Skip to main content
. Author manuscript; available in PMC: 2016 Aug 14.
Published in final edited form as: ACM BCB. 2014 Sep;2014:514–523. doi: 10.1145/2649387.2649439

Table 3.

Optimal feature selection and classification methods selected for each training dataset.*

Clinical Endpoint Train Dataset Selection Method Classification Method
Breast Cancer 1 Fold-Change SVM
Estrogen 2 SAM KNN
Receptor Status 3 mRMR SVM
4 Rank Prod. LR
5 Rank Sum SVM

Breast Cancer 1 Rank Sum SVM
Treat. Resp. 2 Fold-Change Bayesian

Liver Cancer 1 Fold-Change LR
Detection 2 SAM SVM
3 Fold-Change SVM

MM Overall 1 Rank Prod. SVM
Survival 2 Rank Sum Bayesian

MM Event- 1 T-test Bayesian
Free Surv. 2 SAM Bayesian

MM Gender 1 Fold-Change SVM
2 T-test LR

MM Random 1 SAM LR
2 Rank Prod. SVM

NB Overall 1 Rank Prod. SVM
Surv. 2 Rank Sum SVM

NB Event-Free 1 mRMR LR
Survival 2 T-test SVM

NB Gender 1 T-test KNN
2 Fold-Change SVM

NB Random 1 Fold-Change SVM
2 Rank Prod. LR

Pancreatic 1 T-test Bayesian
Cancer 2 Rank Prod. SVM
Detection 3 SAM SVM
4 Fold-Change SVM

Prostate Cancer 1 Fold-Change Bayesian
Detection 2 Rank Sum Bayesian

Renal Cancer 1 SAM LR
Subtype 2 SAM SVM
Diagnosis 3 Fold-Change SVM
4 Rank Prod. LR
*

only one model is reported for each endpoint, however multiple models are possible in the event of ties