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Abstract NMRFx Processor is a new program for the

processing of NMR data. Written in the Java programming

language, NMRFx Processor is a cross-platform applica-

tion and runs on Linux, Mac OS X and Windows operating

systems. The application can be run in both a graphical

user interface (GUI) mode and from the command line.

Processing scripts are written in the Python programming

language and executed so that the low-level Java com-

mands are automatically run in parallel on computers with

multiple cores or CPUs. Processing scripts can be gener-

ated automatically from the parameters of NMR experi-

ments or interactively constructed in the GUI. A wide

variety of processing operations are provided, including

methods for processing of non-uniformly sampled datasets

using iterative soft thresholding. The interactive GUI also

enables the use of the program as an educational tool for

teaching basic and advanced techniques in NMR data

analysis.

Keywords NMR � Data processing � Signal processing �
Non-uniform sampling

Introduction

Any use of NMR data requires that the raw data be

transformed using a variety of signal processing algo-

rithms (Hoch and Stern 1996). Given the relatively low

sensitivity of the NMR experiment, the vast variety of

experimental techniques for magnetization transfer, and

the expense of preparing many samples, proper data

analysis is crucial to ensuring that the information con-

tained in the raw data can be effectively transformed into

knowledge about the molecular system under study. A

variety of non instrument vendor choices for users exist in

visualization (Bartels et al. 1995; Johnson 2004; Johnson

and Blevins 1994; Keller; Lee et al. 2015; Vranken et al.

2005), but fewer actively supported ones exist for data

processing (Delaglio et al. 1995; Hoch and Stern 1996). In

particular, we’re not aware of an open source, cross-

platform, comprehensive processing program with a

modern graphical interface. In this manuscript we

describe a new program for processing NMR data. The

application builds on some low level code from

NMRViewJ (Johnson 2004; Johnson and Blevins 1994),

adds new processing operations that include support for

non-uniformly sampled data, and adds a totally new

graphical user interface (GUI) for setting up the pro-

cessing (Fig. 1). The combination of some legacy code

from NMRViewJ with the use of the new Java GUI

toolkit, JavaFX, led to the choice of the name, NMRFx

Processor.

As noted in the paper introducing nmrPipe (Delaglio

et al. 1995), users of NMR data are often not experts in
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data processing or even NMR theory. Accordingly it’s

vital that processing tools be readily usable by non-ex-

perts. To facilitate this, most datasets can be processed in

NMRFx Processor with sensible default operations and

parameters with minimal user input. At the same time, we

consider it important that NMRFx provide insight into the

processing operations and that use of NMRFx has edu-

cational value. To this end, any addition of new pro-

cessing operations or modification of parameters by the

user is applied on the fly, clearly demonstrating their

effect. This not only makes it more likely that users will

maximize the information content available from their

data, but also serves as a useful educational tool for

teaching basic and advanced techniques in NMR data

analysis.

NMRFx Processor provides a new option for process-

ing NMR datasets and includes both command line and

GUI based processing. This cross-platform application

runs on Windows, Mac OS X, and Linux. The inclusion of

many processing options, including protocols for non-

uniformly sampled data, allow its application to a wide

variety of one dimensional and multi-dimensional NMR

datasets.

Methods

Supported platforms

Users differ in their preference for type of computer for

daily use. Various versions of Mac OS X, Windows, and

Linux, some in both 32 bit and 64 bit versions, are widely

used. Providing software tools that work across all of these

platforms is a challenge to which three strategies are gen-

erally applied. First, native applications can be specifically

developed for each platform. Second, applications for a

single platform (typically Linux) can be developed and

then run in a virtual operating system (for example,

VMWare Fusion, Parallels, VirtualBox) on the user’s

preferred platform. Third, applications can be developed in

a cross-platform environment like Java so that the same

application code can be run on any of the platforms. For

several reasons, we’ve chosen the latter approach. It allows

more developer time to be spent on application develop-

ment, rather than getting the software to compile and run

natively on diverse computers. Unlike the use of virtual

operating system environments, it allows execution with

essentially native appearance and integration, and doesn’t

Fig. 1 Screenshot of NMRFx graphical user interface. The main

window is shown with the first processed first row of an HSQC

spectrum. The smaller window shows the list of operations that are

currently specified for processing of the first dimension. Selecting an

operation in the list populates the area below with controls for

adjusting parameters relevant to that operation. Inserting, moving or

deleting operations or changing parameters immediately updates the

displayed vector with application of the new processing scheme
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require partitioning processors and memory between the

native and virtual operating system. Java also provides rich

features for harnessing the power of multi-core computers,

access to extensive libraries of cross-platform tools, and

features of a modern object-oriented language.

Software tools

NMRFx and its associated data engine are written in a

combination of Java and Python. Java code is used for all

low-level processing and display code. The current release

of the code is compiled with Java version 1.8. In the normal

distribution of NMRFx the Java Runtime Environment is

included in the installer and installed along with program

code. This removes the necessity of ensuring a compatible

version of Java is installed on their computer, essentially

making the use of Java transparent to the end-user.

The GUI of NMRFx (Fig. 1) is created using JavaFX, a

recently developed GUI toolkit which is standard with Java

version 1.8 and later. The actual graphical displays are

created in a combination of FXML (an XML based format

for defining JavaFX interfaces) and Java code.

The Python programming language is used for pro-

cessing scripts. Python as used in NMRFx is actually

implemented with Jython (http://www.jython.org), which is

a Java based implementation of Python. Jython 2.7.0 is

used in the current release and is essentially feature com-

plete with C Python 2.7.

Building of NMRFx is managed with Maven and source

code is stored in the Mercurial source code management

system. Unit tests are developed with JUnit and Python

unittest.

The source code for NMRFx Processor (for both the

GUI and low-level processing) will be available under the

GNU General Public License (GPL) version 3.

Processing engine

A hallmark of NMR is the extensive variety of experi-

mental techniques implemented in pulse programs. The

configurable options and parameters exposed in the

NMRFx GUI are designed to be sufficiently flexible to

support this wide variety. However, in many cases the use

of user-defined scripts will be the most powerful and

appropriate option. Accordingly, the NMRFx processing

engine uses scripts that are expressed in the Python pro-

gramming language (Fig. 2).

These scripts consist of three main sections. File oper-

ations (FID, CREATE) specify the raw FID(s) to open and

the dataset(s) to create. At present, NMRFx Processor can

read Agilent (Varian), Bruker, and 1D JCAMP files and it

stores the resulting spectrum data in the sub-matrix dataset

format used by both NMRViewJ (Johnson and Blevins

1994) and Sparky (Lee et al. 2015) These two formats

differ only in the information stored in the header and the

output choice is determined by the specified file name

extension (.nv or.ucsf). Converters for outputting the data

in formats used by other NMR visualization programs are

under development and the NMRViewJ file format is

documented in the online manual so that other developers

can add their own file readers and converters. Referencing

commands (sw, label etc.) specify parameters used in

dataset referencing (see below) and data sizes. Processing

commands specify the actual signal processing operations

to be performed and their use will be described here.

Processing commands are added by first specifying a

DIM command (with an argument specifying the dataset

dimension (1, 2, …). Subsequent commands, that refer to

processing operations (ZF, SB, FT, etc.), append the

specified operation on to a list of operations that will be

performed on that dimension. At present, over 60 different

processing commands are available. The most commonly

used are listed in Table 1, and the complete list is in Online

Fig. 2 Example of an NMRFx Processing Script. This script is used

to process a 2D HSQC dataset. It includes reference commands and

processes each dimension with sine-bell apodization, zero-filling,

Fourier transform and phasing. The first dimension has an EXTRACT

command to extract the signal-containing region
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Resource 1. These processing operations, as used in the

script, correspond to methods defined in the Python pro-

gramming language and standard use of method arguments

apply. Most commands have optional arguments with

default values. Arguments can be specified with their

argument names, EXTRACT(start = 100,end = 500), or

without argument names, EXTRACT(100,500), if they are

provided in the order they appear in the method definition.

All operations have at least brief documentation embedded

in the method definition and these are extracted to generate

overall documentation for all available operations. All

scripts must end with a run command. Commands in the

script prior to the run command define what processing

will occur. The run command itself triggers execution of

the low-level processing code that carries out the specified

processing operations.

A brief description of the implementation will aid in

understanding the relation of the Python processing oper-

ation commands, and the actual processing (Fig. 3). The

DIM command creates a new instance of a Java object

corresponding to the Process class. The subsequent Python

processing operation commands don’t normally perform

actual processing, instead they append an instance of a Java

object corresponding to that operation on to a list main-

tained by the Process object. Thus, at the end of the script

in Fig. 2, two Process objects will exist. The first contains a

list of the six operations (each defined by a Java object that

implements the code for the operation) used in processing

the first dataset dimension, and the second contains a list of

the four operations used in processing the second dataset

dimension.

The run command at the end of the script triggers a

Processor object to load vectors from the raw dataset and

make them available to the Process object for the first

dimension. The Process object requests a set of vectors

from the Processor and then steps through the series of

operations and calls the method in each operation to pro-

cess the current list of vectors. This is repeated until all

available vectors are processed. The operation list for each

Process object has an implicit operation appended that

Table 1 Common processing operations

Operation Description

AUTOPHASE Automatic phasing of current vector

BCPOLY Baseline correction with polynomial

BCWHIT Baseline correction with smoothed line

CSHIFT Circular shift

DC Baseline correction by linear offset

EXPD Apodization with exponential decay

EXTRACT Extract a range of the spectrum (for example the left half of an amide detected spectrum)

FDSS Frequency domain solvent suppression

FT Fourier transform

GM Apodization with Lorentz to Gauss transform

HFT Hilbert tranform to recover imaginary components of real valued spectrum

IST Iterative soft thresholding of a 1D vector (used for 2D datasets)

ISTMATRIX Iterative soft thresholding of an nD matrix (used for 3D and higher datasets)

LP Extend the vector with linear prediction

LPR Replace starting points with linear prediction

MAG Magnitude calculation

PHASE Adjust the phase of the spectrum

POWER Power calculation

REGIONS Specify regions of the vector. Typically used prior to baseline correction.

REVERSE Reverse the spectrum

SB Apodization with a sine or cosine window

SCRIPT Execute a Python script. The current vector is accessible as a Python object named ‘‘vec’’

TDCOMB Form linear combinations of time domain signal using specified coefficients

TDSS Time domain solvent suppression

ZF Zero fill

Complete list in Online Resource 1
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writes the processed vectors out to the destination dataset.

The overall scheme is repeated for each available Process

object, typically one per dimension. After the second

dimension, vectors to be processed are read, not from the

original FID file, but from the destination so that the pro-

cessing is done in place on a single final file. Processing is

complete when all Process objects have been executed.

Parallel computation

The time required for dataset processing is an important

concern in NMR processing. Rapid processing allows the

user to try, possibly interactively, multiple processing

schemes and parameter values so that the final spectral

quality can be optimized. Furthermore, many newer

experimental protocols involving non-uniform sampling

can save considerable time in experimental acquisition, but

may require complex and lengthy processing schemes. One

way to decrease the time required for dataset processing is

to perform calculations in parallel. This is possible because

almost all modern computers, even simple laptops, use

processors that have multiple cores that can operate in

parallel. More expensive desktop and server computers

may include multiple CPU chips, each with multiple cores.

Utilizing these multiple cores, however, is not generally

automatic and requires the processing software to be

specifically designed to use them.

The NMRFx processing engine has been engineered

from the very beginning to take advantage of multiple core

computers. Parallelizing the processing scheme is in prin-

ciple straightforward since most NMR processing involves

applying the same set of operations to a large number of

subsets of the data. These data subsets may be the multiple

1D vectors parallel to a given dataset dimension involved

in standard processing schemes, or higher dimensional

matrices used in schemes for processing non-uniformly

sampled data.

As noted, NMR data is readily amenable to parallel

processing, but in practice this requires careful software

development. The Processor object mentioned above can

execute the processing operations in parallel. When the

processing script’s run command is called the Processor

checks for the number of operations to run in parallel. Prior

to triggering each Process object to execute its operations,

the Processor clones the Process object for each parallel

operation. Actual parallel operation is done using Java’s

code for setting up a Thread pool with one thread for each

planned parallel operation. Each of the cloned Process

objects is submitted to the Thread pool. Two parameters

control how the parallelization works: the number of

threads to be created (and thereby processing operations to

run in parallel), and the number of vectors that each Pro-

cess should request at a time. The thread number defaults

to half the value returned by the Java Runtime.avail-

ableProcessors() method. This typically yields a number

equal to the number of processor cores. The raw number

from Runtime.availableProcessors is generally twice the

number of processor cores on Intel Processors as Intel’s

Fig. 3 Flow chart of the

NMRFx processing scheme.

The Python script is interpreted

by Jython (the Java version of

Python that is embedded in

NMRFx). This generates a set of

Java operations, one for each

processing command. The Java

Processor in NMRFx replicates

the list of Processes so that the

processing can take advantage

of multiple CPUs or CPU cores.

The Processor also manages the

reading and writing of data

values
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Hyper-Threading technology (Marr et al. 2002) makes each

core appear to the operating system as two processors. The

number of vectors per process will control the amount of

memory used during processing. Too many vectors per

process may result in the application exceeding available

memory, while too few may increase the proportion of

overhead time used by each process. The number of vectors

requested at a single time by a Process object is by default

set to the total number of vectors to be processed divided

by the number of processors, or 64, whichever is smaller.

The user can modify both the thread number and vector

number. The key feature of this parallelization is that it

requires no extra effort, such as script modification, by the

user. Parallel processing happens automatically and trans-

parently to the user.

Graphical user interface

NMRFx Processor provides a full GUI for viewing NMR

data in both the raw FID and processed spectrum and in

interactively defining processing scripts. Figure 1 shows a

screenshot of the GUI in action. The main display window

is capable of displaying both raw FIDs and processed

spectra. The code for spectral display, which is derived

from NMRViewJ code, is capable of basic 1D vector and

2D contour plots of data of any dimension number.

Clicking a button in the toolbar will open NMRViewJ and

display the current dataset so as to allow more extensive

visualization and analysis. The main window contains a

toolbar with options for standard display control (vertical

height, zooming etc.). A spectrum attributes window,

similar to that in NMRViewJ, can be displayed to control

colors, view orientation and slice display parameters.

The separate Processor window has features for inter-

actively specifying processing parameters and operations.

Five tabbed display regions provide access to Parameters

(labels, spectrometer frequency etc.), Operations (pro-

cessing commands), Scripts (the Python processing script),

the Scanner tool (used for batch processing of multiple

datasets) and a Console. The Operations tab provides

access to a menu of processing operations, grouped by

categories like Apodization, Phasing, and Transforms.

Choosing an operation from the menu inserts the operation

(with default parameters) into the processing list. Opera-

tions have a preferred ordering so, for example, a Phase

operation will be inserted after a Fourier Transform oper-

ation, and an apodization operation will be inserted before

the Fourier Transform command. As the default order may

not be appropriate, it is possible to click and drag opera-

tions to new positions in the list.

Most operations have associated optional parameters,

which are specified in scripts as arguments to the Python

command. These parameters can be interactively adjusted

by controls in the GUI. Selecting an operation in the

operation list will display the corresponding controls in the

area below the list.

Any changes in the processing operations affected by

adding, deleting, or moving operations, or changing the

parameters associated with an operation, will result in the

application of the operations to the current FID vector (or

vectors if the processing requires combinations of vectors).

The processed vector displayed in the data display region

will immediately be updated. This allows the user to

interactively change the processing scheme and observe the

effects on the FID. This display update works with both the

directly detected FIDs and, in the current version, with

indirectly detected FIDs from 2D datasets. Display of the

indirect FID (obtained by locating correct data points from

the raw FID file) allows visual analysis of the processing

scheme for the indirect dimension (in 2D datasets) prior to

doing the transform of the direct dimension. We expect to

extend this capability to higher dimensional spectra, but

this is not a priority as the lower signal to noise can pre-

clude useful analysis of a single processed indirect FID in

higher dimensional spectra.

Some processing schemes may require various linear

combinations of FIDS such as forming a new pair of FIDs

from the addition and subtraction of the original pair.

NMRFx Processor allows the user to select and display

each member of a set of vectors to be combined. The

interactive processing can include the linear combination

operation so the user can assess whether the correct com-

bination has been made.

When using multi-dimensional datasets, processing of

the complete dataset (or specified subset) is initiated by

clicking the ‘‘Process Dataset’’ button. Upon completion of

processing, the resulting spectrum file will be opened and

displayed as a 2D contour plot. For smaller datasets, where

the processing can be done rapidly (under 1 s) it is feasible

to trigger processing and dataset display interactively while

adjusting operations and parameters. Selecting the ‘‘Auto

Update’’ button activates this interactive mode. We expect

that an NMRFx feature under development, where the

dataset is kept fully in memory, will make this feasible for

larger datasets.

The Script tab is used to view, edit, open and save

Python processing scripts. Selecting the Script tab will

immediately update the displayed script based on selected

parameters and operations. The script can be manually

edited prior to clicking the ‘‘Process Dataset’’ button. The

edited script will be used for the processing. In the current

version, leaving the script tab and returning will reconstruct

the script from the operation list, losing any manual

changes. When the dataset is processed, the current script

will be saved as a file named ‘‘process.py’’ in the same

directory as the FID file. Menu commands can be used to
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save or load the processing script to or from a specified file.

When a script is loaded it is parsed and the parameters and

operation lists for all dimensions are updated based on the

script. Script commands for selecting the dataset and output

file (FID and CREATE) are replaced with commands based

on the currently active dataset. This allows scripts setup

with one dataset to be loaded and used to process different

(but compatible) datasets. Arbitrary Python code that is

added to the script outside of NMRFx will not be included.

Hardcopy output is available in PDF format for 1D

vector and 2D contour displays. Exporters for other formats

such as PNG and SVG are planned.

Batch processing

Many applications of NMR involve collecting multiple

datasets with the same pulse sequence and parameters.

NMRFx Processor provides support for batch analysis both

through the GUI and through Python scripting.

The Scanner tab provides tools for batch processing of

multiple datasets. This is particularly useful for applica-

tions like relaxation analysis, ligand titrations, metabo-

lomics and fragment screening where multiple datasets are

processed with identical operations. All compatible NMR

datasets within a selected directory will be found and

presented in a list. Any of the listed datasets can be selected

and used to setup the processing scheme. Clicking the

Process All button will then apply that processing

scheme to all listed datasets. The current implementation

generates an output file (in text format) that contains, for

each processed file, an index number, the path to the pro-

cessed FID, and the path to the output dataset. The output

file can be loaded by programs such as NMRViewJ to

facilitate analysis of the group of spectra.

We are currently implementing access to interleaved

datasets, where multiple experiments are collected in a

single FID file. These are often used in relaxation analysis

and could be processed either by generating multiple 2D

files or a single pseudo-3D file.

Command line processing

The GUI is convenient for interactively setting up pro-

cessing schemes and visualizing the processed dataset, but

all processing can also be done from the command line.

Shell scripts are available which take the name of a Python

processing script as the single argument. Scripts executed

this way will often be used to do repetitive processing on

similar datasets or to include any extra Python commands.

Processing scripts generated within the GUI can be exe-

cuted as command line scripts in this way.

Processing via the command line (or direct editing of the

GUI based script) currently allows for more detailed

control over the processing scheme. One powerful tool that

we are currently enhancing is greater access to datasets via

Python scripting. For example, it is easy to iterate over all

the vectors in a matrix and perform simple math. The

vector objects returned during iteration allow various

mathematical operations including addition and subtrac-

tion. Multiple datasets can be iterated in parallel so a third

dataset could, for example, be created by vector addition of

two starting datasets. A sample script for this is provided in

Listing 4 of Online Resource 2.

Referencing

The most essential feature of NMR spectra is the chemical

shift value, the resonance frequency for the observed

nucleus properly scaled and offset relative to a standard

reference value. Despite this essential importance, many

macromolecular datasets deposited at the BMRB are

improperly referenced. This has required significant effort

in order to be able to correctly mine the considerable

information relating chemical shifts to molecular structure

(Aeschbacher et al. 2012; Brown et al. 2015; Wang et al.

2010; Wang and Markley 2009). Furthermore, using both

automated and manual techniques for the assignment of

spectra require that spectra be referenced properly in order

to assess residue type and secondary structure by com-

parison to database derived chemical shift values. Despite

this, it is not unusual for, especially novice, practitioners to

wait till they are ready to deposit their data to check the

referencing. Accordingly we’ve attempted to make it rel-

atively easy to ensure correct referencing at the start of data

processing.

NMRFx Processor is designed to parse the original data

files and set up referencing values, but the design of the

pulse sequence may make it impossible to directly derive

reference values. Accordingly, several Python level com-

mands are available for setting parameters used in pro-

cessing (sweep width, spectrometer frequency and

reference position) in a way to allow for correct data ref-

erencing. These commands can take explicit numerical

values, but more importantly can use symbolic parameters

to extract the correct value from the original data parameter

files. For example, the command sf(‘sfrq’,‘dfrq2’) could

be used to set the spectrometer frequency of the first and

second dimension of a dataset from a 2D Agilent experi-

ment to the respective values contained in the ‘sfrq and

‘dfrq2 parameters in the ‘procpar’ file. Any parameters

contained in Agilent parameter files (‘procpar’) and Bruker

parameter files (‘acqus’, acqu2s’, ‘procs’, ‘proc2s’ etc.) are

accessible in this way. Bruker parameter names are spec-

ified with the format parname,n where n refers to the

dimension. So, the sweep widths of a 2D dataset from a

Bruker experiment could be specified with
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sw(‘SW,1’,‘SW,2’). Parameter values can also be extrac-

ted with the ‘p’ command. This allows the numerical value

of the parameter to be used in Python mathematical

expressions. For example, sf(p(‘sfrq’) 1 5000.0/

1.0e6,‘dfrq’), could be used if shifted pulses were used so

the effective carrier frequency was 5000.0 Hz from the

actual carrier frequency (in MHz). The scheme derived

here allows flexible setting of reference information based

on raw data parameters. A given processing script can be

applied to multiple experiments that may have different

actual values (sweep width etc.) without the user needing

to specifically enter those values, but allows peculiarities of

the pulse sequence (for example, using the third RF

transmitter as the source for the second dataset dimension

with Agilent experiments).

Proton-detected biomolecular spectra should generally

be referenced using an internal shift reference for the

proton dimension (DSS) and other nuclei (carbon, nitrogen,

etc.) referenced by using indirect referencing ratios relative

to the proton carrier frequency and reference value

(Wishart et al. 1995). This is made simple in NMRFx

Processor by allowing carbon, deuterium, nitrogen and

phosphorous frequencies to be referenced by simply indi-

cating the nucleus type. If the proton channel is correctly

referenced, and spectrometer frequencies correctly set (as

described above), then the correct reference value will be

set. For example, the command ref(4.73,‘C’,‘N’) sets the

proton reference frequency to 4.73 ppm, and calculates the

carbon and nitrogen channels using the appropriate indirect

referencing ratios. While using an actual internal standard

of DSS is the recommended procedure, it is not uncommon

(in part, given concerns about potential DSS interactions

with the macromolecule) to set the proton transmitter on

the water signal, and use the expected water chemical shift

as the reference. This can be done in NMRFx by setting the

reference parameter for the proton dimension to ‘h2o’. For

example, ref(‘h2o’, ‘N’), would set the proton reference to

the typical chemical shift of water at the experimental

temperature (derived automatically from the parameter set)

and the nitrogen reference shift to the value derived by

indirect referencing. Sometimes the user knows the specific

chemical shift at a specific spectrometer frequency. This

can be added with a format like 0.0@800.3174239.

Undoing processing operations

Some processing schemes involve applying processing

steps to a given dimension, and then after processing

another dimension, undoing all the steps. For example, this

is common when processing includes linear prediction of

the indirect dimensions of 3D (or higher dimensions) with

nmrPipe (Delaglio et al. 1995). Processing of a 3D dataset

would include processing the second dimension without

linear prediction, then processing the third dimension with

linear prediction. Then the processing of the second

dimension is undone, and it is reprocessed with linear

prediction. In this way the number of signals that are

present in each of the vectors to be extended with linear

prediction is minimized.

NMRFx Processor supports undoing complete dimen-

sions with the UNDODIM command. The UNDODIM

command searches for the last Process that has the same

dimension as that specified to the command. A new Process

object is created whose operation list consists of the inverse

of the operations in the original list, in inverse order to

which they were originally done. Execution of the Process

then effectively undoes the processing done by the original

Process object on that dimension. Listing 1 in Online

Resource 2 provides an example of this. Currently, the ZF,

FT, REAL, PHASE and the various apodization functions

can generate an inverse operation. It is essential that

parameters of any apodization functions are set so that the

apodization window is not near zero at any point as divi-

sion by a near zero value will result in artifactual large (or

infinite) values.

Skipping dimensions

It’s often useful to process only a subset of the dimensions

of the NMR dataset. For example, processing the HN–N

and HN–C dimensions of a 3D HNCO experiment yields

two 2D datasets that can be used to check the phasing for

the two indirect dimensions. This can be done by including

a skip command in the reference section of the processing

script with arguments set to 0 for dimensions to include,

and 1 for dimensions to skip. For example, skip(0,1,0)

would process the first and third dimensions, but skip the

second. The DIM command and associated operations can

be included for the skipped dimensions. This allows the

user, for example, to create a full processing script with all

dimensions, and simply set the skip command to

skip(0,1,0) to get the HN–N 2D experiment, to skip(0,0,1)

to get the HN–C 2D experiment, and to skip(0,0,0) to get

the full 3D experiment.

Non-uniform sampling

A significant advance in NMR data processing over the

past decade has been the development and application of a

variety of algorithms for processing data collected with

non-uniform sampling (NUS) (Kazimierczuk and Orekhov

2015). These NUS experiments allow collection of NMR

datasets in significantly shorter time than allowed by con-

ventional uniform sampling schedules and have potential

for higher sensitivity relative to uniformly sampled

experiments (Palmer et al. 2015). Accordingly it’s essential
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that new processing programs provide support for these

techniques.

A variety of methods for processing non-uniformly

sampled data are available. Based on the good results

reported with iterative soft thresholding we’ve chosen that

method as the first one to implement. Our implementation

is similar in principle to a previously described imple-

mentation (Hyberts et al. 2012). As the details differ we

give a summary of our implementation here. Two features

distinguish our approach. First, we do thresholding on only

the real values and use a Hilbert transform to regenerate the

imaginary values after thresholding. The value of operating

on the real values, and avoiding issues with the broad

dispersive components, has been recently described

(Mayzel et al. 2014; Stern and Hoch 2015). Second, we

only replace non-sampled points, leaving sampled points

unchanged at the end of the process.

Datasets are first processed with normal methods in the

directly detected dimension. Then, for each point in the

transformed direct dimension, the corresponding values for

the indirectly detected dimensions are extracted into a data

object. For a 2D experiment this will be a 1D vector, for 3D

experiments a 2D matrix, etc. Then this data object is

transformed as follows:

1. Fourier transform the object (multi-dimensional for

2D and higher).

2. Get the real part of the object.

3. Cut intensities above a threshold and copy them to

an add buffer. The original values are replaced with

the threshold value.

4. Apply a Hilbert transform to the trimmed values (not

the add buffer) to regenerate the imaginary values.

5. Inverse Fourier transform the trimmed values.

6. Set all non-sampled values to 0.0.

7. Loop to step 1 (until number of iterations exceeds a

specified number).

8. Apply a Hilbert transform to the add buffer.

9. Inverse Fourier transform the add buffer.

10. Copy sampled values from original data into the

corresponding position of the add buffer.

At the end of the processing steps above the data object

contains original values where values were actually sam-

pled, and calculated values where values were not sampled,

and should be a good representation of the data that would

exist if full-sampling had been performed. The data object

is now stored back into the dataset. Processing of all the

indirect dimensions now proceeds as if the dataset were a

normally sampled dataset.

The actual implementation is made more efficient by

combining the transforms in steps 4 and 5, and steps 8 and

9, above. A typical implementation of the Hilbert transform

involves an inverse and then forward Fourier transform of

the data. The forward transform can be skipped in this case,

as we wish the data to remain in the time domain.

Results and discussion

NMRFx Processor has been tested on a variety of NMR

datasets including one to four dimensional datasets with

files generated on Bruker and Agilent spectrometers.

Datasets have been processed with iterative soft thresh-

olding for non-uniform datasets. Beginning and advanced

users alike have readily adapted to doing their NMR pro-

cessing via the NMRFx GUI.

Portability

NMRFx has been designed to be portable across a variety

of operating systems. In particular it runs on Mac OS

(version 10.7.3 and later), Windows, and varieties of

Linux. Writing the low-level code in Java allows us to

achieve this portability. Essentially, any operating system

that can run Java version 8 or later should support NMRFx.

The software is delivered with the Java runtime environ-

ment embedded in the application. This frees the end-user

from needing to worry about obtaining and installing Java,

and whether an installed version will cause conflicts with

other software dependent on Java. Portability is demon-

strated in Table 2, which provides a list of tested computers

and their operating systems along with the time required to

process a 3D HNCO dataset with and without linear

prediction.

Parallel processing

Parallel processing will at best result in a speedup equal to

n-fold, where n is the number of processors. This level of

speedup will not actually occur in practice for a variety of

reasons. For example, reading and writing of data from the

processor to main memory and ultimately to and from disk

drives, may limit performance. Overhead in the code that

manages the thread pool may also limit performance. We

assessed the performance increase available through par-

allelization by measuring the elapsed time to process sev-

eral datasets as a function of the number of threads used.

Figure 4 plots the overall processing time for two

datasets, one processed with and without linear prediction,

and one with the more time intensive iterative soft

thresholding. Performance was measured on a laptop

(Apple Macbook Pro) with four cores and a desktop (Su-

permicro) computer with 12 cores. As can be seen a very

significant increase in speed is available for the more

computationally intense processing with linear prediction

or IST, though as expected it is less than linear in the
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number of threads. For the NUS dataset, with four threads,

the Apple is 3.1 times faster than a single thread and the

Supermicro 3.6 times faster. For the optimum thread count

as tested the Apple is 3.5 times faster and the Supermicro 9

times faster than when compared to a single thread. Adding

threads can actually degrade performance on one computer

system (with conventional disk drives) with the less com-

putationally intense processing problem (Fig. 4a). It’s

likely that in this case data IO is rate limiting. Further

speed increases are likely with careful optimization of the

processing code (which we have not yet done). Greater

performance increases could be made with distributed

processing across multiple computers. The latter, though

can require significant effort on the part of users to estab-

lish, configure and maintain a processing environment.

Processing non-uniformly sampled data

NMRFx Processor provides two approaches for processing

of non-uniformly sampled data. First, we provide an

internal implementation of iterative soft thresholding.

Having a good internal implementation provides users with

an almost transparent method, relative to standard pro-

cessing, to process their data. No external programs need

be installed and processing can be done on all platforms

NMRFx runs on. The user simply needs to include a single

additional operation in the processing scheme (this is done

by our code that automatically generates processing scripts

when vendor parameters indicate that the data has been

acquired with non-uniform sampling). But, development of

new algorithms for processing non-uniformly sampled data

Table 2 Examples of execution on multiple computer types

Hardware Operating system Number

of threads

Compute time (s)

HNCO w/o LP HNCO w/LP

MacBook Pro Intel i7 4 Core Mac OS 10.10 4 1.7 18.3

MacBook Pro Intel i7 4 Core Windows 8 4 1.2 16.0

Supermicro Workstation,2 Xeon 6 Core each Ubuntu 12.04 12 3.6 20.1

Supermicro Workstation,2 Xeon 6 Core each Windows 7 12 1.9 15.0

These are examples of systems on which NMRFx is tested, but its operation is not limited to the systems listed. Compute times are calculated

from processing of a 3D HNCO experiment using a benchmark program (see for example, Listing 3 in Online Resource 2). The number of

threads used is chosen to correspond to the number of processing cores

a b cFig. 4 Processing time as a

function of the number of

processing threads. a Three-

dimensional HNCO spectrum.

b Three-dimensional HNCO

spectrum processed with linear

prediction in the indirect

dimensions. c Three-

dimensional HNCO non-

uniformly sampled spectrum

processed with iterative soft

thresholding. Two computers

were used, a MacBook Pro with

a 4-core Intel i7 processor

running at 2.6 GHz with a solid-

state storage drive and a

Supermicro Desktop computer

with two Intel Xeon 2630 6-core

processors running at 2.3 GHz

with a conventional disk drive
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remains an area of active research. New methods are

developed faster than we can implement them internally

(Qu et al. 2015; Sun et al. 2015), and it’s not always

immediately clear which methods are superior and should

be chosen for internal implementation. So we also make it

possible to include calls to external processing code as part

of the overall processing scheme (see Listing 2 in Online

Resource 2).

Educational value

Understanding complex NMR processing can be chal-

lenging for the novice user. The NMRFx Processor pro-

gram has been designed to allow it be used in educational

settings. Students can load sample data or simulate FIDs

and interactively observe the results of different processing

algorithms and parameters. For example, Fig. 5 shows a

simulated FID with fractional non-uniform sampling and

its processing with IST. Interactively changing parameters

such as the number of iterations of the iterative soft

thresholding algorithm can be used to observe how missing

data points are replaced with values generated with the

algorithm.

Conclusions

NMRFx Processor has been written to be a powerful, yet

easy to use, application that is applicable to processing a

wide variety of NMR datasets. To date, it’s been tested

on a variety of datasets during development and is being

used by a growing number of external laboratories. We

expect, given the almost infinite variety of NMR

experiments, that there will certainly be experiments

requiring further development and optimization to

properly process them, but the fundamental toolset

available within the application should make this rela-

tively straightforward.

The application takes advantage of the multi-core pro-

cessors available in almost all modern laptop and desktop

computers. We’ve done relatively little so far to optimize

performance and while performance is already quite good

there should be significant room for improvement. In par-

ticular, we expect that many datasets can be loaded com-

pletely in memory. This should minimize the time used for

input/output and allow increased benefits from the parallel

execution on multi-core computers. We are also investi-

gating running code in parallel on compute clusters and we

Fig. 5 Simulated data with partial IST processing. A simulated FID

is generated as if it was recorded on a 600 MHz spectrometer with a

sweep width of 4000 Hz and line width of 10 Hz. An operation is

included to simulate a non-uniform sampling schedule with 20 %

sampling. Finally an IST operation is added to regenerate the

unmeasured points. The display is shown with only 64 iterations of

the algorithm. Approximately 500 iterations are required to fully

reconstruct the data. Students can interactively adjust parameters such

as the iteration count to observe the effect on the data
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are beginning to develop versions of the code that can

harness the power of Graphics Processing Units (GPUs).

The rich variety of built-in operations, the existing and

expanding interactions with the Python scripting tools, and

the modern GUI combine to make NMRFx a powerful and

user-friendly new tool for NMR spectroscopists. We

anticipate that it will be used for both routine processing

needs and form a toolset upon which new processing

techniques can be developed.
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