Processing – RVP), working memory and planning 

(Intra/Extradimensional Set Shift –IED, Spatial Span task – SSP, Spatial Recognition 

Memory – SRM), and cognitive control (Affective Go/No-Go-AGN, Cambridge Gambling 

Task – CGT). These neurocognitive tasks are briefly described in Table 2 and a detailed 

description is also given elsewhere (Robbins et al., 1994).

These cognitive tasks assess domains of the NIMH RDoC framework such as arousal, 

cognitive control, declarative memory, social communication and valence system. Therefore, 

based on the preliminary description of the RDoC cognitive constructs provided elsewhere 

(http://www.nimh.nih.gov/research-priorities/rdoc/rdoc-constructs.shtml) we mapped the 

CANTAB tasks onto the RDoC construct in the following manner:

1. Arousal: includes measures of basic motor and cognitive processing speed 

such as the RTs in the CRT, MTS and MOT tasks.
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2. Cognitive control: includes measures of response inhibition such as AGN 

RTs, number of errors to neutral conditions, deliberation time and delay 

aversion (CGT) and commission errors in the IED/RVP tasks.

3. Declarative memory: includes aspects of memory retrieval assessed by the 

SSP task.

4. Social communication: includes measures of affective processing such as 

AGN RTs and number of commission errors in response to affective 

stimuli.

5. Valence system: measures of reward, reinforcement, expectancy and 

likelihood to attain reward such as quality of decision making and risk 

adjustement (CGT)

A conceptual diagram of our analytical approach and mapping of the CANTAB tasks onto 

the RDoC framework are presented in in Figure 1 and Table 2.

Neuroimaging data acquisition and pre-processing

Diffusion weighted imaging (DWI) scans were acquired using a 3.0 T Siemens allegra 

scanner using a spin echo-planar imaging (EPI) protocol with the following acquisition 

parameters. Repetition time (TR) = 9200 ms, echo time = 79 ms, slice thickness = 2 mm, 

voxel size = 2 mm, image matrix = 104 × 128 with 21 diffusion encoding directions, b-value 

= 1000 s/mm2 and one non-diffusion weighted volume (b = 0). All DWI scans were 

inspected visually to rule out any gross artefacts (e.g. ghosting). Scans were pre-processed 

using the FMRIB software package (FSL) version 5.0.7 (Smith, 2002) through the following 

steps. 1) Head motion and ‘eddy currents’ correction using FSL's ‘eddy_correct’ routine. 2) 

Removal of non-brain tissue (e.g. skull) using the brain extraction tool (BET). 3) Calculation 

and diffusion tensor fitting at every voxel as detailed elsewhere (Johansen-Berg and Behrens, 

2013). 4) Lastly, estimation of fractional anisotropy (FA) and mean diffusivity (MD) values 

was performed resulting into individual subjects' FA and MD image volumes. To allow inter-

subject statistical comparisons, scans were pre-processed using the tract-based spatial 

statistics (TBSS) (Smith et al., 2006) routine as follows. FA volumes were spatially aligned 

into a standard template available with FSL (FMRIB58_FA) through a non-linear 

registration routine (FNIRT) (Smith et al., 2006). Spatially aligned FA volumes were 

averaged to create a group average FA volume which was input into a ‘tract skeletonization’ 

routine as implemented in FSL (Smith et al., 2006). The tract sekeleton represents white 

matter tracts as single lines going through the center of the tract – a process often used to 

account for any residual misalignmets due to the spatial normalization process (Johansen-

Berg and Behrens, 2013). Lastly, individual subjects' spatially normalized FA images were 

‘projected’ onto the mean FA skeleton and thresholded using mean FA = 0.2 to exclude 

voxels which are potentially within gray matter or cerebral spinal fluid (CSF) and therefore 

avoid partial voluming. The spatial normalization and a subsequent skeletonization 

calculation was also applied to MD volumes as described elsewhere (Smith et al., 2006). 

This process resulted in FA and MD variables or feature vector of dimension 1 × 113084 and 

subsequently used in the ensuing machine learning analyses.
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Identification of data-driven phenotypes using neurocognitive data

90 cognitive scores of the CANTAB (see Supplementary Material, Table S1) were 

normalized by subtracting the mean and dividing with standard deviation (z-score) and 

entered into principal component analysis (PCA) (Jolliffe, 2005; Mwangi et al., 2014c) for 

data dimensionality reduction. Resulting principal components were entered into the k-

means clustering algorithm (Hartigan and Wong, 1979) for clustering and phenotype 

identification. However, this approach required identification of two parameters. 1) Optimal 

number of principal components. 2) Ideal number of K-means clusters. These two data-

driven parameters were identified using a ‘grid-search’ procedure which was optimized to 

maximize the average silhouette width value (Rousseeuw, 1987). Silhouette width value 

(SWV) is a statistical measure used to quantify similarity of a data point to other points 

within its own cluster as compared to data points in other clusters. SWV falls between -1 

and 1, with a value of 1 signifying most optimal number of clusters as further described in 

the supplementary materials and elsewhere (Mwangi et al., 2014a). Lastly, resulting low-

dimensional data from PCA were visualized using the t-distributed stochastic neighbor 

embedding (t-SNE) technique (Van der Maaten and Hinton, 2008). t-SNE is a data 

visualization technique used to embed high dimensional data (>3) into a low dimensional 

space (e.g. 2D) for visualization purposes (Mwangi et al., 2014a; Plis et al., 2014). The 

phenotype identification process is conceptually summarized in Figure 1. A summary of BD 

patients identified in two phenotypes (phenotype I and phenotype II) with matched healthy 

controls is shown in Table 3.

Phenotype validation using neurocognitive data

Neurocognitive scores (without PCA data reduction) were input into the least absolute 

shrinkage and selection operator (LASSO) algorithm (Tibshirani, 1996, 2011a) which was 

‘trained’ to identify individual subjects' phenotypic labels and prediction accuracy 

(specificity and sensitivity) calculated. Specifically, we assumed a two group classification 

problem (e.g. phenotype I vs phenotype II) with predictor variables or featuers 

(neurocognitive data) represented as, xij where i = 1,2, … N represents number of subjects 

and j = 1,2, … P represents number of predictor variables or features. In addition, yi 

represents corresponding target labels (1- phenotype I, 2 - phenotype II). As a result, the 

LASSO algorithm was used to compute a set of coefficients (β̂) by minimizing the following 

objective function (Tibshirani, 1996; Tibshirani, 2011b).

The algorithm parameter (λ) which is used to encourage algorithm sparsity – translating into 

fewer coefficients with non-zero weights was selected using a 10-fold cross-validation 

approach. This parameter was selected using training data only to avoid circularity also 

known as double dipping (Kriegeskorte et al., 2009; Mwangi et al., 2014c). The LASSO 

objective function was optimized using the coordinate descent algorithm through a 

MATLAB (The Mathworks, Inc) toolbox provided by Friedman and colleagues (Friedman et 

al., 2010). Lastly, a generalized linear model was used to estimate the proability of an 
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individual subject belonging to either phenotype I or phenotype II, given raw neurocognitive 

scores and the identified LASSO coefficients (β̂). In addition, the LASSO algorithm was 

also ‘trained’ to distinguish individual phenotype I or phenotype II patients from healthy 

controls. In each comparison (e.g. phenotype I vs healthy conrols) a leave-one-out cross-

validation (LOOCV) approach was used to ‘train’ and ‘test’ the model whilst the penalty 

parameter (λ) was selected using a 10-fold cross-validation with training data only. LOOCV 

involves ‘training’ an algorithm with all subjects but one whilst the ‘left out’ subject is used 

for algorithm testing (Johnston et al., 2013). This procedure is repeated until all subjects are 

‘left out’ for algorithm testing atleast once and prediction accuracy, sensitivity, specificity 

estimated. Clinical and demographic characteristics of BD patients included in both 

phenotype I and phenotype II with a matched healthy control group are summarized in Table 

3.

Phenotype validation using tract-based spatial statistics diffusion weighted imaging data

To establish whether the identified behavioral phenotypes were neurobiologically distinct, 

we examined whether diffusion weighted FA and MD volumes pre-processed using tract-

based spatial statistics (TBSS) can distinguish individual patients in phenotype I from those 

in phenotype II as well as healthy controls. Specifically, the TBSS pre-processed FA and 

MD volumes were entered into a two-group (e.g. phenotype I vs phenotype II) Elastic Net 

machine learning algorithm (Zou and Hastie, 2005)– which was ‘trained’ to predict 

individual subjects' phenotypic labels and resulting model prediction accuracy, specificity 

and sensitivity calculated. The Elastic Net algorithm follows a similar formulation as the 

LASSO albeit with an additional penalty term to encourage variable grouping and a more 

stable solution (Mwangi et al., 2014c; Ogutu et al., 2012; Zou and Hastie, 2005). The 

additional penalty term in the Elastic Net translates into the following objective function 

(Zou and Hastie, 2005)

Similar to above, xij stands for predictor variables (e.g. TBSS derived FA or MD) while yi 

represents corresponding target labels (e.g. 1 - phenotype I and 2 - phenotype II), where i = 

1, 2, …N represents observations or subjects and j = 1, 2, …P represents number of 

predictor variables (features). The Elastic Net algorithm parameters (λ1 and λ2) were 

selected using a 10-fold grid-seach process using training data only and the algorithm's 

objective function solved through the coordinate descent algorithm using a MATLAB (The 

Mathworks, Inc) toolbox provided by Friedman and colleagues (Friedman et al., 2010). 

Importantly, the Elastic Net algorithm was used in the neuroimaging phenotype validation 

step as unlike the LASSO where number of relevant predictor variables (non-zero 

coefficients) may not exceed number of observations, the Elastic Net allows relevant 

variables to exceed number of observations (Zou and Hastie, 2005) and therefore more 

suitable in visualizing relevant group-level statistical maps. Similar to agove, a generalized 

linear model was used to estimate a proability of an individual subject belonging to 

phenotype I or phenotype II patieng groups given TBSS pre-processed FA and MD features. 
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In addition, the Elastic Net algorithm was also ‘trained’ to distinguish individual phenotype I 

or phenotype II patients from healthy controls. In each comparison (e.g. phenotype I vs 

healthy conrols) a LOOCV approach was used to establish prediction accuracy whilst 

algorithm parameters were selected using a 10-fold cross-validation approach using training 

data only as shown in Figure 2. Importantly, a ‘consensus group-level map’ higlightinig FA 

or MD differences among groups (e.g. phenotype I vs phenotype II) was generated by 

identifying features identified by the algorithm as ‘relevant’ - by the virtue of having a non-

zero model coefficients across all LOOCV iterations. A ‘consensus map’ approach has 

previously been used to summarize group-level differences in machine learning studies 

(Dosenbach et al., 2010; Mwangi et al., 2013). Lastly, prediction accuracy, sensitivity and 

specificity in identifying patients from both phenotypes using FA and MD features were 

summarized and reported. A similar calculation was performed between the healthy control 

and patient phenotypic groups.

Results

Table 1 summarizes the sociodemographic and clinical details of BD patients used in the 

phenotype identification process. The unsupervised machine learning approach identified 

two phenotypes as shown in Figure 1. Detailed sociodemographic and clinical characteristics 

of both phenotypes are shown in Table 3. The optimal number of principal components in 

PCA was selected using a ‘grid-search’ procedure by maximizing the average silhouette 

width value as shown in Figure 3. The most optimal silhouette width value was 0.74. Raw 

CANTAB measurements (without PCA data reduction) predicted individual subjects' 

phenotypic labels with 94% accuracy, 97% specificity, 92% sensitivity, 0.945 area under 

receiver operating characteristic curve and chi-square (p < 0.005) as shown in Figure 4. As 

illustrated in Table 4 the CANTAB tasks identified by the LASSO algorithm as most 

relevant in distinguishing phenotype I and phenotype II subjects included the AGN (relevant 

variables included the mean RT to correct trials across non-shift blocks, in particular those 

starting with positive stimuli, and during shift blocks starting with negative stimuli, and the 

number of commission errors during non-shift blocks starting with neutral stimuli), the CGT 

(quality of decision making), the IED (accuracy on the extradimensional component) and 

CRT (general alertness and motor speed).

Table 5 summarizes prediction results in distinguishing individual patients in phenotype I 

from those in phenotype II using neurocognition and diffusion weighted measuremetns (FA 

and MD). Specifically, Elastic Net algorithm ‘trained’ using FA data distinguished both 

phenotypes with 75.9 % accuracy. In addition, individual phenotype II patients were 

distinguished from healthy controls with 92% accuracy as shown in Table 5. The most 

relevant anatomical regions in distinguishing phenotype I and phenotype II patients included 

frontal white matter tracts such as; inferior frontal-occipital fasciculus (IFOF) and the minor 

forceps of the corpus callosum. In particular, phenotype II showed reduced FA and increased 

MD values in a significant cluster within the IFOF as compared to phenotype I patients and 

healthy controls as shown in Figure 5.
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Discussion

We have presented a proof-of-concept study investigating the utility of an unsupervised data-
driven machine learning approach to identify biologically distinct and less heterogenous 

phenotypes in bipolar disorders. Most importantly, our approach utilizes neurocognitive 

measurements to identify unique phenotypes which are validated using neuroanatomical 

markers. The most compelling finding of this study is the identification of two unique 

phenotypes (phenotype I, phenotype II) which did not overlap with DSM-IV derived 

categories (BD I, BD II and BD-NOS). Notably, phenotypes I and II display distinct 

cognitive profiles on the cognitive control, social communication and arousal RDoC 

constructs. Markedly, neuroimaging measurements of microstructural white matter 

diffusivity successfully identified individual subjects from both phenotypes with high 

accuracy. In addition, individualized prediction distinguished patients from both phenotypes 

from healthy controls – in particular phenotype II patients.

Most relevant neurocognitive and neuroanatomical measurements

The most relevant CANTAB measurements in separating the two phenotypes included 

measures of reaction time in the AGN task, response accuracy in the ID/ED, and quality of 

decision making during the CGT task. Importantly, we report two key observations and 

characteristics of both phenotypes from the CANTAB measurements. First, phenotype I 

patients exhibited reduced response accuracy during the AGN and IED tasks and slow 

decision making during the CGT task. Second, Phenotype II patients exhibited slower 

reaction time in the AGN and CRT tasks but their decision-making approach was more 

efficient than that of phenotype I patients. Therefore, it could be argued that Phenotype II 

patients completed the AGN and CGT tasks in a strategic manner, by trading speed for 

accuracy. The slow reaction times in both the AGN and CRT tasks may also be consistent 

with psychomotor slowing. Notably, in the AGN task individuals with phenotype I made a 

greater number of commission errors in response to positive and neutral stimuli but not to 

negative stimuli when compared to individuals with phenotype I. This pattern of responses is 

in line with concept of “negative affective bias”, a well-established feature of mood 

disorders including bipolar disoders (Bauer et al., 2015; Gotlib et al., 2005). Negative 

affective bias is defined by the inability to disengage from processing negative stimuli even 

after they disappear. This inability impairs the processing of subsequent stimuli and could 

explain the reduced accuracy in processing positive and neutral stimuli (Singhal et al., 

2012), as observed in the current study. Previous studies found that verbal memory, 

psychomotor speed, executive functioning, and to a less extent visual memory and attention, 

are greatly impaired in BPD patients (Bora et al., 2009; Cavanagh et al., 2002; Glahn et al., 

2007; Lopes and Fernandes, 2012; Martínez-Arán et al., 2004; Quraishi and Frangou, 2002; 

Sapin et al., 1987; Zubieta et al., 2001). In a recent study, patients with BD type I displayed 

a perseverative and risky behavior in the CGT (Linke et al., 2013). Notably, relatives of BD 

patients displayed a similar cognitive performance, which along with our present findings; 

indicate that the performance in the CGT task may be a potential marker of disease 

susceptibility. However, other studies examining executive functions in BD are more 

controversial as they suggest a possible effect of mood phase on cognitive functioning. For 

instance, Clark and colleagues found that euthymic BD encountered set-shifting difficulties 
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during the IED task (Clark et al., 1999), while another study found that the performance of a 

bipolar sample in a depressed/mixed state was comparable to that of healthy volunteers 

(Sweeney et al., 2000). It is noteworthy that in the current study, phenotype I and phenotype 

II patients were comparable in regard to subjects' current level of mood symptoms. 

Therefore, differences in performance in the CANTAB tasks are unlikely to be related to the 

mood of the participants. Additionally, the reported executive function impairment (e.g. slow 

reaction times and errors in the AGN task) in both phenotypes is consistent with previous 

evidence of structural and functional abnormalities in anatomical regions responsible for 

executive control in pediatric and adult populations with BD (Brambilla et al., 2002; Hajek 

et al., 2005; Houenou et al., 2011; Lim et al., 2013; Sassi et al., 2004; Soares and Mann, 

1997). Compared to individuals with phenotype I, those with phenotype II displayed slowed 

reaction times in the AGN and CRT tasks. Notably the quality of the decision making (e.g. 

gambling on stimuli with a more likely outcome) was higher in phenotype II than in 

phenotype I. Phenotype I is characterized by an overall higher number of commission errors 

in the AGN and ID/IED tasks, and slowed decision making in the CGT task.

In terms of imaging results, white matter diffusivity values within the frontal white matter 

tracts were most relevant in distinguishing individual patients from both phenotypes. As 

shown in Table 6, the most relevant clusters were within the inferior fronto-occipital 

fasciculus (IFOF) and the minor forceps of the corpus callosum. In particular, phenotype II 

patients showed reduced FA values and increased MD values within the IFOF as compared 

to phenotype I patients and healthy controls. The IFOF is a white matter pathway that 

connects the posterior or superior temporal regions with the dorsolateral prefrontal cortex 

(McCrea, 2008). Although the IFOF connects the frontal temporal and occipital lobes, it's 

main functions are still not very well understood although there is evidence that this white 

matter pathway connects the prefrontal cortex and auditory as well as visual association 

cortex and associated with functions such as semantic processing and attentional set-shifting 

ability (Kvickström et al., 2011). A recent meta-analysis reported reduced FA in the IFOF of 

bipolar disorder patients as compared to healthy controls (Vederine et al., 2011). However, in 

the current study, we observed reduced FA and increased MD in the IFOF of phenotype II 

patients as compared to healthy controls and not in phenotype I patients. Other white matter 

anatomical regions most relevant in distinguishing phenotype I from phenotype II patients 

included; isthmus of the corpus callosum, mid colossal pathways, anterior forceps of corpus 

callosum as well as the cingulum. In summary, phenotype II patients reported reduced FA 

and increased MD values within the IFOF white-matter tract and longer reaction time in the 

AGN cognitive task.

The current application of the RDoC approach is to be viewed as a first step in parsing out 

heterogeneity in complex psychiatric disorders. However, although the RDoC framework is 

increasingly being used in clinical research, to the best of our knowledge this is amongst the 

first studies that have used the RDoC cognitive constructs in combination with neuroimaging 

measures to identify and validate biologically distinct disease phenotypes. Consequently, 

given the lack of clear guidelines to “translate” classical neuropsychological measures into 

the RDoC framework, this approach is challenging as it relies on the subjective evaluation of 

the definition of each cognitive domains, but certainly constitutes a starting point to improve 

understanding of the RDoC dimensions.
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Limitations

Potential limitations of this study should be noted. First, the study sample size was small and 

therefore this approach will need to be validated using a larger sample size. However, the 

generalization ability of the supervised machine learning algorithms using both 

neurocognitive data and diffusion weighted neuroimaging scan data were significant (chi-

square p<0.05). This indicates that the sample size may have been adequate to identify 

biologically distinct phenotypes. Our sample did not include other DSM related categories 

(e.g. major depression or schizophrenia) and future work will focus on extending the sample 

in a ‘dimensional’ approach to include other psychiatric syndromes and spectrums (e.g. 

depression, psychosis) as also hypothesized elsewhere (Insel and Cuthbert, 2015; Mwangi et 

al., 2014a; Stephan et al., 2015). Markedly, future work will also focus on examining the 

utility of multi-class or multinomial classification methods in identifying subjects from all 

groups (e.g. phenotype I vs. phenotype II vs. healthy controls) as well as validating 

identified phenotypes using other biological markers such as genetics.

Conclusion

We highlight three notable observations from this proof-of-concept study. First, multivariate 

patterns of neurocognitive measurements are potentially useful in patient stratification and 

unearthing distinct or monolithic phenotypes in heterogeneous patient populations. Second, 

neuroimaging measurements are potential validators and predictors of phenotypic groups 

identified using behavioral data. Third, machine learning predictive classification techniques 

(e.g. LASSO, Elastic Net) give a strong indication that identified phenotypes are biologically 

relevant and may be useful clinically. Data-driven and biologically relevant disease 

phenotypes identified using this approach will give the psychiatric research community a 

unique opportunity to identify objective and biologically relevant disease categories. 

Markedly, if we are to determine objective and clinically meaningful phenotypic bio-

signatures which can be identified through quick and hazard free biological tests – this will 

lead to improved patient care and better targeted therapeutic interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

An unsupervised machine learning method and neurocognitive data used to identify two 

phenotypes

LASSO distinguished two phenotypes using neurocognitive data with 94% accuracy.

Elastic Net validates differences of the two phenotypes using FA data with 76% accuracy.

Healthy controls are further used to validate differences between the two phenotypes.
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Figure 1. 
A flow diagram illustrating the ‘top-down’ conceptual approach used in this study. A) 

Phenotypes were identified using CANTAB neurocognitive scores through data 

dimensionality reduction and clustering using the principal component analysis and k-means 

clustering techniques. B) Phenotypes were validated using raw neurocognitive scores 

(without data dimensionality) and neuroimaging measurements (fractional anisotropy and 

mean diffusivity). Supervised machine learning techniques – LASSO and Elastic Net were 

‘trained’ to predict individual subjects' phenotypic labels using neurocognitive scores or 

neuroimaging measurements. The supervised model was ‘trained’ and ‘tested’ using a leave-

one-out cross-validation process.
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Figure 2. 
Flow diagram showing the leave-one-out cross-validation process used with the Elastic Net 

algorithm in predicting subjects' phenotypic lables. Algorithm regularization parameters 

were selected using a 10-fold grid-search process using training data only to avoid 

circularity or double dipping.
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Figure 3. 
A) Grid-search plot illustrating a search for optimal number of principal components and k-

means number of clusters that lead to a high silhouette width value. The grid-search process 

selected 4 components accounting for 43.09 % variance and 2 clusters with a silhouette 

width value of 0.735. B) 2-dimensional (2D) visualization of phenotype I and phenotype II 

patient groups. Low dimensional 2D points were generated using the t-distributed stochastic 

neighbor embedding (t-SNE) technique by mapping the most relevant principal components 

(leading to a high silhouette width value) from a high-dimensional (4D) into a lower visually 

plausible 2D space. Importantly, the two phenotypes did not overlap with DSM-IV related 

categories (BP I, II and BP-NOS). Notably, t-SNE units are arbitrary and they only depict 

subjects' similarities based on euclidean distances.
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Figure 4. 
A) Confusion matrix and ROC curve generated from a LASSO algorithm which was trained 

using ‘raw’ neurocognitive tasks scores (see Table 2) to predict individual subjects 

phenotypic labels. The model predicted individual subjects phenotypic labels with 94% 

accuracy (sensitivity= 92%, specificity =97%) and area under ROC curve (AUC) = 0.9449. 

B) Confusion matrix and ROC curve generated from a Elastic Net algorithm which was 

trained using whole brain fractional anisotropy values to predict individual subjects 

phenotypic labels. The model predicted individual subjects phenotypic labels with 76% 

accuracy (sensitivity= 76%, specificity =76%) and area under ROC curve (AUC) = 0.7593.
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Figure 5. 
A) The most relevant white-matter tracts in distinguishing phenotype I from phenotype II 

patients at an individual subject level. IFOF – inferior fronto-occipital fasciculus, MFCC - 

minor forceps of the corpus callosum. B) A multisclice view of the most relevant clusters. C) 

A comparison of FA values within IFOF cluster in healthy controls (HC), phenotype I (PH1) 

and phenotype II (PH2). Phenotype II patients showed reduced FA values as compared to 

healthy controls and phenotype I patients. D) A comparison of MD values within IFOF 

cluster in healthy controls (HC), phenotype I (PH1) and phenotype II (PH2). Phenotype II 

patients showed increased MD values as compared to healthy controls and phenotype I 

patients. These analysis of Variance (ANOVA) statistical tests were performed using SPSS 

Version 20, IBM Inc and corrected for multiple comparisons using the Bonferroni method.
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Table 1

Demographic and clinical details.

Mean (SD)

Age (years) 33.87 (13.02)

Female/total (N) 41 (70)

Age of onset (years) 16.98 (6.43)

Education (Number of years) 14.42 (2.67)

YMRS 5.64 (5.49)

HDRS 12.59 (8.17)

MADRS 17.30 (11.33)

Hollingshead SES score 29.59 (17.22)

BD subtype

DSM IV bipolar disorder I (N) 47

DSM IV bipolar disorder II (N) 12

DSM IV bipolar disorder NOS (N) 11

Comorbidities

Panic disorder (N) 8

Social phobia (N) 5

PTSD (N) 13

OCD (N) 3

GAD (N) 8

Substance abuse (N) 15

Specific/simple phobia (N) 2

Agoraphobia (N) 7

Anxiety disorder (N) 1

Anorexia (N) 1

Currently or previously taken any psychotropic medication (N) 61

Race

White (N) 51

Black (N) 5

Hispanic (N) 2

Unknown (N) 12

BPD- bipolar disorder, SD- standard deviation, YMRS- young mania rating scale, HDRS- Hamilton depression rating scale, MADRS- 
Montgomery-Asberg Depression Scale, SES – social economic status, PTSD- Post-traumatic stress disorder, OCD- obsessive compulsive disorder, 
GAD- generalized anxiety disorder.
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Table 2

Cognitive tasks and measurements.

No. CANTAB Task Evaluation Measurements

1 Affective Go/No-Go Affective and Cognitive control Reaction time, accuracy

2 Cambridge Gambling Task Decision-making Reaction time, accuracy, proportion bets across trials with more/
equally/less likely outcome

3 Choice Reaction Time Cognitive processing speed Reaction time, accuracy

4 Intra/Extradimensional Set Shift Working memory and planning Accuracy

5 Motor Screening Motor processing speed Reaction time

6 Match to Sample Visual Search Visuo-motor speed Reaction time, accuracy

7 Rapid Visual Processing Sustained attention Reaction time, accuracy

8 Spatial Recognition Memory Spatial memory Reaction time, accuracy

9 Spatial Span task Spatial working memory Span length, number of attempts, reaction time

*
Reaction time is in milliseconds.
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Table 3

Demographic and clinical variables of Healthy controls, Phenotype I and Phenotype II patients. Notably, this 

table was generated ‘post-hoc’ – after the unsupervised machine learning step.

Healthy controls mean (SD) Phenotype I mean (SD) Phenotype II mean (SD) p-value

Age (years) 32.93 (13.38) 33.47 (13.05) 34.34 (13.17) 0.9042

Female/total (N) 22 (38) 24 (38) 17 (32) 0.6963

Education (Number of years) 16.53 (3.68) 13.19 (3.09) 15.71 (2.37) < 0.001

BD subtype

0.9468
 DSM IV bipolar disorder I (N) - 26 21

 DSM IV bipolar disorder II (N) - 6 6

 DSM IV bipolar disorder NOS (N) - 6 5

Current mood status -

0.6746

 Euthymic (N) - 7 12

 Depressed (N) - 20 12

 Manic (N) - 2 1

 Hypomanic (N) - 3 0

 Mixed (N) - 2 3

 Undertermined (N) - 4 4

Age of manic (years) - 15.82 (14.12) 10.70 (9.09) 0.1209

Age of depression (years) - 18.27 (13.28) 16.53 (11.11) 0.6049

Comorbidities (total) (N) - 21 20 0.4236

Current lithium (N) - 1 4 0.1026

Current severity - 2.27 (1.43) 3.64 (2.06) 0.0096

HAMD (total) - 14.06 (7.33) 11.93 (8.94) 0.3031

MADRAS (total) - 18.76 (10.38) 15.59 (12.32) 0.2707

YMRS (total) - 6.74 (5.56) 4.43 (4.60) 0.0757

BD- bipolar disorder, SD- standard deviation, HAMD- Hamilton rating scale for depression, MADRS- Montgomery-Asberg Depression Scale, 
YMRS- young mania rating scale.
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Table 4

Cognitive tasks scores most relevant in distinguishing phenotype I from phenotype II patients using LASSO.

Cognitive task feature Research domain criteria 
(RDOC) construct

Mean beta value Beta % Comparison

AGN mean RT nonshift blocks (ms) Cognitive control 1.5111 25.09% PH2 > PH1

AGN mean RT to nonshift blocks starting with positive 
stimuli) (ms)

Social communication 0.7858 13.05% PH2 > PH1

AGN mean RT to shift blocks starting with negative stimuli 
(ms)

Social communication 0.7283 12.09% PH2 > PH1

AGN N commissions errors in shift blocks starting with 
positive stimuli

Social communication -0.6200 10.29% PH1 > PH2

AGN N commissions errors in nonshift blocks starting with 
neutral stimuli

Cognitive control -0.5027 8.35% PH1 > PH2

CGT deliberation time descending blocks (ms) Cognitive control -0.3644 6.05% PH1> PH2

CRT minimum RT (ms) Arousal 0.3037 5.04% PH2 > PH1

CGT quality of decision making Valence system 0.2990 4.96% PH2 > PH1

IED N errors during Intradimensional component Cognitive control -0.2480 4.12% PH1 > PH2

CGT deliberation time (ms) Cognitive control -0.2428 4.03% PH1 > PH2

PH1 – Phenotype I, PH2 – Phenotype II, AGN – Affective Go/No-go, CGT – Cambridge Gambling Task, CRT – Choice Reaction Time, IED – 
Intra/Extradimensional Set Shift, RT – Reaction time.
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