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Abstract

Robust prediction models are important for numerous science, engineering, and biomedical 

applications. However, best-practice procedures for optimizing prediction models can be 

computationally complex, especially when choosing models from among hundreds or thousands of 

parameter choices. Computational complexity has further increased with the growth of data in 

these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the 

computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of 

commodity desktop machines, coupled with commercial cloud computing resources can enable 

research labs to gain easier and more cost effective access to vast computing resources. We have 

developed omniClassifier, a multi-purpose prediction modeling application that provides 

researchers with a tool for conducting machine learning research within the guidelines of 

recommended best-practices. omniClassifier is implemented as a desktop grid computing system 

using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition 

to describing implementation details, we use various gene expression datasets to demonstrate the 

potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A 

prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/.
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1. INTRODUCTION

Prediction modeling is important in science and engineering disciplines, whether the goal is 

to classify stellar objects [1] or to determine the prognosis of a cancer patient [2]. Careful 

adherence to best-practice guidelines for prediction modeling in bioinformatics is especially 

important due to the properties of the data, e.g., these datasets typically have small sample 
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sizes, but very large feature sizes. Published guidelines for bioinformatics prediction 

modeling highlight common pitfalls [3] and explicitly show the bias that can occur if these 

guidelines are not followed [4, 5]. Despite the availability of these guidelines, researchers 

occasionally report over-optimistic prediction results. Thus, it was necessary to revisit the 

importance of following good practices [2]. Reasons for the inconsistency in bioinformatics 

prediction modeling may include (1) the lack of a system for prediction modeling that is 

readily accessible not only to bioinformaticians, but also to biologists and medical 

researchers and (2) the prohibitive computational complexity of prediction modeling due to 

the growth of biomedical data. We address both of these challenges with omniClassifier, a 

web-based application that simplifies prediction modeling while following best-practice 

guidelines; and that uses desktop grid computing for unlimited scalability to large datasets.

A common pitfall for prediction modeling in bioinformatics is the failure to properly use 

cross validation to choose features and classifier parameters [3]. Subsequent to model 

selection, many studies also fail to evaluate their prediction model using independent 

validation data. Ambroise and McLachlan showed that improper implementation of cross 

validation can lead to overly optimistic estimates of prediction performance [4]. Specifically, 

using microarray gene expression data, they showed that when features are selected outside 

of cross validation, estimated prediction performance can be nearly perfect, even for 

randomly generated datasets in which feature vectors are independent of class labels. 

Furthermore, when cross validation encompasses both feature selection and classifier 

parameter selection, performance estimation bias can still occur [5]. Varma and Simon 

showed that a nested cross validation procedure can reduce this bias considerably [5]. Thus, 

we develop omniClassifier to closely follow these guidelines in order to achieve unbiased 

prediction modeling.

omniClassifier leverages desktop grid computing technology for increased scalability to 

better handle biomedical Big Data. We use the Berkeley Open Infrastructure for Network 

Computing (BOINC) middleware to manage distribution of work units to compute nodes 

[6]. Advantages of BOINC compared to traditional grid computing technologies include: (1) 

research scientists can quickly develop and deploy BOINC servers to commodity computers 

using open source software, (2) compute nodes have less restrictions in terms of operating 

system and hardware, (3) project administrators can spend less time maintaining computer 

systems and more time analyzing results, and (4) the project can be expanded to be a 

volunteer or publicresource computing project, which further increases the potential scale of 

projects. Because of these advantages, BOINC has been adopted for numerous computing 

projects in science and engineering. One of the earliest desktop grid computing applications 

is the SETI@home project, which allows users to dedicate their idle CPU cycles for 

processing radio telescope signals [7]. In the bioinformatics domain, Folding@home and 

Genome@home were developed as volunteer grid computing projects that simulate protein 

translation and folding [8, 9]. The physics and astronomy domain has led the way in 

adopting distributed computing platforms for solving problems [10–12]. In fact, “citizen 

science” or volunteer grid computing platforms have been popular enough to warrant studies 

to improve project visibility and to improve the quality of volunteer-contributed work [13].
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The machine learning research community has produced a number of software packages that 

may be used in conjunction with omniClassifier, or are similar to omniClassifier. For 

example, Scikit-learn [14], SHOGUN [15], and Weka [16] are established machine learning 

packages that contain a large number of classification methods. These packages could be 

adopted to augment the set of classification methods available in omniClassifier. ML-Flex 

[17] and PARAMO [18] are similar to omniClassifier in terms of their parallel computing 

ability. MLFlex contains robust cross validation methods, but requires a dedicated cluster 

with a shared file system for parallel computing. PARAMO uses a Map-Reduce framework 

implemented by Apache for parallelization. However, this again requires a dedicated cluster. 

In contrast, omniClassifier’s use of the BOINC framework for desktop grid computing 

potentially enables scalability across heterogeneous and commodity compute nodes without 

the need for a dedicated compute cluster. The remainder of this paper is structured as 

follows. We describe the nested cross validation and external validation procedure for 

prediction modeling in the methods section, followed by specific feature selection and 

classification methods currently available in omniClassifier. Subsequently, we describe 

implementation details of omniClassifier including the web server, database, and BOINC 

server and clients. Finally, we use microarray gene expression datasets to evaluate the 

prediction modeling performance and efficiency of omniClassifier.

2. METHODS

2.1 Prediction Modeling

Using the guidelines presented by Varma and Simon, we implement a prediction modeling 

procedure that ensures unbiased optimization of all components of the model, including 

features and classifier parameters [5]. The procedure includes two steps: (1) performance 

assessment with nested cross validation and (2) final model selection and validation (Figure 

1).

First, we use nested cross validation applied to only the training data to estimate prediction 

performance. Second, we apply cross validation to the training data to optimize a final 

prediction model and then validate this model using independent data. Our strategy assumes 

that the classification problem is binary, i.e., the goal is to classify data into two groups. 

Moreover, we use multiple iterations of k-fold cross validation. However, future 

implementations may be generalized to classify samples into three or more groups, and may 

use resampling methods such as bootstrapping or Monte Carlo cross validation [19, 20].

The first step of nested cross validation is random assignment of labeled samples into M 

stratified folds such that the prevalence of labels in each fold is approximately equal to that 

of the entire training data. M-1 folds are used as the ‘Training Subset’ and 1 fold is used as 

the ‘Testing Subset’. This is repeated M times such that each fold is used as a testing subset 

exactly once. The training subset is subject to an additional L iterations of K-fold cross 

validation, which is used to choose prediction model parameters (i.e., feature selection 

method, feature size, classifier, and classifier parameters). This is known as the ‘Optimizing 

Cross Validation’ procedure. The resulting prediction model parameters are then used to 

select features in the training subset, train the classifier, and test the classifier using the 

testing subset. A single iteration of nested cross validation produces M values of cross 
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validation performance, which can be averaged into a single performance quantity. This 

entire process is then repeated for N iterations, resulting in N cross validation performance 

quantities.

Figure 1A summarizes cross validation performance assessment. After nested cross 

validation, it is important to choose a final prediction model and to validate this model using 

independent data. When choosing a final prediction model, the same ‘Optimizing Cross 

Validation’ procedure that was previously used in nested cross validation must be applied to 

the entire training data. Subsequently, the final model parameters should be used to select 

features and train the classifier. Then, samples from an independent validation dataset are 

used to quantify the external validation performance (Figure 1B). In summary, the 

‘Optimizing Cross Validation’ procedure in Step 2 is an important component of prediction 

modeling in that it chooses the final model. Thus, the performance of this procedure is cross-

validated in Step 1. Note that, due to sampling variance, the final parameters chosen in Step 

2 may be different from the parameters chosen within the cross validation in Step 1. 

However, some variance is expected when choosing prediction modeling methods and this 

variance is generally smaller than the variance due to prediction endpoint [2].

2.2 Feature Selection and Classification Methods

omniClassifier currently supports seven feature selection methods and four classification 

methods. Supported feature selection methods include fold-change, T-test, two variations of 

minimum redundancy, maximum relevance (mRMR) [21], significance analysis of 

microarrays [22], rank-sum test, and rank products [23]. With the exception of mRMR, all 

feature selection methods rank features from most to least informative. mRMR searches for 

groups of features that maximize mutual information with the class labels while minimizing 

mutual information among features [21]. All feature selection methods can be optimized 

with a ‘size’ parameter, which controls the number of features selected. During prediction 

modeling, this parameter is generally varied to identify an optimal feature size. We 

implement all feature selection methods using C++ based on descriptions of the algorithms 

in their respective papers.

Classifiers supported by omniClassifier include Bayesian (or Gaussian model), k-nearest 

neighbors (KNN), logistic regression (LR), and support vector machine (SVM). The 

Bayesian classifier models the data with Gaussian distributions to estimate the class 

probability of future samples. Parameters of the Bayesian classifier control the covariance 

estimation method for multivariate Gaussian distributions. These parameters include pooled 

or un-pooled covariance and spherical, diagonal, or full covariance matrices [24]. The k 

parameter of the KNN classifier controls the number of training samples nearest the testing 

sample that are used to determine the class of the testing sample [25]. The logistic regression 

classifier contains no additional parameters. The SVM classifier can be optimized by 

choosing the kernel (e.g., linear or radial basis) and cost as well as the bandwidth, or 

gamma, of the radial basis kernel [26]. Table 1 summarizes all supported classifiers. We use 

the OpenCV library for the Bayesian and KNN classifiers [27]; the LIBSVM library for the 

SVM classifier [26]; and an open source package for the logistic regression classifier [28].

Phan et al. Page 4

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 System Implementation

The omniClassifier system consists of four components: the webinterface, the database, the 

BOINC server, and compute nodes (Figure 2). We describe implementation details and 

rationale for each component.

2.3.1 Web Interface—The web-interface enables researchers to queue prediction 

modeling jobs, to monitor submitted jobs, and to download results. The main page of the 

interface contains fields for job submission. Basic fields include data description, data files, 

prediction modeling parameters, and work distribution parameters (Figure 3). Users may 

fully customize the description of their prediction modeling job, allowing multiple users to 

submit jobs simultaneously to the system. Multiple testing datasets may be uploaded for 

each prediction modeling job. This is useful when multiple testing datasets cannot be 

combined due to batch effects. Since the majority of computation time is spent within the 

nested cross validation phase, inclusion of additional testing datasets does not substantially 

increase computation time.

After submitting prediction modeling jobs, users may monitor the status of their jobs on the 

omniClassifier result page (Figure 4). This page lists all submitted jobs and allows filtering 

and sorting. Jobs in progress are listed with an indicator for percentage complete. Each job is 

also listed with details of the data, feature selection and classification methods, and cross 

validation parameters. Once a job has completed, users can download results formatted as 

MATLAB data structures. These data structures are compatible with GNU Octave, an open-

source alternative to MATLAB [29]. MATLAB/Octave code to parse the data structure will 

also be available from the omniClassifier web-interface. However, future versions may 

provide results in other formats.

2.3.2 Database—The omniClassifier database stores training and testing datasets, 

prediction modeling analysis parameters, and prediction results. It is implemented as a 

MySQL relational database with the following tables:

• Dataset: stores metadata for each training or testing dataset, including 

number of samples, number of features, and feature names.

• Sample: stores raw feature values for each sample of a dataset as well as 

the sample name and label.

• Analysis: stores meta information for each prediction modeling job, 

including data description, feature selection and classification methods, 

cross validation parameters, data distribution parameters, and job status.

In addition to these tables, the results of prediction modeling jobs are stored in four tables 

unique to each job:

• CV_Result: classification decision values for all MxN folds and iterations 

of the outer nested cross validation.

• Opt_CV_Result: classification decision values for all MxNxKxL folds and 

iterations of the inner nested cross validation (i.e., optimizing cross 

validation component of prediction modeling Step 1, Figure 1A).
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• EV_Result: classification decision values for the final independent data 

validation.

• Opt_EV_Result: classification decision values for the KxL folds and 

iterations of the optimizing cross validation component of prediction 

modeling Step 2, Figure 1B.

Although we chose MySQL as the database for omniClassifier, any system for storing and 

retrieving structured data would suffice.

2.3.3 BOINC Server and Work Distribution—We use the Berkeley Open Interface for 

Network Computing (BOINC) middleware to manage the distribution of prediction 

modeling work units to compute nodes, and collection of results from each compute node. 

The BOINC server includes two processes: the ‘Work Generator’ and the ‘Result 

Assimilator’ (Figure 2).

The Work Generator periodically checks the database for new prediction modeling jobs and 

breaks these jobs into self-contained feature selection and classification work units. Jobs are 

divided by cross validation folds. For example, suppose that a prediction modeling job is 

submitted with 5×10 cross validation (i.e., 5 folds and 10 iterations), 3×5 optimizing cross 

validation, fold-change feature selection with feature sizes varying from 1 to 10, and KNN 

classification with K varying from 1 to 5. Each fold is a self-contained classification training 

and testing procedure. Thus, in this example, there are 5×10×3×5=750 procedures in the 

optimizing cross validation phase of Step 1, 5×10=50 procedures in the cross validation 

phase of Step 1, 3×5=15 procedures in the optimizing cross validation phase of Step 2, and 1 

final procedure for the independent validation phase of Step 2. The total number of 

procedures is 750+50+15+1=816. In addition, each procedure tests all combinations of 

feature selection and classification. In this example, there are 10 feature sizes and 5 KNN 

parameters for a total of 10×5=50 combinations. Thus, each of the 816 procedures trains and 

tests a specific fold of data using 50 different combinations of feature selection and 

classification. The size of each work unit is controlled by the ‘Folds per Work Unit’ 

parameter during job submission (Figure 3). Work units are generated as text files, 

associated with data files, hosted on the BOINC server and downloadable by each compute 

node.

Compute nodes upload results of each work unit back to the BOINC server. As each result is 

uploaded, the Result Assimilator imports these results (i.e., classification decision values) 

into the omniClassifier database and updates the status and progress of the corresponding 

prediction modeling job. The updated status and progress is reflected in the omniClassifier 

result page (Figure 4).

2.3.4 Compute Nodes—Compute nodes can be attached to the BOINC server by 

installing the BOINC client. The BOINC client downloads work units and a platform 

specific executable for processing the work units. The omniClassifier prototype is attached 

to eight compute nodes with quad-core Intel Xeon E5405/E5504 CPUs (2.0 GHz) and at 

least 20 GB of RAM. Each compute node runs Red Hat Enterprise Linux Server with a 
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minimum version of 6.4. Currently, only Linux compute nodes are supported. However, 

future omniClassifier BOINC clients may be compiled for Windows based compute nodes.

2.3.5 Result Data Structure—Once all work units have been completed for a prediction 

modeling job, results can be downloaded from the omniClassifier result page as a MATLAB 

data structure. The data structure contains metadata for the training and testing samples, 

prediction modeling parameters (i.e., feature selection methods and classifiers), and 

classifier decision values for all combinations of modeling parameters and all folds and 

iterations of nested cross validation. Using this data structure, we can identify optimal 

prediction modeling parameters. Currently, the system reports model performance using 

three metrics: accuracy, AUC (area under the receiver operating characteristic curve), and 

MCC (Matthew’s correlation coefficient). Any of these metrics can be used for model 

selection. We select a model with maximum average performance in the ‘Optimizing Cross 

Validation’ loop. In case of a tie between multiple models, we select the simplest model. The 

simplest models are defined as those with the smallest feature size, smallest cost and largest 

gamma for SVM models, and highest K for KNN models. Among Bayesian models, models 

with pooled covariance are simpler than un-pooled and models with spherical covariance are 

simpler than those with diagonal covariance. We have not assigned any preference to any 

particular classification method or feature selection method. Therefore, for each endpoint, it 

is possible to obtain multiple optimal models. Using these optimal model parameters, we 

report the average cross validation or external validation performance.

2.4 Case Study: System Evaluation using Microarray Gene Expression Data

2.4.1 Prediction Modeling Performance Evaluation—We use several microarray 

gene expression datasets to evaluate the prediction performance of omniClassifier (Table 2). 

Typical properties of gene expression data reflect one important characteristic of biomedical 

Big Data, i.e., dimension or feature size is much larger than sample size. We use datasets 

representing 14 clinical cancer endpoints, including treatment response, cancer detection, 

survival, and subtype diagnosis, among others. We include five breast cancer datasets 

focusing on estrogen receptor status [2, 30–32], with two of these datasets also investigating 

treatment response; three liver cancer datasets focusing on cancer detection [33–35]; two 

multiple myeloma datasets representing four different endpoints [2]; two neuroblastoma 

datasets representing four different endpoints [2]; four pancreatic cancer datasets focusing 

on cancer detection [36–39]; two prostate cancer datasets focusing on cancer detection [40, 

41]; and four renal cancer datasets focusing on subtype classification [42–45].

Using omniClassifier, we analyze all combinations of training and validation datasets for 

each clinical endpoint. For example, we use each of the five breast cancer estrogen receptor 

status datasets in nested cross validation (i.e., Step 1 of prediction modeling) then validate 

each of the five resulting prediction models with the remaining four independent validation 

datasets. Thus, we obtain five cross validation performance estimates and 20 external 

validation performance estimates for the estrogen receptor status endpoint. We repeat this 

process for the datasets of each clinical endpoint. We use all seven feature selection 

methods, varying feature size from 1 to 100, and all four classification methods. We use four 

variants of the Bayesian classifier (pooled/unpooled and spherical/diagonal covariance 
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estimation), vary the KNN K parameter from 1 to 10, and vary the linear SVM cost from 1 

to 10. Thus, the size of the feature selection method and classifier search space is 700×

(4+10+1+10)=17,500. Moreover, we use 10 iterations of 5-fold cross validation for both the 

outer cross validation as well as the optimizing cross validation.

2.4.2 Distributed Computing Performance Evaluation—We evaluate distributed 

computing performance using two breast cancer estrogen receptor status datasets, i.e., one as 

a training dataset and one as an independent validation dataset. Computation time and 

efficiency depend on factors such as number of compute nodes, data size, and prediction 

modeling methods. Thus, we use the following parameters:

• Four Classification Methods

◦ Bayesian (w/four variants)

◦ KNN (K=1…10)

◦ Logistic Regression

◦ Linear SVM (cost=1…10)

• Two Feature Selection Methods

◦ Fold-Change

◦ mRMR [21]

• Feature Sizes from 1 to 100

• Work Unit Sizes of 5 and 50

• Number of Compute Nodes from 1 to 4

For each combination of parameters, we measure the total computation time in minutes. We 

also use 10 iterations of 5-fold cross validation for both the outer cross validation and the 

optimizing cross validation.

3. RESULTS AND DISCUSSION

3.1 Prediction Modeling Performance

Prediction modeling results using several gene expression microarray datasets verify 

observations made in the MAQC-II study (Figure 5) [2]. In Figure 5, each colored cross 

represents a specific clinical endpoint with the vertical bar representing the range (i.e., 

standard error of the mean) of external validation performance and the horizontal bar 

representing cross validation performance. The optimal prediction model for each clinical 

endpoint is different (Table 3), reflecting the data-dependent nature of prediction modeling. 

Thus, it is important to consider a large number of methods when optimizing prediction 

models. Despite these differences, we observe that variance in prediction performance 

(measured using AUC) is dominated by the clinical endpoint, rather than by the feature 

selection or classification method, which is in agreement with results from the MAQC-II 

study. Moreover, cross validation performance (the X-axis of Figure 5) is able to predict 

external validation performance (the Y-axis of Figure 5) as indicated by the proximity of the 
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data points to the diagonal line. We also observe that the negative controls and positive 

controls have the lowest and highest performances, respectively. This verifies that the system 

produces sensible results, i.e., samples in the negative control endpoints are randomly 

assigned to class labels and samples in the positive control endpoints correspond to easily 

predicted labels such as patient gender.

3.2 Distributed Computing Performance

Computing efficiency of omniClassifier is dependent on a number of factors, including 

feature selection method, classifier, work unit size, and number of compute nodes. Because 

there is computing overhead in the BOINC server due to generation of work units and 

gathering results from compute nodes, the number of compute nodes and work unit size 

should be carefully selected for each prediction modeling job.

Using fold-change feature selection and various classifiers to predict breast cancer estrogen 

receptor status, we observe that computing efficiency increases proportionally with the 

number of compute nodes (Figure 6). However, work unit size (i.e., number of folds in each 

work unit) also has a considerable effect on computing efficiency. Work unit sizes of 5 

(Figure 6, X’s) can be up to three times slower than work unit sizes of 50 (Figure 6, 

squares). When work unit sizes are small, the total number of work units is larger. Thus, 

compute nodes must spend more time managing the download of work units and the upload 

of results, and less time on feature selection and classification. We also observe that the 

SVM classifier requires more compute time compared to the Bayesian, KNN, and logistic 

regression (LR) classifiers.

Using mRMR feature selection [21] changes the apparent effect of work unit size and 

classifier on computing efficiency (Figure 7). Computing efficiency still increases 

proportionally with the number of compute nodes. However, work unit size and classifier do 

not appear to affect computation time to the same degree. Overall, computation time 

increases for mRMR feature selection relative to fold-change feature selection. Thus, the 

computational complexity of mRMR dominates prediction modeling time relative to other 

factors. Work unit size should be optimized based on data size and computational cost of 

prediction modeling methods (i.e., classification and feature selection methods) to reduce 

computing overhead and to maximize efficiency.

3.3 Limitations and Future Work

Future improvements to omniClassifier may include the ability for users to design and 

implement their own modules that can be plugged into the system. This would enable 

expansion of omniClassifier to include more classifiers and feature selection methods. In 

particular, inclusion of methods for ensemble classification [46] and multi-class 

classification (i.e., more than two classes) would greatly improve the utility of 

omniClassifier.

Although, the framework for omniClassifier has been targeted for classification, a 

generalized scientific computing framework would be feasible by enabling the integration of 

modules for tasks other than classification, e.g., image processing or genomic sequence 

alignment. Indeed, the BOINC framework has been used for a wide variety of scientific 
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computing projects. However, implementation of such projects remains tedious. With a 

modular system for generalized desktop grid computing, parallel and high performance 

computing would become more tangible to the scientific community.

Finally, omniClassifier has primarily been tested within a controlled laboratory setup. We 

anticipate a number of technical challenges in a broader deployment of omniClassifier as a 

volunteer grid computing system. First, we will need to implement cross-platform versions 

(i.e., Linux, Microsoft Windows, and Apple OSX) of the omniClassifier BOINC client, and 

ensure that floating point computations are identical across CPU types. Second, the number 

of submitted computing jobs may increase dramatically, requiring improved disk, network, 

and database performance for the omniClassifier BOINC server. Third, users may want to 

deploy omniClassifier locally. Thus, we may release omniClassifier as an open-source 

package such that users can deploy it in a number of scenarios, including single-machine 

installations.

4. CONCLUSIONS

We developed omniClassifier, a Big Data prediction modeling application that uses desktop 

grid computing and enforces standardized practices for prediction modeling. We developed 

omniClassifier using BOINC, an open-source desktop grid computing middleware that can 

also be used as a volunteer or public-resource computing framework. Thus, BOINC enables 

scientists to utilize commodity desktop computers for unprecedented computing scalability. 

This scalability is important in the era of Big Data, in which individual datasets, especially 

those in the biomedical domain, have become too large to analyze within the computing and 

resource limits of small laboratories. omniClassifier also addresses the need for a 

standardized computing resource for prediction modeling. In the biomedical domain, 

analysis of large datasets (e.g., genomic, proteomic, imaging, and clinical) to predict clinical 

endpoints such as patient prognosis, optimal treatment regimen, and disease subtype, among 

others, has become a key area of research focus. But the lack of standardized resources for 

prediction modeling has led to issues with inconsistency and reproducibility of scientific 

results. We have demonstrated the utility of omniClassifier using 21 gene expression 

datasets that represent 14 different clinical cancer endpoints. We also demonstrated the 

computational scalability of omniClassifier by examining the efficiency under varying 

conditions such as work unit size and number of compute nodes. Although our case studies 

have used gene expression data, the system is scalable to any type of data in which samples 

can be represented as quantitative feature vectors. We plan to release omniClassifier as a 

public volunteer computing application. A prototype of the application can be accessed at 

http://omniclassifier.bme.gatech.edu/.
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Figure 1. 
Prediction modeling procedure used for omniClassifier. (A) Using a training dataset, 

prediction performance is assessed using nested cross validation. (B) The final prediction 

model is optimized with the training data and evaluated with an independent dataset.
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Figure 2. 
omniClassifier Prediction Modeling System. The system includes a web server with an 

interface for uploading data and submitting jobs, a MySQL database for storing datasets and 

prediction results, and the BOINC server. The BOINC server communicates with BOINC 

compute nodes to asynchronously distribute work units and collect results.
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Figure 3. 
omniClassifier Web Interface for Job Submission. The interface allows users to upload 

datasets and select prediction modeling parameters.
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Figure 4. 
omniClassifier Web Interface for Result Monitoring, Browsing, and Download. This 

interface lists all submitted prediction modeling jobs and allows users to sort, filter, monitor 

progress, and download results.
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Figure 5. 
omniClassifier Prediction modeling results for 21 gene expression datasets, representing 14 

clinical cancer endpoints. The X-axis represents cross validation AUC, and the Y-axis 

represents evaluation performance (AUC) of optimal prediction models using independent 

data.
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Figure 6. 
Evaluation of omniClassifier computing efficiency using two breast cancer datasets, fold-

change feature selection, and four classifiers. Classifier, work unit size, and number of 

compute nodes affect prediction modeling time measured in minutes.
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Figure 7. 
Evaluation of omniClassifier computing efficiency using two breast cancer datasets, mRMR 

feature selection, and four classifiers. Classifier, work unit size, and number of compute 

nodes affect prediction modeling time measured in minutes.
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Table 1

Supported Classifiers in omniClassifier

Classifier Parameters Possible Vallies

Bayesian Covariance Pooling 0 = Not pooled, 1 = Pooled

Covariance 0 = Spherical, 1 = Diagonal,

Type 2 = Full Covariance

K-Nearest Neighbors K Integer ≥ 1

Logistic Regression None N/A

Support Kernel ‘Linear’ or ‘Radial Basis’

Vector Cost Value >0

Machine Gamma Value > 0, “Radial Basis’ kernel only
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Table 2

Microarry Gene Expression Data Used for Evaluting omniClassifier

Cancer Clinical Endpoint # of Datasets # of Features # of Samples

Breast Estrogen Receptor Status 5 22283 672

Treatment Response 2 22283 230

Liver Cancer Detection 3 22277 83

Multiple Myeloma (MM) Overall Survival 2 54675 553

Event-Free Survival 2 54675 553

Gender* 2 54675 554

Random** 2 54675 554

Neuroblastoma (NB) Overall Survival 2 10707 420

Event-Free Survival 2 10707 437

Gender* 2 10707 482

Random** 2 10707 504

Pancreas Cancer Detection 4 22277 224

Prostate Cancer Detection 2 12625 226

Renal Subtype Diagnosis 4 8793 179

*
positive control,

**
negative control
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Table 3

Optimal feature selection and classification methods selected for each training dataset.*

Clinical Endpoint Train Dataset Selection Method Classification Method

Breast Cancer 1 Fold-Change SVM

Estrogen 2 SAM KNN

Receptor Status 3 mRMR SVM

4 Rank Prod. LR

5 Rank Sum SVM

Breast Cancer 1 Rank Sum SVM

Treat. Resp. 2 Fold-Change Bayesian

Liver Cancer 1 Fold-Change LR

Detection 2 SAM SVM

3 Fold-Change SVM

MM Overall 1 Rank Prod. SVM

Survival 2 Rank Sum Bayesian

MM Event- 1 T-test Bayesian

Free Surv. 2 SAM Bayesian

MM Gender 1 Fold-Change SVM

2 T-test LR

MM Random 1 SAM LR

2 Rank Prod. SVM

NB Overall 1 Rank Prod. SVM

Surv. 2 Rank Sum SVM

NB Event-Free 1 mRMR LR

Survival 2 T-test SVM

NB Gender 1 T-test KNN

2 Fold-Change SVM

NB Random 1 Fold-Change SVM

2 Rank Prod. LR

Pancreatic 1 T-test Bayesian

Cancer 2 Rank Prod. SVM

Detection 3 SAM SVM

4 Fold-Change SVM

Prostate Cancer 1 Fold-Change Bayesian

Detection 2 Rank Sum Bayesian

Renal Cancer 1 SAM LR
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Clinical Endpoint Train Dataset Selection Method Classification Method

Subtype 2 SAM SVM

Diagnosis 3 Fold-Change SVM

4 Rank Prod. LR

*
only one model is reported for each endpoint, however multiple models are possible in the event of ties
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