
The Effect of Human Genome Annotation Complexity on RNA-
Seq Gene Expression Quantification

Po-Yen Wu,
Department of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, U.S.A, 
pwu33@gatech.edu

John H. Phan, and
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory 
University, Atlanta, GA, U.S.A, jhphan@gatech.edu

May D. Wang
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory 
University, Atlanta, GA, U.S.A, maywang@bme.gatech.edu

Abstract

Next-generation sequencing (NGS) has brought human genomic research to an unprecedented era. 

RNA-Seq is a branch of NGS that can be used to quantify gene expression and depends on 

accurate annotation of the human genome (i.e., the definition of genes and all of their variants or 

isoforms). Multiple annotations of the human genome exist with varying complexity. However, it 

is not clear how the choice of genome annotation influences RNA-Seq gene expression 

quantification. We assess the effect of different genome annotations in terms of (1) mapping 

quality, (2) quantification variation, (3) quantification accuracy (i.e., by comparing to qRT-PCR 

data), and (4) the concordance of detecting differentially expressed genes. External validation with 

qRT-PCR suggests that more complex genome annotations result in higher quantification 

variation.

I. INTRODUCTION

Next-generation sequencing (NGS) technology provides an alternative approach for 

understanding and interpreting a broad range of genomic mechanisms, e.g., miRNA 

regulatory networks, single nucleotide polymorphisms (SNPs), and differential gene 

expression [1–3]. Compared to first generation sequencing technology (i.e., Sanger 

sequencing), NGS dramatically increases sequencing throughput. Thus, it is capable of 

sequencing an entire human genome. Transcriptome sequencing, or RNA-Seq, is an 

important application of NGS technology. RNA-Seq can quantify gene expression by 

sequencing RNA molecules and mapping the sequences back to the human genome [4]. 

However, this process depends on the knowledge of genome annotation. Due to the multiple 
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existing human genome annotations, we examine the effect of genome annotation choice on 

quantification of gene expression using RNA-Seq.

Genome annotation is an important component of RNA-Seq. It is the process of assigning 

genomic features (i.e., exons, introns, coding sequences, and regulatory elements) to the 

human genome at specific coordinates. Thus, the quantification of a gene or an isoform (i.e., 

a splice variant of a gene) is only possible if the components of that gene or isoform have 

been annotated. Much effort has been devoted to human genome annotation, including the 

RefSeq database and the Vertebrate Genome Annotation (Vega) database [5, 6]. The 

methodologies and data sources of each genome annotation project are different. Thus, the 

detail and depth of genomic features varies greatly among the existing annotations. Some 

annotations tend to be more conservative, i.e., they include a smaller number of isoforms for 

each gene. Other annotations may be more exploratory or predictive in nature and, thus, may 

contain more complex gene models with more isoforms.

There are currently no guidelines for selecting a human genome annotation for RNA-Seq. 

Thus, it is not clear how the choice of annotation affects downstream RNA-Seq data 

analysis. We aim to provide some insights into the effect of human genome annotation on 

RNA-Seq quantification.

II. HUMAN GENOME ANNOTATIONS

We use six human genome annotations from various databases and projects, including the 

AceView project led by the National Center for Biotechnology Information (NCBI) [7], the 

Ensembl project led by EMBL-EBI and Wellcome Trust Sanger Institute (WTSI) [8], the H-

InvDB database based on the Genome Information Integration Project [9], the RefSeq 

database built by NCBI [5], the UCSC Known Genes database constructed by the University 

of California Santa Cruz (UCSC) [10], and the Vega database built by WTSI [6]. Table I 

summarizes key features of each annotation.

In Table I, we order the human genome annotations from left to right by decreasing 

complexity. We define the complexity using two rules: (1) the number of genes in the 

annotation is directly proportional to complexity and (2) the average number of isoforms per 

gene is directly proportional to complexity. We hypothesize that an annotation with more 

genes and more isoforms per gene will increase the difficulty of RNA-Seq mapping and 

quantification because of overlapping annotation and ambiguous mapping issues. In this 

study, we focus on gene level analysis. Thus, rule (1) (i.e., the number of genes in the 

annotation is directly proportional to complexity) should have higher priority than rule (2) 

(i.e., the average number of isoforms per gene is directly proportional to complexity). In the 

case that the number of genes is similar, e.g., H-InvDB annotation and Vega annotation, we 

apply rule (2) to determine which annotation has higher complexity.

The data source and methodology of each human genome annotation is briefly described 

below:

AceView Genes – The data sources of the AceView genes are mRNA sequences from 

GenBank and RefSeq as well as single pass cDNA sequences from dbEST and Trace. It 
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summarizes all sequences into a comprehensive evidence-based gene annotation. It is a fully 

automatic process and uses heuristics to closely reproduce manual curation.

Ensembl Genes – The data sources of the Ensembl genes include (1) the automated Ensembl 

gene annotation pipeline “genebuild”, (2) manually curated genes from the Havana Group at 

the WTSI, and (3) consensus coding sequences (CCDS). The final Ensembl genes result 

from clustering and merging these data sources.

H-InvDB Genes – H-InvDB genes are collected from six high-throughput sequencing 

projects [11]. It uses BLAST to map full-length cDNAs to the human genome, and then 

annotates the genome based on clustering results. It assigns a standardized functional 

annotation to each H-Inv transcript by manual curation.

Vega Genes – The Vega database focuses on the browsing and maintenance of manually 

annotated data, including manually curated sequences from Havana, RIKEN, JGI, and 

Washington University.

UCSC Known Genes – The data sources of the UCSC known genes include protein data 

from Swiss-Prot/TrEMBL (UniProt) and the associated mRNA data from GenBank. It uses a 

fully automated process to annotate the genome.

RefSeq Genes – The data sources of the RefSeq genes include all sequences submitted to the 

International Nucleotide Sequence Database Collaboration (INSDC), which consists of 

DDBJ, ENA, and GenBank. It combines an automatic genome annotation pipeline and a 

significant level of manual curation.

III. METHODS

The goal of this paper is to evaluate the effect of human genome annotation complexity on 

RNA-Seq quantification. The typical analysis pipeline for this type of study includes 

mapping, quantification, normalization, and differentially expressed gene detection. At each 

analysis step, we propose several evaluation criteria to demonstrate the performance 

difference induced by annotation complexities.

A. NGS Data

We use a publicly available RNA-Seq dataset from the Sequence Read Archive (SRA) 

repository (accession number: SRP008482). The SRP008482 dataset studies the effect of 

thrombin treatment on endothelial function. It uses RNA-Seq technology to profile the 

transcriptome in human pulmonary microvascular endothelial cells (HMVEC-L) that were 

treated with thrombin for six hours [12]. It includes five samples, three of which are 

thrombin-treated technical replicates while the other two are controls. The Illumina 

HiScanSQ system was used for sequencing. Each technical replicate contains around 50 

million read pairs with read lengths of 2×101 base pairs.

The original study validated the differential expression of three genes using qRT-PCR 

technology. These genes include CELF1, FANCD2, and TRAF1. Fold-changes of these 
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genes from qRT-PCR provide an external ground truth for validating and evaluating RNA-

Seq results.

B. Sequence Read Mapping

We use Omicsoft Sequence Aligner (OSA) to map sequence reads to the human genome 

guided by different genome annotations. OSA is a spliced mapping tool (Figure 1) that can 

handle reads that cross exon splice junctions when directly mapping to the genome. It is 

faster than other spliced mapping tools and has been shown to have higher sensitivity and 

fewer false positives compared to TopHat, SoapSplice, and RUM pipelines [13].

We use UCSC hg19 as the reference human genome for OSA. The contigs of the UCSC 

hg19 include 24 main chromosomes, 20 unplaced contigs (belonging to known 

chromosomes but unknown location), and 39 un-localized contigs (belonging to unknown 

chromosome).

The first evaluation criterion for the mapping step is categorization of read mapping results, 

including uniquely paired reads, non-uniquely paired reads, uniquely mapped singletons, 

non-uniquely mapped singletons, and unmapped reads. The second evaluation criterion is a 

count of the number of reads mapped to the annotated and unannotated genomic regions.

C. Expression Quantification and Normalization

OSA provides functionality for quantifying and normalizing gene and isoform expression. It 

estimates expression using the Transcripts Per Million (TPM) normalization method [14]. 

We also use HTSeq to quantify gene expression as a count of the number of reads mapping 

to each gene. In this study, the gene count from HTSeq is only applied to differential 

expression calling. All other evaluation criteria are based on TPM expression.

After normalization, we use the stability of TPM expression between technical replicates as 

an evaluation criterion. Using gene identifiers provided by the HUGO Gene Nomenclature 

Committee (HGNC), we identify 13,082 common genes across the six genome annotations. 

For each genome annotation, we remove genes from the common gene set that have zero 

expression for all replicates and calculate the average coefficient of variation (CV). We then 

assess the relation between average CV and annotation complexity. We also apply this 

technique to the set of uncommon genes (i.e., genes that are not common among all six 

annotations) and to all gene isoforms.

The second evaluation criterion is a count of the percentage of genes or isoforms that have 

zero expression across all replicates. Because some annotations contain significantly more 

genes or isoforms compared to other annotations, we use this criterion to demonstrate the 

usefulness of the additional information for RNA-Seq gene expression quantification 

studies.

D. Differentially Expressed Gene Detection

We use the edgeR package to detect differentially expressed genes. edgeR fits read count 

data to a negative binomial distribution, and then uses a log-likelihood ratio test or Fisher’s 

exact test to determine the significance of each gene in terms of differential expression [15]. 
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We select the top 20 differentially expressed genes for each annotation, and observe the 

concordance of these genes. We closely examine the functionalities of genes that only occur 

once across the six annotations.

Three genes were selected for qRT-PCR fold-change in the original study [12]. We use the 

qRT-PCR result as a ground truth to estimate the “error” (i.e., the average absolute deviation 

from the qRT-PCR fold-change) of RNA-Seq-based fold-change for each of the six 

annotations. We then examine the relationship between genome annotation complexity and 

differential expression quantification error.

IV. RESULTS AND DISCUSSIONS

A. Complexity of Six Genome Annotations

In Table I, we summarize key features of each human genome annotation. We use these 

features to define the complexity of various genome annotations. The annotation base 

coverage generally follows our definition of genome complexity (i.e., AceView is the most 

complex because it has the most genes and RefSeq is the least complex because it has the 

least genes). The only exception is the H-InvDB genome annotation, which has a similar 

number of genes as the Vega annotation, but has almost 1.5 times the number of isoforms. 

Moreover, there is one gene (HIX0006010; HGNC: EEF1A1) that has 885 isoforms in the 

annotation. Thus, the annotation base coverage of H-InvDB deviates from the expected 

trend.

B. Effect of Annotation Complexity on Mapping

We propose two evaluation criteria for the mapping step. First, we examine the distribution 

of reads in terms of mapping categories. As shown in Figure 2, the RefSeq annotation has 

the highest percentage of uniquely paired reads, followed by the UCSC annotation. The 

trend in this measurement matches our definition of annotation complexity. More complex 

annotations increase the difficulty for read mapping because of the need to deal with more 

complex exon splice junctions and more overlapping genes.

Second, we examine the number of reads mapping to the annotated and unannotated 

genomic regions. More reads mapping to the annotated regions imply that the annotation is 

more comprehensive in terms of annotating functional elements. From Figure 3, we can see 

that the AceView annotation has the highest percentage of reads that fall into annotated 

regions, while Vega, UCSC, and RefSeq have a lower percentage. This observation is 

concordant with our definition of annotation complexity.

C. Effect of Annotation Complexity on Quantification

We propose two evaluation criteria for the quantification step. First, we assess the effect of 

annotation complexity on the stability of expression estimation in gene and isoform levels. 

Figure 4 shows the average CV across targeted genes or isoforms. We focus on three groups 

of targets: 13,082 common genes across six annotations, uncommon genes of each 

annotation track that are not included in common genes, and all isoforms of each annotation. 

The average CV will be low if the variance of expression estimation between replicates is 
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small. For common genes, the RefSeq annotation has the lowest average CV while the 

AceView annotation has the largest average CV. However, the difference is not large. For 

uncommon genes and isoforms, the variation between annotations becomes larger because 

more annotation-specific features are being considered. The trend of average CV follows 

annotation complexity. More complex annotations are more difficult for quantification since 

more ambiguous mapping occurs. The AceView annotation is the most complex genome 

annotation; thus, it has the highest average CV. RefSeq is the simplest genome annotation 

and has the lowest average CV. Note that the Vega annotation does not follow the trend in 

Figure 4. A possible reason for this is that the Vega annotation also includes functional small 

RNAs. Since the data we are analyzing was subject to poly-A selection, only mRNA is 

retained in the final RNA samples. Thus, most of the functional small RNAs tend to have 

zero expression or low expression. We refer to these zero expressing features as absent 

genomic features. The inclusion of additional low expressing genomic features in the Vega 

annotation results in larger CV. The Ensembl annotation also includes small RNAs; however, 

due to the complexity of the Ensembl mRNA annotation, the effect of additional small RNA 

features on the CV is not as prominent.

Figure 5 shows the results of the second evaluation criterion for the quantification step. The 

number of absent genomic features depends on the annotation. We define absent as a 

genomic feature that has zero expression across all technical replicates. For common genes, 

all six annotations have a similar number of absent genes. For all genes, uncommon genes, 

and all isoforms, the trend among the six annotations looks similar. In most cases, the 

AceView annotation has a higher percentage of absence than the H-InvDB annotation, 

followed by the UCSC annotation and the RefSeq annotation. For the Ensembl and Vega 

annotations, as we described earlier, many functional small RNAs are included in the 

annotations. Because of the poly-A selection process, most of these are identified as absent, 

which correspondingly increases the percentage of genes or isoforms being identified as 

absent.

D. Effect of Annotation Complexity on DE Calling

We identified the top 20 differentially expressed genes for each annotation as shown in Table 

II. As expected, most of these genes appear at least twice among the six annotations. There 

are also some unique annotation-specific genes identified as differentially expressed, e.g., 

yumomo and romomo in the AceView annotation, HIX0011725 in the H-InvDB annotation 

and AC159540.1 in the Vega annotation (marked in bold in Table II), which are all 

predictive genes (i.e., the existence of these genes has been predicted, but their full function 

is unknown). Even though we cannot determine the function of these genes, more complex 

annotations still provide an opportunity to discover novel genomic features. This is the 

advantage of using more complex and comprehensive genome annotations.

We also examine the fold-change of three genes that were validated by qRT-PCR 

technology. From Table III, we can observe that the RefSeq annotation has the lowest 

average absolute deviation from the qRT-PCR quantification of fold-change. In contrast, 

more complex annotations such as AceView, Ensembl, and H-InvDB have relatively higher 

average absolute deviations. This result suggests that complex genome annotations increase 

Wu et al. Page 6

IEEE Int Conf Bioinform Biomed Workshops. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the difficulty of quantifying gene expression. Higher variations in gene expression propagate 

to fold-change quantification and other differential expression test-statistics.

V. CONCLUSION

We have investigated the relationship between human genome annotation complexity and 

several RNA-Seq performance criteria using the OSA alignment tool. For RNA-Seq 

mapping, more complex annotations result in a lower percentage of uniquely paired 

mappings; however, more complex annotations also result in the highest percentage of reads 

mapping to annotated regions. For RNA-Seq quantification, complex annotations are 

problematic, resulting in higher variation of expression across technical replicates. 

Moreover, complex annotations result in a higher percent of absent genes or isoforms since 

these annotations include more predictive and hypothetical annotations. For differentially 

expressed gene detection, the concordance between annotations is high. More complex 

annotations can identify other potential biomarkers that cannot be identified using simpler 

annotations. However, using qRT-PCR as an external validation, we observed that complex 

annotations result in larger fold-change deviations, which indicate higher variance in the 

quantification step. In summary, the choice of human genome annotation for RNA-Seq 

should depend on the application. Results of this limited study (i.e., using one alignment tool 

and one dataset) suggest that less complex genome annotations lead to more stable 

quantification of gene expression and differential expression. However, more complex and 

comprehensive annotations may provide opportunities for novel discoveries. Further analysis 

is required (i.e., using other spliced mapping tools and other datasets) to provide stronger 

evidence that links genome annotation complexity to RNA-Seq quantification accuracy.
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Figure 1. 
The workflow of typical RNA-Seq spliced mapping pipelines. The genome annotation 

defines the exon splice junction information for spliced mappers. Various sets of exon 

junction information from different genome annotations affect the output of spliced 

mappers.
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Figure 2. 
The distribution of five paired-end read mapping categories as shown in the legend. These 

results demonstrate that differences among mapping percentages to each category are related 

to annotation complexity. RefSeq, the least complex annotation results in the smallest 

percentage of non-uniquely paired read mappings.
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Figure 3. 
The percentage of reads mapped to the annotated and unannotated genomic regions. 

AceView, the most complex annotation, is also the most comprehensive. Thus, a higher 

percentage of reads map to annotated regions.
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Figure 4. 
The average CV for 13,082 common genes, uncommon genes of each annotation, and all 

isoforms of each annotation based on TPM expression from OSA. This result demonstrates 

that average expression CV is related to genome annotation complexity. Annotations are 

ordered from left to right by decreasing complexity.
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Figure 5. 
Percentage of absent genomic features for each genome annotation.
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