
Multivariate Hypergeometric Similarity Measure

Chanchala D. Kaddi,
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

R. Mitchell Parry, and
Department of Computer Science, Appalachian State University, Boone, NC 28608

May D. Wang
Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Chanchala D. Kaddi: gtg538v@mail.gatech.edu; R. Mitchell Parry: rmp@cs.appstate.edu; May D. Wang: 
maywang@bme.gatech.edu

Abstract

We propose a similarity measure based on the multivariate hypergeometric distribution for the 

pairwise comparison of images and data vectors. The formulation and performance of the 

proposed measure are compared with other similarity measures using synthetic data. A method of 

piecewise approximation is also implemented to facilitate application of the proposed measure to 

large samples. Example applications of the proposed similarity measure are presented using mass 

spectrometry imaging data and gene expression microarray data. Results from synthetic and 

biological data indicate that the proposed measure is capable of providing meaningful 

discrimination between samples, and that it can be a useful tool for identifying potentially related 

samples in large-scale biological data sets.
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Introduction

Similarity measures are an important tool in the analysis of a wide range of biomedical data, 

with applications such as the comparison of peptide sequences [1] and gene expression data 

[2], as well as in text mining [3] and in image analysis [4], [5]. An important application of 

similarity measures is in the detection of new and potentially significant patterns in large-

scale biological data sets [2], [5], [6]. For example, if a particular gene is known to be 

associated with a disease, other genes potentially related to the disease may be detected by 

identifying highly similar patterns of expression. In this respect, similarity measures can be 

used to provide a shortlist of targets for further research.

Different similarity measures exhibit considerable variation in properties and performance 

[7], [8]. For example, many common measures do not have a probabilistic framework, 

although this is a useful property in terms of the interpretation of assigned similarity scores 

[9]. In this paper, we propose a similarity measure with a probabilistic interpretation, 

utilizing the multivariate hypergeometric distribution and the Fisher-Freeman-Halton test. 

HHS Public Access
Author manuscript
IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 
August 14.

Published in final edited form as:
IEEE/ACM Trans Comput Biol Bioinform. 2013 ; 10(6): 1505–1516. doi:10.1109/TCBB.2013.28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Previously, we developed a similarity measure utilizing the hypergeometric distribution and 

Fisher’s exact test [10]; this measure was restricted to two-class data, i.e., the comparison of 

binary images and data vectors. However, many types of biological data are not inherently 

binary in nature, and the process of binarization can discard useful information. Here, we 

extend our earlier result to present a general similarity measure that accommodates the 

comparison of nonbinary, “multiclass” data.

After defining the proposed multivariate hypergeometric similarity measure, we describe 

several tests using synthetic and biological data to investigate its performance. First, its 

patterns of sample ranking are compared with those of cosine similarity, Pearson correlation 

and mutual information, three similarity measures which are used in the analysis of many 

types of biomedical data [2], [3], [4], [5], [11]. Next, we test and implement a method of 

approximation that facilitates the application of the proposed similarity measure to large 

samples.

We then consider example applications on biological data sets: first, on mass spectrometry 

imaging (MSI) data, and second, on gene expression microarray data. MSI is a technique in 

which mass spectra are acquired over the surface of a sample, such as a tissue slice, to 

generate a 3D (x,y : spatial, z : spectral) data set as shown in Fig. 1. MSI has numerous 

biomedical applications, including the study of cancer and neurodegenerative diseases, and 

pharmaceutical-related research [12], [13]. MSI generates large-scale data sets; the spectral 

dimension may contain thousands of m/z(mass-to-charge ratio) values. Depending on the 

data acquisition modality, each m/z value can be interpreted as a molecule or molecular 

fragment [13]. The data set can be interpreted as a collection of images, each describing the 

presence and abundance of a single m/z value at every (x, y) point over the sample surface. 

Spatial comparison of these images can be useful for identifying patterns among m/z values. 

For example, a single tissue sample may contain healthy, diseased, and marginal regions. 

Certain m/z values may be spatially localized in particular regions [12]. It may be 

informative to identify other m/z values expressed predominantly within a region of interest 

[14], or with similar spatial distributions as an m/z value of interest.

In this paper, the performance of the proposed similarity measure on biological data is 

assessed by applying it to an MSI data set to identify m/z images with similar spatial 

characteristics, and by applying it to a gene expression microarray data set to identify genes 

with similar expression patterns. Results from synthetic and biological data indicate that the 

proposed multivariate hypergeometric similarity measure is capable of providing meaningful 

discrimination among samples, and can be a useful tool for identifying potentially related 

samples in large-scale biological data sets.

Methods

2.1 Definition of Similarity Measure

Consider an image containing N pixels (or a data vector containing N samples), with all 

intensities quantized into n bins, where N and n are positive integers. When comparing two 

such images, there are n2 possible types of overlap between spatially corresponding pixels. 

These overlaps can be represented as an n×n contingency table, as shown in Fig. 2. Each 
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class kij, for indices i=1,…,n and j=1,…,n, represents the number of spatially corresponding 

pixels which are in bin i in the first (“reference”) image and in bin j in the second (“query”) 

image. The terminology is used in the sense that a given image would be selected as a 

“reference” and other images in a data set would be compared, or “queried” against it to find 

images similar to the reference. The margins of the contingency table are fixed for a given 

pair of images: for each row i, Σnj=1kij=ri, the number of pixels in bin i in the reference 

image, and similarly for each column j, Σni=1kij=qj, the number of pixels in bin j in the query 

image. By definition, Σijkij=N. The probability of observing a particular distribution of 

overlaps kij, i.e., the probability of observing a given contingency table, can be represented 

as the product of probability mass functions of the multivariate hypergeometric distribution. 

Considering only the first column of an n×ncontingency table with row marginal totals ri, the 

column sum is q1=k11+k21+⋯kn1. Each component ki1 is “drawn” from its row sum ri. Since 

each draw is independent, the probability of observing a particular distribution of pixels is 

given as

This quantity is a probability mass function of the multivariate hypergeometric distribution. 

The probability of observing the second column is described similarly, but accounts for the 

pixels already assigned in the previous column:

The same pattern is followed through the (n−1)th column. Because the row and column 

sums are fixed, the configuration of the nth column is determined by the preceding columns. 

Since the configuration of the available pixels in each column (aside from the nth column) is 

independent of the other columns, the probability p of the complete n×n contingency table is 

given by the product of the column probabilities. This quantity, shown in (1), is known as 

the probability for k -variate contingency tables [15], [16]. Here, q=[q1,q2,…,qn], r=[r1,r2,

…,rn], and k=[k11,k12,…,knn]:

(1)

In our previous work focusing on binary data, we defined a similarity measure based on the 

hypergeometric distribution; the probability mass function of this distribution gives the 
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probability of a 2×2 contingency table [10]. The similarity measure was defined as the 

difference between the lower and upper tails of the hypergeometric distribution defined by 

the marginal totals r and q. The values of r and q are a function of the particular reference 

image and query image being compared. The tails were defined with respect to the observed 

overlap, which was defined as the number of spatially corresponding pixels which are “on” 

in both images, i.e., k11 in this terminology. To extend this approach from the two classes in 

binary data to n classes, we utilize the probability mass function of the n×n contingency 

table.

The statistical significance of a contingency table is evaluated by performing Fisher’s exact 

test (in the binary case) or the Fisher-Freeman-Halton test (in the general case)[15], [17]. In 

both cases, the isomarginal family of tables (i.e., those tables having the same fixed margins 

r and q as the original table representing the reference and query image pair) is first 

generated, and the probability of each table is calculated. In the binary case, the 

hypergeometric distribution describes the isomarginal family. For each table in the 

isomarginal family, the value of a chosen statistic S(k) is compared to that of the original 

table. With respect to S(k), tables in the isomarginal family may be more extreme than the 

original table in two directions. The set of tables which are “more extremely large” have a 

larger than or equal value of the statistic, while the set of tables which are “more extremely 

small” have a smaller than or equal value of the statistic. The significance of a table in a 

particular direction is found by summing the probabilities of all tables within the respective 

set.

In the binary case, the choice of the statistic S(k) is straightforward because due to the fixed 

margins, there is only one degree of freedom. S(k)=k11 completely defines the table, and is 

reasonable because more similar images will have greater numbers of overlapping pixels. In 

the general case, however, there are n2−2n+1 degrees of freedom, and for n>2, the choice of 

a statistic is not obvious. Here, we choose a vector of statistics—the set of diagonal elements 

of the n×n table—as S(k), as shown in (2). These diagonal elements represent the exact 

matches— the spatially corresponding pixels in the reference and query images which are in 

the same class. While S(k) may be defined in many alternative ways, we propose (2) as a 

reasonable choice for multiclass data because images which are more similar will have a 

greater number of each of the n types of exact matches:

(2)

For each table in the isomarginal family, we perform an index-wise comparison of each 

diagonal element to the corresponding diagonal element in the original table. In other words, 

we compare each element in S(k) with the corresponding element in S0, which is the 

instance of S(k) observed for the original table. If each diagonal element in the table is 

greater than or equal to its corresponding element in S0, the table is assigned to set G, the set 

of “more extremely large” tables with respect to all elements of S(k). If each diagonal 

element is less than or equal to its corresponding element in S0, the table is assigned to set L, 

the set of “more extremely small” tables. Equation (3) defines the proposed multivariate 

hypergeometric similarity measure h:
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(3)

2.2 Similarity Measure Comparison

The sample rankings obtained from the proposed measure are compared with those from 

cosine similarity, Pearson correlation, and mutual information. Cosine similarity and 

Pearson correlation are defined for vectors V1 and V2 in (4) and (5), respectively. Mutual 

information is defined in (6), where xi and yj are the elements of V1 and V2, respectively:

(4)

(5)

(6)

2.3. Synthetic Data

First, the performance of the multivariate hypergeometric similarity measure is evaluated on 

synthetic data. While the proposed similarity measure is defined for any n≥2 classes, these 

synthetic experiments are performed using only three classes to clearly illustrate the method. 

Two synthetic data sets are used for this comparison. The first consists of the three-class 

isomarginal family defined by marginal totals (r1,r2,r3,q1,q2,q3)=(5,5,5,5,5,5) and N=15. The 

second consists of all three-class tables with N=5.

2.4 Piecewise Approximation

Testing the significance of n×n contingency tables obtained from biomedical data, such as 

MSI data, poses a challenge due to data size. As the numbers of pixels in the images, and 

hence the marginal totals, increase, generating the isomarginal family of tables to perform 

the Fisher-Freeman-Halton test becomes demanding. The number of possible tables 

increases factorially as the numbers of rows, columns, or total pixels increase [18], [19]. As 

an analytical example, the number of three-class contingency tables where all rows and 

columns sum to r is given by (r+22)+3(r+34) [20], [21]. When faced with a very large number 

of tables to enumerate in the isomarginal family, approximate solutions can be found 

through Monte Carlo testing [17]. However, in practice, this may demand a very large 

numbers of permutations to achieve satisfactory separation of similarity rankings.
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Here, we propose a piecewise method of approximation, in which the two images or data 

vectors to be compared are divided into a number of smaller subsections. The motivating 

idea is that similar samples will also have similar corresponding subsections. For each pair 

of reference and query subsections, an n×n contingency table is constructed and the 

multivariate hypergeometric similarity measure is calculated. The overall similarity of the 

image pair is computed as a function of the similarities of all subsections. Fig. 3 illustrates 

this process.

Piecewise approximation requires choices in how images or data vectors are separated into 

subsections (e.g., different subsection sizes) and how the similarity scores for the 

subsections are combined to obtain an overall similarity score for the image pair (e.g., 

different functions). Alternative choices are examined here through experiments on synthetic 

and biomedical data. First, the previously described synthetic data set (for N=15) is used to 

examine whether there is a pattern between subsection size and the extent of difference 

observed between the piecewise approximation rankings and the exact rankings. In this test, 

the rankings for each sample obtained by using subsections of sizes 3, 4, and 5 pixels are 

compared with the ranking calculated using the whole sample. To avoid the comparison of 

single-pixel sections, if the sample is not evenly divisible at a particular increment size, the 

remainder pixels are added to the previous subsection to create one subsection larger than 

the others. In the same experiment, the effect of permuting the reference and query samples 

which correspond to a single n×n table is considered. While a given pair of samples yields a 

single n×n table, mapping a given table back to the sample space yields nonunique indexing 

of spatially corresponding pixels. This type of indexing difference would not affect the 

similarity score of a given reference and query pair if the whole sample is utilized. However, 

when piecewise approximation is employed, different subsections may contain different 

proportions of the pixels for each type of overlap kij. To examine how this may affect results, 

the “randperm” function in MATLAB was used to generate a permutation of the sample 

indices, which was applied to both the reference and query samples before they were divided 

into subsections. This was repeated 10, 000 times. The purpose of this step is to confirm that 

overall sample rankings in the synthetic data set are not an artifact of arbitrary methods of 

generating synthetic samples from tables and subsectioning samples. For each subsection 

size, the sample ranking results shown are the mean across all permutations. Next, 

biomedical data was used to empirically compare alternative functions for aggregating the 

subsection similarity scores into an overall score for the image pair.

2.5 Experimental Data

The experimental MSI data used in this study is from a mouse model of Tay-Sachs/Sandhoff 

disease [22]. The image corresponding to m/z 889.6 (located at index 783 within the data 

set) was selected as the reference image due to its distinctive spatial pattern. The MSI data 

set has a spectral dimension of 4, 438 m/z values, each corresponding to an m/z image, and 

all of these images were tested as query images against the reference image of m/z 889.6. 

The three-class case was used for this experiment: pixel intensities in the data set were 

binned into “high” (≥thresholdx), “low” (0< and <x), and “zero” (=0) classes. The threshold 

x was arbitrarily selected as the 50th percentile of the mean spectrum of the data set. The 

piecewise approximation approach was used with a primary subsection size of 4×4, chosen 
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after testing several sizes in an effort to balance section size and computational time. The 

proposed similarity measure score was calculated for each subsection. Several functions for 

combining subsection scores into an aggregate image pair score were then compared by 

qualitatively evaluating the images which were ranked by each as highly similar to the 

reference. Finally, the top m/z images selected by the proposed similarity measure using 

three classes were compared to the three-class results for cosine similarity, Pearson 

correlation and mutual information.

The gene expression data used in this study consists of 230 breast cancer samples. The raw 

Affymetrix *.CEL files were downloaded from the Gene Expression Omnibus (GEO) 

website (accession: GSE20194). The Affymetrix Expression console software was used to 

compute log2 normalized gene expression values. Clinical information available on GEO 

was used to label each sample within the data set as estrogen receptor (ER) positive or 

negative, and the 141 ER+ samples were used for further analysis. The three-class case was 

also used for this experiment: gene-specific, percentile-based threshold pairs (x, y) were 

used to bin each gene expression value into the “high” (>y), “medium” (x< and ≤y) or “low” 

(≤x) class. Results from several alternative threshold pairs were compared. Probe 

“205225_at,” for the estrogen receptor gene (ESR1), was used as the reference sample.

Results

This section describes four sets of results. First, the performance of the proposed 

multivariate hypergeometric similarity measure is compared with the other similarity 

measures using synthetic data. Second, the effects of subsection size and combination 

functions on the piecewise approximation method are investigated using synthetic and 

experimental MSI data. Third, the performance of the proposed similarity measure on 

experimental MSI data is evaluated. Fourth, its performance is evaluated on experimental 

gene expression data.

In the first set of results, the rankings of samples in synthetic data sets by the four similarity 

measures are compared in Figs. 4 and 5. Each sample (horizontal bar) represents a single 

table, with the green, yellow, and red segments representing the number of exact matches 

(k11+k22+k33), slight mismatches (k12+k21+k23+k32), and large mismatches (k13+k31), 

respectively. In Fig. 4, there are 231 tables represented; these tables comprise the 

isomarginal family defined by marginal totals (r1,r2,r3,q1, q2,q3)=(5,5,5,5,5,5). All four 

similarity measures agree in that the highest score is assigned to the table with the largest 

number of exact matches. None of the similarity measures are monotonic with respect to the 

number of exact matches, but rankings from the proposed similarity measure are much 

closer to this trend than rankings from cosine similarity and Pearson correlation. Cosine 

similarity and Pearson correlation more closely sort by the number of large mismatches. For 

a single isomarginal family, the magnitudes and means of the two vectors are constant. The 

rankings of cosine similarity and Pearson correlation therefore depend on the value of the 

dot product, and the minimum dot product is observed when the number of large 

mismatches is maximized. The proposed similarity measure does not provide such 

distinction between slight and large mismatches, but it does provide a probabilistic 

interpretation which cosine similarity and Pearson correlation do not: the samples associated 
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with extreme scores are the most “surprising” patterns of overlap observed. Mutual 

information assigns higher scores to cases where most pixels are concentrated in a few 

classes, but does not differentiate among the classes. For example, the tables with 

[k11,k22,k33]=[5,5,5] (i.e., all exact matches) and [k31,k22,k13]=[5,5,5] (i.e., many large 

mismatches) both receive equally high scores; as a result, the mutual information results do 

not show any trend with respect to exact matches, slight mismatches or large mismatches. In 

contrast, [k11,k22,k33]=[5,5,5] is ranked highly by the proposed similarity measure, while 

[k31,k22,k13]=[5,5,5] receives a much lower score.

Fig. 5 considers the rankings of the 1, 287 tables generated by considering every possible 

combination of marginal totals such that (r1+r2+r3=5) and (q1+q2+ q3=5). Again, all four 

similarity measures agree in that the highest score is assigned to the table with the largest 

number of exact matches, but the proposed similarity measure more consistently assigns 

lower scores to tables with fewer exact matches. The rankings in this set of all tables for 

N=5 illustrate additional probabilistic aspects of the proposed similarity measure. For 

example, the proposed measure can distinguish between instances of overlap with different 

distribution magnitudes. It assigns identical scores to the set of tables with [k11,k22,k33 ] as 

[3,1,1],[1,3,1], and [1,1,3], and a different identical score to the other possible set of tables 

describing only exact overlap, with [k11,k22,k33 ] as [2,2,1],[2,1,2], and [1,2,2]. Pearson 

correlation and cosine similarity do not distinguish between these two sets of tables. Mutual 

information distinguishes the two sets of tables, but again does not distinguish between cases 

of exact matches and many large mismatches; for example, the cases where 

[k11,k22,k33]=[3,1,1] and [k31,k22,k13]=[3,1,1] are assigned the same score, 

and[k11,k22,k33]=[2,2,1] and [k31,k22,k13]=[2,1,2] are assigned the same score. For a second 

example, in the proposed measure, all tables which have marginal totals such that only one 

n×n table is possible are mapped to a score of zero. If only one set of overlaps kij can be 

observed for a particular pair of images or data vectors, then the overlap which is observed 

can be considered inherently “unsurprising.” In contrast, this set of tables is undefined for 

Pearson correlation (i.e., these tables are assigned the value NaN, as shown at the top of the 

Pearson correlation plot in Fig. 5). Cosine similarity does not group these tables together or 

otherwise distinguish them.

In the second set of results, the effects of subsection size on the piecewise approximation 

result are described in Fig. 6. The 231 samples in the synthetic data set shown in Fig. 4 are 

plotted in order of increasing exact score. The piecewise approximation scores for each 

sample, across increments of sizes 3, 4, and 5, are compared. For all three subsection sizes, 

the mean score from 10, 000 permutations of the reference and query vectors is shown. 

Overall, the piecewise approximation scores follow the trend of the exact score, but there are 

notable deviations. In such cases, samples are ranked higher or lower as an artifact of the 

piecewise sectioning process. Interestingly, these cases tend to correspond across all of the 

subsection sizes; if a sample is scored much higher or lower than its adjacent samples by the 

piecewise method, the same jump or dip in score is observed across all three subsection 

sizes. However, the magnitudes of the piecewise scores indicate that, as expected, larger 

sections give scores closer to the exact result.
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Next, different statistics for combining the similarity scores of sections into a single overall 

score for the sample pair are compared empirically, using MSI data with a subsection size of 

4×4 pixels for piecewise approximation. Fig. 7 shows the image pair similarity scores for 

each of the 4, 438 m/z values, computed as the mean, median, mode, variance, skewness, or 

kurtosis of all of their subsection scores. The x-axis of these plots, showing indices 1 

through 4, 438, represents the query m/z images; each is associated with a single score (dot) 

on the y -axis. This score is obtained by evaluating the specified function (e.g., the mean) 

over the set of subsection scores obtained for that query image when it was compared to the 

reference image. To interpret these results, it is necessary to consider that the reference m/z 
image corresponds to index 783. Since the most similar image in the data set to the reference 

image should be the reference image itself, a well-performing function should assign the 

most extreme score to this index. This result is observed for the mean, median, variance, and 

kurtosis. During previous study of this data set, 47 of the 4, 438 images were observed to be 

qualitatively very similar to the reference m/z image, and those images were observed to be 

associated with indices relatively close to the reference index [10]. In contrast, lower indices 

were associated with noisy images (an artifact of MALDI MSI data acquisition), and higher 

indices with sparse images. A well-performing function would, therefore, exhibit a peak 

centered at the reference index of 783. The mean and kurtosis both show this feature by 

assigning extreme (higher and lower than most others, respectively) scores to indices close 

to the reference index.

In the third set of results, these findings are applied to experimental MSI data. The 12m/z 
images selected by each measure as most similar to the reference image are shown in Fig. 8. 

All measures agree that the reference itself is the most similar (selection 1:m/z 889.6). 

Notably, the proposed similarity measure gives results which are qualitatively very similar to 

the reference m/z image. The Pearson correlation and mutual information results for three 

classes also closely resemble the reference m/z image, while the cosine similarity results for 

three classes include several noisy images without a clearly discernible pattern. Interestingly, 

the top 12 results selected by the proposed similarity measure using the mean and kurtosis as 

combination functions are not identical. Moreover, neither set of results overlaps completely 

with the results from Pearson correlation, cosine similarity, and mutual information. For 

example, the proposed similarity measure, using the mean as the combination function, 

selects m/z908.9, which none of the others select. Similarly, m/z 894.5, another unique 

selection, is picked by the proposed similarity measure when using the kurtosis as the 

combination function. Examining the top n results is common when applying a similarity 

measure to a data set, and these observations indicate that applying the proposed multivariate 

hypergeometric similarity measure can yield relevant and potentially useful results.

In the fourth set of results, Tables 1, 2, and 3 show the top 20 gene rankings for each of the 

similarity measures for a single ESR1 reference probe across three alternative percentile-

based thresholds. First, in all cases, the reference probe “205225_at” is selected as the most 

similar, as it should be. Second, the multivariate hypergeometric similarity measure (using 

the mean as a combination function) identifies some of the other ESR1 probes as highly 

similar to the reference, but highlights the other probes to a lesser extent than the other three 

measures. Third, this set of results shows that the multivariate hypergeometric similarity 

measure is successful in identifying genes which are known to be associated with breast 
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cancer, such as BCL2 and FOXA1 in Table 3. Fourth, notably, the proposed similarity 

measure highlights several genes—WWP1 [23] and NME5 [24] in Table 1, PGRMC2 [25] 

and HPN [26] in Table 2—which have recently been shown to be relevant in breast cancer, 

but which are not included in the top rankings of the other three similarity measures.

These results also emphasize the value of integrating multiple forms of analysis to leverage 

complementary findings. For example, recent investigations have examined the role of 

MAPT [27] and GATA3 [28] in breast cancer; while MAPT appears in the top rankings of 

all four similarity measures in Table 1, GATA3 appears in the rankings of the other three 

similarity measures, but not in those of the multivariate hypergeometric similarity measure. 

Additionally, the benefits of examining a single data set across alternative thresholds can be 

clearly observed through the notably different gene lists for each measure in Tables 1, 2, and 

3. In addition, parallel assessments with different probes for the same gene are also 

important. For example, the top 20 rankings by the multivariate hypergeometric similarity 

measure for ESR1 probe “211235_s_at” in the same data set (rankings not shown) highlight 

several other genes—IGF1R [29], [30],GMPR2 [31], FGFR3 [32]—which have recently 

been shown to be relevant in breast cancer. Again, these observations indicate that applying 

the proposed multivariate hypergeometric similarity measure can yield relevant and 

potentially useful results.

Discussion

In this paper, we propose a multivariate hypergeometric similarity measure for the pairwise 

comparison of images and data vectors featuring any positive integer number of intensity 

levels. This is an extension of our previous work on a hypergeometric similarity measure, 

which was restricted to binary data. Using synthetic data sets, we compared the proposed 

measure to Pearson correlation, cosine similarity and mutual information in terms of sample 

rankings, and identified several favorable properties of the proposed measure. Next, we 

developed a method of piecewise approximation to facilitate the application of this approach 

to large data sets. Piecewise approximation was tested at several different subsection sizes 

on synthetic data, and was observed to follow the trend of the exact score. Then, biological 

MSI data was used to empirically assess functions for combining subsection similarity 

scores found through piecewise approximation. The proposed similarity measure was 

demonstrated to be effective in identifying qualitatively similar images in MSI data and 

breast cancer-related genes in microarray data. For both data types, it made relevant 

selections which were not identified by other similarity measures in their top selections.

While the current results of this study are encouraging, they also highlight several avenues 

for further research on the proposed similarity measure. For instance, this approach is 

defined for any positive integer number of classes, but the results in this study have 

considered only three classes. Three classes were chosen both for simplicity in examining 

similarity measure properties and to highlight the difference between the binary case and the 

multiclass case. Future work will assess the effect of increasing the number of classes. 

However, as previously noted, the generation of the isomarginal family becomes 

increasingly demanding as the number of classes increases [18], [19],[20], [21]. 

Additionally, alternative definitions of the statistic S (k) will be explored. Here, we chose S 
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(k) as the set of diagonal elements of the contingency table. However, it may be desirable to 

include sub- and superdiagonal terms when larger numbers of classes are considered. The 

selection of the appropriate number of classes—and of appropriate thresholds for separating 

classes—is another issue of interest; in this study, the thresholds between classes for the MSI 

and gene expression data sets were arbitrarily selected. From the perspective of practical 

biomedical applications, choices of thresholds for a particular data set may be based on 

examination of descriptive data statistics, or by applying selected tests as a preliminary step 

[33]. The selection of functions for aggregating subsection scores obtained from piecewise 

approximation is another area for further study. Six statistics were tested in this study, and 

many additional functions could be tested. Interestingly, the set of top selections for MSI 

data using the mean and kurtosis were not identical, indicating that it may be useful to 

consider which combination functions may be complimentary.

A notable constraint is that the molecular identities of the m/z values are not known for the 

MSI data set investigated here; future testing on labeled (MS/MS) data will enable biological 

interpretation of similarity measure performances for MSI data, similar to what was done for 

the microarray data. In addition, only one MSI and one microarray data set have been 

investigated here; implementation on multiple data sets will provide another key measure of 

performance. Finally, this paper focuses on the application to MSI and gene expression data, 

but the proposed similarity measure could also be applied to other types of biological data. 

Future work will also examine the performance of the proposed multivariate hypergeometric 

similarity measure for detecting patterns in other types of large-scale biological data sets, 

with which other similarity measures like mutual information, cosine similarity, and Pearson 

correlation are currently used.
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Fig. 1. 
Description of 3D data structure of MSI data sets, and three example m/z images.
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Fig. 2. 
An image pair (reference and query images) with pixel intensities binned into three levels is 

represented as a 3×3 contingency table with fixed marginal totals.
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Fig. 3. 
Overview of piecewise approximation process: subsection (1) corresponds to the top-left4×4 

blocks of the reference and query images; (2) to the 4×4 blocks to the immediate right of (1); 

and (n) to the bottomright 4×4 blocks. The similarity is calculated for each spatially 

corresponding reference and query section, and the overall similarity of the reference and 

query is calculated as a function of the subsection scores.
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Fig. 4. 
Comparison of sample rankings by the four similarity measures for the synthetic data set 

comprising the isomarginal family given by (r1,r2,r3,q1,q2,q3)=(5,5,5,5,5,5). Each sample 

(horizontal bar) represents a certain number of exact matches, slight mismatches, and large 

mismatches (corresponding to [green, yellow, and red], or [medium, light, and dark] in 

grayscale). The length of each color segment corresponds to the number of that type of 

match in the sample. For each similarity measure, the similarity score corresponding to each 

sample is shown on the right.
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Fig. 5. 
Comparison of sample rankings by the four similarity measures for the synthetic data set 

containing all tables for N=5. Each sample (horizontal bar) contains a certain number of 

exact matches, slight mismatches, and large mismatches (corresponding to [green, yellow, 

and red], or [medium, light, and dark] in grayscale). The length of each color segment 

corresponds to the number of that type of match in the sample. For each similarity measure, 

the similarity score for each sample is shown on the right.
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Fig. 6. 
The mean rankings of synthetic samples using piecewise approximation at different 

subsection sizes (size 3: blue dash-dot line; size 4: green dotted line; and size 5: red dashed 

line) compared to rankings from using the whole sample (black, solid line).

Kaddi et al. Page 19

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Empirical comparison of alternative functions for combining subsection similarity scores 

into an overall similarity score through piecewise approximation. Each dot on the scatter 

plot represents one query image (m/z value); 4, 438 are in the data set. The value (image pair 

score) of the dot represents the similarity score assigned to the query image based on the 

specified function of its subsection scores. For example, in the “mean” plot, the image pair 

score of each query image is the average similarity score of its subsections.
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Fig. 8. 
The 12 most similar m/z images, as ranked by the four similarity measures. The multivariate 

hypergeometric similarity measure results are shown with the mean and kurtosis as 

combination functions.
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