
omniClassifier: a Desktop Grid Computing System for Big Data
Prediction Modeling

John H. Phan,
Department of Biomedical, Engineering, Georgia Institute of, Technology and Emory University,
Atlanta, GA, USA, 30332

Sonal Kothari, and
Department of Biomedical, Engineering, Georgia Institute of, Technology and Emory University,
Atlanta, GA, USA, 30332

May D. Wang
Department of Biomedical, Engineering, Georgia Institute of, Technology and Emory University,
Atlanta, GA, USA, 30332

John H. Phan: jhphan@gatech.edu; Sonal Kothari: sk9@gatech.edu; May D. Wang: maywang@bme.gatech.edu

Abstract

Robust prediction models are important for numerous science, engineering, and biomedical

applications. However, best-practice procedures for optimizing prediction models can be

computationally complex, especially when choosing models from among hundreds or thousands of

parameter choices. Computational complexity has further increased with the growth of data in

these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the

computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of

commodity desktop machines, coupled with commercial cloud computing resources can enable

research labs to gain easier and more cost effective access to vast computing resources. We have

developed omniClassifier, a multi-purpose prediction modeling application that provides

researchers with a tool for conducting machine learning research within the guidelines of

recommended best-practices. omniClassifier is implemented as a desktop grid computing system

using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition

to describing implementation details, we use various gene expression datasets to demonstrate the

potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A

prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/.

Keywords

Prediction modeling; desktop grid computing; nested cross validation; big data

1. INTRODUCTION

Prediction modeling is important in science and engineering disciplines, whether the goal is

to classify stellar objects [1] or to determine the prognosis of a cancer patient [2]. Careful

adherence to best-practice guidelines for prediction modeling in bioinformatics is especially

important due to the properties of the data, e.g., these datasets typically have small sample

HHS Public Access
Author manuscript
ACM BCB. Author manuscript; available in PMC 2016 August 14.

Published in final edited form as:
ACM BCB. 2014 September ; 2014: 514–523. doi:10.1145/2649387.2649439.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://omniclassifier.bme.gatech.edu/

sizes, but very large feature sizes. Published guidelines for bioinformatics prediction

modeling highlight common pitfalls [3] and explicitly show the bias that can occur if these

guidelines are not followed [4, 5]. Despite the availability of these guidelines, researchers

occasionally report over-optimistic prediction results. Thus, it was necessary to revisit the

importance of following good practices [2]. Reasons for the inconsistency in bioinformatics

prediction modeling may include (1) the lack of a system for prediction modeling that is

readily accessible not only to bioinformaticians, but also to biologists and medical

researchers and (2) the prohibitive computational complexity of prediction modeling due to

the growth of biomedical data. We address both of these challenges with omniClassifier, a

web-based application that simplifies prediction modeling while following best-practice

guidelines; and that uses desktop grid computing for unlimited scalability to large datasets.

A common pitfall for prediction modeling in bioinformatics is the failure to properly use

cross validation to choose features and classifier parameters [3]. Subsequent to model

selection, many studies also fail to evaluate their prediction model using independent

validation data. Ambroise and McLachlan showed that improper implementation of cross

validation can lead to overly optimistic estimates of prediction performance [4]. Specifically,

using microarray gene expression data, they showed that when features are selected outside

of cross validation, estimated prediction performance can be nearly perfect, even for

randomly generated datasets in which feature vectors are independent of class labels.

Furthermore, when cross validation encompasses both feature selection and classifier

parameter selection, performance estimation bias can still occur [5]. Varma and Simon

showed that a nested cross validation procedure can reduce this bias considerably [5]. Thus,

we develop omniClassifier to closely follow these guidelines in order to achieve unbiased

prediction modeling.

omniClassifier leverages desktop grid computing technology for increased scalability to

better handle biomedical Big Data. We use the Berkeley Open Infrastructure for Network

Computing (BOINC) middleware to manage distribution of work units to compute nodes

[6]. Advantages of BOINC compared to traditional grid computing technologies include: (1)

research scientists can quickly develop and deploy BOINC servers to commodity computers

using open source software, (2) compute nodes have less restrictions in terms of operating

system and hardware, (3) project administrators can spend less time maintaining computer

systems and more time analyzing results, and (4) the project can be expanded to be a

volunteer or publicresource computing project, which further increases the potential scale of

projects. Because of these advantages, BOINC has been adopted for numerous computing

projects in science and engineering. One of the earliest desktop grid computing applications

is the SETI@home project, which allows users to dedicate their idle CPU cycles for

processing radio telescope signals [7]. In the bioinformatics domain, Folding@home and

Genome@home were developed as volunteer grid computing projects that simulate protein

translation and folding [8, 9]. The physics and astronomy domain has led the way in

adopting distributed computing platforms for solving problems [10–12]. In fact, “citizen

science” or volunteer grid computing platforms have been popular enough to warrant studies

to improve project visibility and to improve the quality of volunteer-contributed work [13].

Phan et al. Page 2

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The machine learning research community has produced a number of software packages that

may be used in conjunction with omniClassifier, or are similar to omniClassifier. For

example, Scikit-learn [14], SHOGUN [15], and Weka [16] are established machine learning

packages that contain a large number of classification methods. These packages could be

adopted to augment the set of classification methods available in omniClassifier. ML-Flex

[17] and PARAMO [18] are similar to omniClassifier in terms of their parallel computing

ability. MLFlex contains robust cross validation methods, but requires a dedicated cluster

with a shared file system for parallel computing. PARAMO uses a Map-Reduce framework

implemented by Apache for parallelization. However, this again requires a dedicated cluster.

In contrast, omniClassifier’s use of the BOINC framework for desktop grid computing

potentially enables scalability across heterogeneous and commodity compute nodes without

the need for a dedicated compute cluster. The remainder of this paper is structured as

follows. We describe the nested cross validation and external validation procedure for

prediction modeling in the methods section, followed by specific feature selection and

classification methods currently available in omniClassifier. Subsequently, we describe

implementation details of omniClassifier including the web server, database, and BOINC

server and clients. Finally, we use microarray gene expression datasets to evaluate the

prediction modeling performance and efficiency of omniClassifier.

2. METHODS

2.1 Prediction Modeling

Using the guidelines presented by Varma and Simon, we implement a prediction modeling

procedure that ensures unbiased optimization of all components of the model, including

features and classifier parameters [5]. The procedure includes two steps: (1) performance

assessment with nested cross validation and (2) final model selection and validation (Figure

1).

First, we use nested cross validation applied to only the training data to estimate prediction

performance. Second, we apply cross validation to the training data to optimize a final

prediction model and then validate this model using independent data. Our strategy assumes

that the classification problem is binary, i.e., the goal is to classify data into two groups.

Moreover, we use multiple iterations of k-fold cross validation. However, future

implementations may be generalized to classify samples into three or more groups, and may

use resampling methods such as bootstrapping or Monte Carlo cross validation [19, 20].

The first step of nested cross validation is random assignment of labeled samples into M

stratified folds such that the prevalence of labels in each fold is approximately equal to that

of the entire training data. M-1 folds are used as the ‘Training Subset’ and 1 fold is used as

the ‘Testing Subset’. This is repeated M times such that each fold is used as a testing subset

exactly once. The training subset is subject to an additional L iterations of K-fold cross

validation, which is used to choose prediction model parameters (i.e., feature selection

method, feature size, classifier, and classifier parameters). This is known as the ‘Optimizing

Cross Validation’ procedure. The resulting prediction model parameters are then used to

select features in the training subset, train the classifier, and test the classifier using the

testing subset. A single iteration of nested cross validation produces M values of cross

Phan et al. Page 3

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

validation performance, which can be averaged into a single performance quantity. This

entire process is then repeated for N iterations, resulting in N cross validation performance

quantities.

Figure 1A summarizes cross validation performance assessment. After nested cross

validation, it is important to choose a final prediction model and to validate this model using

independent data. When choosing a final prediction model, the same ‘Optimizing Cross

Validation’ procedure that was previously used in nested cross validation must be applied to

the entire training data. Subsequently, the final model parameters should be used to select

features and train the classifier. Then, samples from an independent validation dataset are

used to quantify the external validation performance (Figure 1B). In summary, the

‘Optimizing Cross Validation’ procedure in Step 2 is an important component of prediction

modeling in that it chooses the final model. Thus, the performance of this procedure is cross-

validated in Step 1. Note that, due to sampling variance, the final parameters chosen in Step

2 may be different from the parameters chosen within the cross validation in Step 1.

However, some variance is expected when choosing prediction modeling methods and this

variance is generally smaller than the variance due to prediction endpoint [2].

2.2 Feature Selection and Classification Methods

omniClassifier currently supports seven feature selection methods and four classification

methods. Supported feature selection methods include fold-change, T-test, two variations of

minimum redundancy, maximum relevance (mRMR) [21], significance analysis of

microarrays [22], rank-sum test, and rank products [23]. With the exception of mRMR, all

feature selection methods rank features from most to least informative. mRMR searches for

groups of features that maximize mutual information with the class labels while minimizing

mutual information among features [21]. All feature selection methods can be optimized

with a ‘size’ parameter, which controls the number of features selected. During prediction

modeling, this parameter is generally varied to identify an optimal feature size. We

implement all feature selection methods using C++ based on descriptions of the algorithms

in their respective papers.

Classifiers supported by omniClassifier include Bayesian (or Gaussian model), k-nearest

neighbors (KNN), logistic regression (LR), and support vector machine (SVM). The

Bayesian classifier models the data with Gaussian distributions to estimate the class

probability of future samples. Parameters of the Bayesian classifier control the covariance

estimation method for multivariate Gaussian distributions. These parameters include pooled

or un-pooled covariance and spherical, diagonal, or full covariance matrices [24]. The k

parameter of the KNN classifier controls the number of training samples nearest the testing

sample that are used to determine the class of the testing sample [25]. The logistic regression

classifier contains no additional parameters. The SVM classifier can be optimized by

choosing the kernel (e.g., linear or radial basis) and cost as well as the bandwidth, or

gamma, of the radial basis kernel [26]. Table 1 summarizes all supported classifiers. We use

the OpenCV library for the Bayesian and KNN classifiers [27]; the LIBSVM library for the

SVM classifier [26]; and an open source package for the logistic regression classifier [28].

Phan et al. Page 4

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3 System Implementation

The omniClassifier system consists of four components: the webinterface, the database, the

BOINC server, and compute nodes (Figure 2). We describe implementation details and

rationale for each component.

2.3.1 Web Interface—The web-interface enables researchers to queue prediction

modeling jobs, to monitor submitted jobs, and to download results. The main page of the

interface contains fields for job submission. Basic fields include data description, data files,

prediction modeling parameters, and work distribution parameters (Figure 3). Users may

fully customize the description of their prediction modeling job, allowing multiple users to

submit jobs simultaneously to the system. Multiple testing datasets may be uploaded for

each prediction modeling job. This is useful when multiple testing datasets cannot be

combined due to batch effects. Since the majority of computation time is spent within the

nested cross validation phase, inclusion of additional testing datasets does not substantially

increase computation time.

After submitting prediction modeling jobs, users may monitor the status of their jobs on the

omniClassifier result page (Figure 4). This page lists all submitted jobs and allows filtering

and sorting. Jobs in progress are listed with an indicator for percentage complete. Each job is

also listed with details of the data, feature selection and classification methods, and cross

validation parameters. Once a job has completed, users can download results formatted as

MATLAB data structures. These data structures are compatible with GNU Octave, an open-

source alternative to MATLAB [29]. MATLAB/Octave code to parse the data structure will

also be available from the omniClassifier web-interface. However, future versions may

provide results in other formats.

2.3.2 Database—The omniClassifier database stores training and testing datasets,

prediction modeling analysis parameters, and prediction results. It is implemented as a

MySQL relational database with the following tables:

• Dataset: stores metadata for each training or testing dataset, including

number of samples, number of features, and feature names.

• Sample: stores raw feature values for each sample of a dataset as well as

the sample name and label.

• Analysis: stores meta information for each prediction modeling job,

including data description, feature selection and classification methods,

cross validation parameters, data distribution parameters, and job status.

In addition to these tables, the results of prediction modeling jobs are stored in four tables

unique to each job:

• CV_Result: classification decision values for all MxN folds and iterations

of the outer nested cross validation.

• Opt_CV_Result: classification decision values for all MxNxKxL folds and

iterations of the inner nested cross validation (i.e., optimizing cross

validation component of prediction modeling Step 1, Figure 1A).

Phan et al. Page 5

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• EV_Result: classification decision values for the final independent data

validation.

• Opt_EV_Result: classification decision values for the KxL folds and

iterations of the optimizing cross validation component of prediction

modeling Step 2, Figure 1B.

Although we chose MySQL as the database for omniClassifier, any system for storing and

retrieving structured data would suffice.

2.3.3 BOINC Server and Work Distribution—We use the Berkeley Open Interface for

Network Computing (BOINC) middleware to manage the distribution of prediction

modeling work units to compute nodes, and collection of results from each compute node.

The BOINC server includes two processes: the ‘Work Generator’ and the ‘Result

Assimilator’ (Figure 2).

The Work Generator periodically checks the database for new prediction modeling jobs and

breaks these jobs into self-contained feature selection and classification work units. Jobs are

divided by cross validation folds. For example, suppose that a prediction modeling job is

submitted with 5×10 cross validation (i.e., 5 folds and 10 iterations), 3×5 optimizing cross

validation, fold-change feature selection with feature sizes varying from 1 to 10, and KNN

classification with K varying from 1 to 5. Each fold is a self-contained classification training

and testing procedure. Thus, in this example, there are 5×10×3×5=750 procedures in the

optimizing cross validation phase of Step 1, 5×10=50 procedures in the cross validation

phase of Step 1, 3×5=15 procedures in the optimizing cross validation phase of Step 2, and 1

final procedure for the independent validation phase of Step 2. The total number of

procedures is 750+50+15+1=816. In addition, each procedure tests all combinations of

feature selection and classification. In this example, there are 10 feature sizes and 5 KNN

parameters for a total of 10×5=50 combinations. Thus, each of the 816 procedures trains and

tests a specific fold of data using 50 different combinations of feature selection and

classification. The size of each work unit is controlled by the ‘Folds per Work Unit’

parameter during job submission (Figure 3). Work units are generated as text files,

associated with data files, hosted on the BOINC server and downloadable by each compute

node.

Compute nodes upload results of each work unit back to the BOINC server. As each result is

uploaded, the Result Assimilator imports these results (i.e., classification decision values)

into the omniClassifier database and updates the status and progress of the corresponding

prediction modeling job. The updated status and progress is reflected in the omniClassifier

result page (Figure 4).

2.3.4 Compute Nodes—Compute nodes can be attached to the BOINC server by

installing the BOINC client. The BOINC client downloads work units and a platform

specific executable for processing the work units. The omniClassifier prototype is attached

to eight compute nodes with quad-core Intel Xeon E5405/E5504 CPUs (2.0 GHz) and at

least 20 GB of RAM. Each compute node runs Red Hat Enterprise Linux Server with a

Phan et al. Page 6

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

minimum version of 6.4. Currently, only Linux compute nodes are supported. However,

future omniClassifier BOINC clients may be compiled for Windows based compute nodes.

2.3.5 Result Data Structure—Once all work units have been completed for a prediction

modeling job, results can be downloaded from the omniClassifier result page as a MATLAB

data structure. The data structure contains metadata for the training and testing samples,

prediction modeling parameters (i.e., feature selection methods and classifiers), and

classifier decision values for all combinations of modeling parameters and all folds and

iterations of nested cross validation. Using this data structure, we can identify optimal

prediction modeling parameters. Currently, the system reports model performance using

three metrics: accuracy, AUC (area under the receiver operating characteristic curve), and

MCC (Matthew’s correlation coefficient). Any of these metrics can be used for model

selection. We select a model with maximum average performance in the ‘Optimizing Cross

Validation’ loop. In case of a tie between multiple models, we select the simplest model. The

simplest models are defined as those with the smallest feature size, smallest cost and largest

gamma for SVM models, and highest K for KNN models. Among Bayesian models, models

with pooled covariance are simpler than un-pooled and models with spherical covariance are

simpler than those with diagonal covariance. We have not assigned any preference to any

particular classification method or feature selection method. Therefore, for each endpoint, it

is possible to obtain multiple optimal models. Using these optimal model parameters, we

report the average cross validation or external validation performance.

2.4 Case Study: System Evaluation using Microarray Gene Expression Data

2.4.1 Prediction Modeling Performance Evaluation—We use several microarray

gene expression datasets to evaluate the prediction performance of omniClassifier (Table 2).

Typical properties of gene expression data reflect one important characteristic of biomedical

Big Data, i.e., dimension or feature size is much larger than sample size. We use datasets

representing 14 clinical cancer endpoints, including treatment response, cancer detection,

survival, and subtype diagnosis, among others. We include five breast cancer datasets

focusing on estrogen receptor status [2, 30–32], with two of these datasets also investigating

treatment response; three liver cancer datasets focusing on cancer detection [33–35]; two

multiple myeloma datasets representing four different endpoints [2]; two neuroblastoma

datasets representing four different endpoints [2]; four pancreatic cancer datasets focusing

on cancer detection [36–39]; two prostate cancer datasets focusing on cancer detection [40,

41]; and four renal cancer datasets focusing on subtype classification [42–45].

Using omniClassifier, we analyze all combinations of training and validation datasets for

each clinical endpoint. For example, we use each of the five breast cancer estrogen receptor

status datasets in nested cross validation (i.e., Step 1 of prediction modeling) then validate

each of the five resulting prediction models with the remaining four independent validation

datasets. Thus, we obtain five cross validation performance estimates and 20 external

validation performance estimates for the estrogen receptor status endpoint. We repeat this

process for the datasets of each clinical endpoint. We use all seven feature selection

methods, varying feature size from 1 to 100, and all four classification methods. We use four

variants of the Bayesian classifier (pooled/unpooled and spherical/diagonal covariance

Phan et al. Page 7

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

estimation), vary the KNN K parameter from 1 to 10, and vary the linear SVM cost from 1

to 10. Thus, the size of the feature selection method and classifier search space is 700×

(4+10+1+10)=17,500. Moreover, we use 10 iterations of 5-fold cross validation for both the

outer cross validation as well as the optimizing cross validation.

2.4.2 Distributed Computing Performance Evaluation—We evaluate distributed

computing performance using two breast cancer estrogen receptor status datasets, i.e., one as

a training dataset and one as an independent validation dataset. Computation time and

efficiency depend on factors such as number of compute nodes, data size, and prediction

modeling methods. Thus, we use the following parameters:

• Four Classification Methods

◦ Bayesian (w/four variants)

◦ KNN (K=1…10)

◦ Logistic Regression

◦ Linear SVM (cost=1…10)

• Two Feature Selection Methods

◦ Fold-Change

◦ mRMR [21]

• Feature Sizes from 1 to 100

• Work Unit Sizes of 5 and 50

• Number of Compute Nodes from 1 to 4

For each combination of parameters, we measure the total computation time in minutes. We

also use 10 iterations of 5-fold cross validation for both the outer cross validation and the

optimizing cross validation.

3. RESULTS AND DISCUSSION

3.1 Prediction Modeling Performance

Prediction modeling results using several gene expression microarray datasets verify

observations made in the MAQC-II study (Figure 5) [2]. In Figure 5, each colored cross

represents a specific clinical endpoint with the vertical bar representing the range (i.e.,

standard error of the mean) of external validation performance and the horizontal bar

representing cross validation performance. The optimal prediction model for each clinical

endpoint is different (Table 3), reflecting the data-dependent nature of prediction modeling.

Thus, it is important to consider a large number of methods when optimizing prediction

models. Despite these differences, we observe that variance in prediction performance

(measured using AUC) is dominated by the clinical endpoint, rather than by the feature

selection or classification method, which is in agreement with results from the MAQC-II

study. Moreover, cross validation performance (the X-axis of Figure 5) is able to predict

external validation performance (the Y-axis of Figure 5) as indicated by the proximity of the

Phan et al. Page 8

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

data points to the diagonal line. We also observe that the negative controls and positive

controls have the lowest and highest performances, respectively. This verifies that the system

produces sensible results, i.e., samples in the negative control endpoints are randomly

assigned to class labels and samples in the positive control endpoints correspond to easily

predicted labels such as patient gender.

3.2 Distributed Computing Performance

Computing efficiency of omniClassifier is dependent on a number of factors, including

feature selection method, classifier, work unit size, and number of compute nodes. Because

there is computing overhead in the BOINC server due to generation of work units and

gathering results from compute nodes, the number of compute nodes and work unit size

should be carefully selected for each prediction modeling job.

Using fold-change feature selection and various classifiers to predict breast cancer estrogen

receptor status, we observe that computing efficiency increases proportionally with the

number of compute nodes (Figure 6). However, work unit size (i.e., number of folds in each

work unit) also has a considerable effect on computing efficiency. Work unit sizes of 5

(Figure 6, X’s) can be up to three times slower than work unit sizes of 50 (Figure 6,

squares). When work unit sizes are small, the total number of work units is larger. Thus,

compute nodes must spend more time managing the download of work units and the upload

of results, and less time on feature selection and classification. We also observe that the

SVM classifier requires more compute time compared to the Bayesian, KNN, and logistic

regression (LR) classifiers.

Using mRMR feature selection [21] changes the apparent effect of work unit size and

classifier on computing efficiency (Figure 7). Computing efficiency still increases

proportionally with the number of compute nodes. However, work unit size and classifier do

not appear to affect computation time to the same degree. Overall, computation time

increases for mRMR feature selection relative to fold-change feature selection. Thus, the

computational complexity of mRMR dominates prediction modeling time relative to other

factors. Work unit size should be optimized based on data size and computational cost of

prediction modeling methods (i.e., classification and feature selection methods) to reduce

computing overhead and to maximize efficiency.

3.3 Limitations and Future Work

Future improvements to omniClassifier may include the ability for users to design and

implement their own modules that can be plugged into the system. This would enable

expansion of omniClassifier to include more classifiers and feature selection methods. In

particular, inclusion of methods for ensemble classification [46] and multi-class

classification (i.e., more than two classes) would greatly improve the utility of

omniClassifier.

Although, the framework for omniClassifier has been targeted for classification, a

generalized scientific computing framework would be feasible by enabling the integration of

modules for tasks other than classification, e.g., image processing or genomic sequence

alignment. Indeed, the BOINC framework has been used for a wide variety of scientific

Phan et al. Page 9

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computing projects. However, implementation of such projects remains tedious. With a

modular system for generalized desktop grid computing, parallel and high performance

computing would become more tangible to the scientific community.

Finally, omniClassifier has primarily been tested within a controlled laboratory setup. We

anticipate a number of technical challenges in a broader deployment of omniClassifier as a

volunteer grid computing system. First, we will need to implement cross-platform versions

(i.e., Linux, Microsoft Windows, and Apple OSX) of the omniClassifier BOINC client, and

ensure that floating point computations are identical across CPU types. Second, the number

of submitted computing jobs may increase dramatically, requiring improved disk, network,

and database performance for the omniClassifier BOINC server. Third, users may want to

deploy omniClassifier locally. Thus, we may release omniClassifier as an open-source

package such that users can deploy it in a number of scenarios, including single-machine

installations.

4. CONCLUSIONS

We developed omniClassifier, a Big Data prediction modeling application that uses desktop

grid computing and enforces standardized practices for prediction modeling. We developed

omniClassifier using BOINC, an open-source desktop grid computing middleware that can

also be used as a volunteer or public-resource computing framework. Thus, BOINC enables

scientists to utilize commodity desktop computers for unprecedented computing scalability.

This scalability is important in the era of Big Data, in which individual datasets, especially

those in the biomedical domain, have become too large to analyze within the computing and

resource limits of small laboratories. omniClassifier also addresses the need for a

standardized computing resource for prediction modeling. In the biomedical domain,

analysis of large datasets (e.g., genomic, proteomic, imaging, and clinical) to predict clinical

endpoints such as patient prognosis, optimal treatment regimen, and disease subtype, among

others, has become a key area of research focus. But the lack of standardized resources for

prediction modeling has led to issues with inconsistency and reproducibility of scientific

results. We have demonstrated the utility of omniClassifier using 21 gene expression

datasets that represent 14 different clinical cancer endpoints. We also demonstrated the

computational scalability of omniClassifier by examining the efficiency under varying

conditions such as work unit size and number of compute nodes. Although our case studies

have used gene expression data, the system is scalable to any type of data in which samples

can be represented as quantitative feature vectors. We plan to release omniClassifier as a

public volunteer computing application. A prototype of the application can be accessed at

http://omniclassifier.bme.gatech.edu/.

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (NHLBI 5U01HL080711, Center
of Cancer Nanotechnology Excellence U54CA119338, 1RC2CA148265), Georgia Cancer Coalition (Distinguished
Cancer Scholar Award to Professor May D. Wang), Microsoft Research, and Hewlett Packard.

Phan et al. Page 10

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://omniclassifier.bme.gatech.edu/

References

1. Brown TM, Latham DW, Everett ME, Esquerdo GA. Kepler input catalog: photometric calibration
and stellar classification. The Astronomical Journal. 2011; 142:112.

2. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, Su Z, Chu TM, Goodsaid FM,
Pusztai L. The MicroArray Quality Control (MAQC)-II study of common practices for the
development and validation of microarray-based predictive models. Nature biotechnology. 2010;
28:827–838.

3. Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the use of DNA microarray data for
diagnostic and prognostic classification. Journal of the National Cancer Institute. 2003; 95:14–18.
[PubMed: 12509396]

4. Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-
expression data. Proceedings of the National Academy of Sciences. 2002; 99:6562–6566.

5. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC
bioinformatics. 2006; 7:91. [PubMed: 16504092]

6. Anderson DP. Boinc: A system for public-resource computing and storage. Grid Computing, 2004
Proceedings Fifth IEEE/ACM International Workshop on. 2004:4–10.

7. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@ home: an experiment in
public-resource computing. Communications of the ACM. 2002; 45:56–61. [PubMed: 12238525]

8. Beberg AL, Ensign DL, Jayachandran G, Khaliq S, Pande VS. Folding@ home: Lessons from eight
years of volunteer distributed computing. Parallel & Distributed Processing, 2009 IPDPS 2009
IEEE International Symposium on. 2009:1–8.

9. Larson SM, Snow CD, Shirts M. Folding@ Home and Genome@ Home: Using distributed
computing to tackle previously intractable problems in computational biology. 2002

10. Vinsen K, Thilker D. A BOINC based, citizen-science project for pixel spectral energy distribution
fitting of resolved galaxies in multi-wavelength surveys. Astronomy and Computing. 2013; 3:1–
12.

11. Desell T, Szymanski B, Varela C. An asynchronous hybrid genetic-simplex search for modeling the
Milky Way galaxy using volunteer computing. Proceedings of the 10th annual conference on
Genetic and evolutionary computation. 2008:921–928.

12. Knispel B, Eatough R, Kim H, Keane E, Allen B, Anderson D, Aulbert C, Bock O, Crawford F,
Eggenstein HB. Einstein@ Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey.
The Astrophysical Journal. 2013; 774:93.

13. Nov O, Arazy O, Anderson D. Scientists@ Home: what drives the quantity and quality of online
citizen science participation? PloS one. 2014; 9:e90375. [PubMed: 24690612]

14. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V. Scikit-learn: Machine learning in Python. The Journal of Machine Learning
Research. 2011; 12:2825–2830.

15. Sonnenburg S, Rätsch G, Henschel S, Widmer C, Behr J, Zien A, Bona Fd, Binder A, Gehl C,
Franc V. The SHOGUN machine learning toolbox. The Journal of Machine Learning Research.
2010; 11:1799–1802.

16. Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, Reutemann P, Witten IH. WEKA—
Experiences with a Java Open-Source Project. The Journal of Machine Learning Research. 2010;
11:2533–2541.

17. Piccolo SR, Frey LJ. ML-Flex: A flexible toolbox for performing classification analyses in parallel.
The Journal of Machine Learning Research. 2012; 13:555–559.

18. Ng K, Ghoting A, Steinhubl SR, Stewart WF, Malin B, Sun J. PARAMO: A PARAllel predictive
Modeling platform for healthcare analytic research using electronic health records. Journal of
biomedical informatics. 2014; 48:160–170. [PubMed: 24370496]

19. Efron, B.; Tibshirani, RJ. An introduction to the bootstrap. Vol. 57. CRC press; 1994.

20. Picard RR, Cook RD. Cross-validation of regression models. Journal of the American Statistical
Association. 1984; 79:575–583.

Phan et al. Page 11

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

21. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data.
Journal of bioinformatics and computational biology. 2005; 3:185–205. [PubMed: 15852500]

22. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing
radiation response. Proceedings of the National Academy of Sciences. 2001; 98:5116–5121.

23. Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new
method to detect differentially regulated genes in replicated microarray experiments. FEBS letters.
2004; 573:83–92. [PubMed: 15327980]

24. Parry RM, Phan JH, Wang MD. Win percentage: a novel measure for assessing the suitability of
machine classifiers for biological problems. BMC bioinformatics. 2012; 13:S7. [PubMed:
22536905]

25. Parry R, Jones W, Stokes T, Phan J, Moffitt R, Fang H, Shi L, Oberthuer A, Fischer M, Tong W. k-
Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction.
The pharmacogenomics journal. 2010; 10:292–309. [PubMed: 20676068]

26. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST). 2011; 2:27.

27. Bradski G. The opencv library. Doctor Dobbs Journal. 2000; 25:120–126.

28. Komarek P, Moore AW. Making logistic regression a core data mining tool with tr-irls. Data
Mining, Fifth IEEE International Conference on. 2005:4.

29. Eaton J, Bateman D, Hauberg S. GNU Octave: a highlevel interactive language for numerical
computations: John W. Eaton. 2009

30. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET.
An expression signature for p53 status in human breast cancer predicts mutation status,
transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of
the United States of America. 2005; 102:13550–13555. [PubMed: 16141321]

31. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL,
Massagué J. Genes that mediate breast cancer metastasis to lung. Nature. 2005; 436:518–524.
[PubMed: 16049480]

32. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-
Kains B. Gene expression profiling in breast cancer: understanding the molecular basis of
histologic grade to improve prognosis. Journal of the National Cancer Institute. 2006; 98:262–272.
[PubMed: 16478745]

33. Stefanska B, Huang J, Bhattacharyya B, Suderman M, Hallett M, Han ZG, Szyf M. Definition of
the landscape of promoter DNA hypomethylation in liver cancer. Cancer research. 2011; 71:5891–
5903. [PubMed: 21747116]

34. Deng YB, Nagae G, Midorikawa Y, Yagi K, Tsutsumi S, Yamamoto S, Hasegawa K, Kokudo N,
Aburatani H, Kaneda A. Identification of genes preferentially methylated in hepatitis C
virus_related hepatocellular carcinoma. Cancer science. 2010; 101:1501–1510. [PubMed:
20345479]

35. Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, Jia HL, Ye QH, Qin LX.
Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma
progression and patient survival. Gastroenterology. 2012; 142:957–966.e12. [PubMed: 22202459]

36. Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined Gene Expression Analysis of
Whole-Tissue and Microdissected Pancreatic Ductal Adenocarcinoma identifies Genes
Specifically Overexpressed in Tumor Epithelia-The authors reported a Combined Gene Expression
Analysis of Whole-Tissue and Microdissected Pancreatic Ductal Adenocarcinoma identifies Genes
Specifically Overexpressed in Tumor Epithelia. Hepato-gastroenterology. 2008; 55:2016.
[PubMed: 19260470]

37. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z, Wang L. FKBP51
affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer cell. 2009;
16:259–266. [PubMed: 19732725]

38. Ishikawa M, Yoshida K, Yamashita Y, Ota J, Takada S, Kisanuki H, Koinuma K, Choi YL, Kaneda
R, Iwao T. Experimental trial for diagnosis of pancreatic ductal carcinoma based on gene
expression profiles of pancreatic ductal cells. Cancer science. 2005; 96:387–393. [PubMed:
16053509]

Phan et al. Page 12

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

39. Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, Braunschweig T, Löhr M,
Jesnowski R, Friess H. Activation of Wnt signalling in stroma from pancreatic cancer identified by
gene expression profiling. Journal of cellular and molecular medicine. 2008; 12:2823–2835.
[PubMed: 18298655]

40. Chandran UR, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J. Differences in gene
expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate
tissue from cancer free organ donors. BMC cancer. 2005; 5:45. [PubMed: 15892885]

41. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico
AV, Richie JP. Gene expression correlates of clinical prostate cancer behavior. Cancer cell. 2002;
1:203–209. [PubMed: 12086878]

42. Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck
AJ. Gene signatures of progression and metastasis in renal cell cancer. Clinical Cancer Research.
2005; 11:5730–5739. [PubMed: 16115910]

43. Kort EJ, Farber L, Tretiakova M, Petillo D, Furge KA, Yang XJ, Cornelius A, Teh BT. The E2F3-
Oncomir-1 axis is activated in Wilms’ tumor. Cancer research. 2008; 68:4034–4038. [PubMed:
18519660]

44. Schuetz AN, Yin-Goen Q, Amin MB, Moreno CS, Cohen C, Hornsby CD, Yang WL, Petros JA,
Issa MM, Pattaras JG. Molecular classification of renal tumors by gene expression profiling. The
Journal of Molecular Diagnostics. 2005; 7:206–218. [PubMed: 15858144]

45. Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA
copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and
renal oncocytomas. BMC cancer. 2009; 9:152. [PubMed: 19445733]

46. Whalen S, Pandey G. A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics.
Data Mining (ICDM), 2013 IEEE 13th International Conference on. 2013:807–816.

Phan et al. Page 13

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Prediction modeling procedure used for omniClassifier. (A) Using a training dataset,

prediction performance is assessed using nested cross validation. (B) The final prediction

model is optimized with the training data and evaluated with an independent dataset.

Phan et al. Page 14

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
omniClassifier Prediction Modeling System. The system includes a web server with an

interface for uploading data and submitting jobs, a MySQL database for storing datasets and

prediction results, and the BOINC server. The BOINC server communicates with BOINC

compute nodes to asynchronously distribute work units and collect results.

Phan et al. Page 15

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
omniClassifier Web Interface for Job Submission. The interface allows users to upload

datasets and select prediction modeling parameters.

Phan et al. Page 16

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
omniClassifier Web Interface for Result Monitoring, Browsing, and Download. This

interface lists all submitted prediction modeling jobs and allows users to sort, filter, monitor

progress, and download results.

Phan et al. Page 17

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
omniClassifier Prediction modeling results for 21 gene expression datasets, representing 14

clinical cancer endpoints. The X-axis represents cross validation AUC, and the Y-axis

represents evaluation performance (AUC) of optimal prediction models using independent

data.

Phan et al. Page 18

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Evaluation of omniClassifier computing efficiency using two breast cancer datasets, fold-

change feature selection, and four classifiers. Classifier, work unit size, and number of

compute nodes affect prediction modeling time measured in minutes.

Phan et al. Page 19

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Evaluation of omniClassifier computing efficiency using two breast cancer datasets, mRMR

feature selection, and four classifiers. Classifier, work unit size, and number of compute

nodes affect prediction modeling time measured in minutes.

Phan et al. Page 20

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Phan et al. Page 21

Table 1

Supported Classifiers in omniClassifier

Classifier Parameters Possible Vallies

Bayesian Covariance Pooling 0 = Not pooled, 1 = Pooled

Covariance 0 = Spherical, 1 = Diagonal,

Type 2 = Full Covariance

K-Nearest Neighbors K Integer ≥ 1

Logistic Regression None N/A

Support Kernel ‘Linear’ or ‘Radial Basis’

Vector Cost Value >0

Machine Gamma Value > 0, “Radial Basis’ kernel only

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Phan et al. Page 22

Table 2

Microarry Gene Expression Data Used for Evaluting omniClassifier

Cancer Clinical Endpoint # of Datasets # of Features # of Samples

Breast Estrogen Receptor Status 5 22283 672

Treatment Response 2 22283 230

Liver Cancer Detection 3 22277 83

Multiple Myeloma (MM) Overall Survival 2 54675 553

Event-Free Survival 2 54675 553

Gender* 2 54675 554

Random** 2 54675 554

Neuroblastoma (NB) Overall Survival 2 10707 420

Event-Free Survival 2 10707 437

Gender* 2 10707 482

Random** 2 10707 504

Pancreas Cancer Detection 4 22277 224

Prostate Cancer Detection 2 12625 226

Renal Subtype Diagnosis 4 8793 179

*
positive control,

**
negative control

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Phan et al. Page 23

Table 3

Optimal feature selection and classification methods selected for each training dataset.*

Clinical Endpoint Train Dataset Selection Method Classification Method

Breast Cancer 1 Fold-Change SVM

Estrogen 2 SAM KNN

Receptor Status 3 mRMR SVM

4 Rank Prod. LR

5 Rank Sum SVM

Breast Cancer 1 Rank Sum SVM

Treat. Resp. 2 Fold-Change Bayesian

Liver Cancer 1 Fold-Change LR

Detection 2 SAM SVM

3 Fold-Change SVM

MM Overall 1 Rank Prod. SVM

Survival 2 Rank Sum Bayesian

MM Event- 1 T-test Bayesian

Free Surv. 2 SAM Bayesian

MM Gender 1 Fold-Change SVM

2 T-test LR

MM Random 1 SAM LR

2 Rank Prod. SVM

NB Overall 1 Rank Prod. SVM

Surv. 2 Rank Sum SVM

NB Event-Free 1 mRMR LR

Survival 2 T-test SVM

NB Gender 1 T-test KNN

2 Fold-Change SVM

NB Random 1 Fold-Change SVM

2 Rank Prod. LR

Pancreatic 1 T-test Bayesian

Cancer 2 Rank Prod. SVM

Detection 3 SAM SVM

4 Fold-Change SVM

Prostate Cancer 1 Fold-Change Bayesian

Detection 2 Rank Sum Bayesian

Renal Cancer 1 SAM LR

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Phan et al. Page 24

Clinical Endpoint Train Dataset Selection Method Classification Method

Subtype 2 SAM SVM

Diagnosis 3 Fold-Change SVM

4 Rank Prod. LR

*
only one model is reported for each endpoint, however multiple models are possible in the event of ties

ACM BCB. Author manuscript; available in PMC 2016 August 14.

	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 Prediction Modeling
	2.2 Feature Selection and Classification Methods
	2.3 System Implementation
	2.3.1 Web Interface
	2.3.2 Database
	2.3.3 BOINC Server and Work Distribution
	2.3.4 Compute Nodes
	2.3.5 Result Data Structure

	2.4 Case Study: System Evaluation using Microarray Gene Expression Data
	2.4.1 Prediction Modeling Performance Evaluation
	2.4.2 Distributed Computing Performance Evaluation

	3. RESULTS AND DISCUSSION
	3.1 Prediction Modeling Performance
	3.2 Distributed Computing Performance
	3.3 Limitations and Future Work

	4. CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3

