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Abstract

Identifying the interactions between proteins mentioned in biomedical literatures is one

of the frequently discussed topics of text mining in the life science field. In this article, we

propose PIPE, an interaction pattern generation module used in the Collaborative

Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture fre-

quent protein-protein interaction (PPI) patterns within text. We also present an interaction

pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree ker-

nel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and

BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation.

Empirical evaluations demonstrate that our method is effective and outperforms several

well-known PPI extraction methods.
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Introduction

Due to the rapidly growing number of research articles, re-

searchers have found it difficult to retrieve the articles of

their interest. To identify the specific ones that meet their re-

quirements, biomedical researchers tend to leverage the rela-

tionship between entities mentioned in these publications.

Among all types of biomedical relations, protein–protein

interaction (PPI) has played a critical role in the field of mo-

lecular biology due to the increasing demands for the

automatic discovery of molecular pathways and interactions

from literature (1, 2). Understanding PPIs can help in pre-

dicting the function of uncharacterized proteins by distin-

guishing their role in the PPI network or comparing them to

proteins with similar functionality (3). Additionally, com-

posing networks of molecular interactions are useful in iden-

tifying functional modules or uncovering novel associations

between genes and diseases. In essence, the ultimate goal of

PPI extraction is to recognize various interactions including
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transcriptional and translational regulations, post transla-

tional modifications and dissociation between proteins

within biomedical literature (4), so to find the criteria to

judge whether a pair of proteins in the same sentence con-

tains any interaction between them.

To extract PPIs from biomedical literatures in an effect-

ive manner, we present PIPE, a module named for PPI

Pattern Extraction used in the Collaborative Biocurator

Assistant Task (BioC) (5) at BioCreative V. The purpose of

BioC is to create BioC (6)-compatible modules which com-

plement one another and integrate them into a system that

assists BioGRID curators. The track is divided into eight dif-

ferent subtopics and each subtask was addressed independ-

ently, including gene/protein/organism named entity

recognition and protein-protein/genetic interaction passage

identification. The mission of our team is to develop a mod-

ule that can identify passages that convey interactions be-

tween protein mentions. To develop a PPI passage

extraction module, we model PPI extraction as a classifica-

tion problem and propose an IPT structure to represent syn-

tactic, content and semantic information in text. The CTK is

then adopted to integrate IPT with support vector machines

(SVMs) to identify sentences referring to PPIs within bio-

medical literatures. Results of experiments demonstrate that

the proposed CK method is effective in extracting PPI. In

addition, the proposed interaction pattern generation ap-

proach successfully exploits the interaction semantics of text

by capturing frequent PPI patterns. The method conse-

quently outperforms the feature-based PPI method (7–10),

the kernel-based PPI method (4, 11–13) and the shortest

path-enclosed tree (SPET) (14) detection method, which are

all widely used to identify relations between named entities.

Our method also achieves comparable performances to

those of multi-kernel-based methods (7, 15, 16).

The rest of the article is organized as follows. In ‘Related

Work’ section, we review previous work, and briefly intro-

duce kernel-based PPI methods. We describe the proposed

PIPE system in ‘Methodology’ section. ‘Experiments’ section

shows the experimental results and presents further com-

parison of our work with related work. Finally, we conclude

our work in ‘Concluding Remarks’ section.

Related work

Most PPI extraction methods can be regarded as supervised

learning approaches. Given a training corpus containing a

set of manually-tagged examples, a supervised classifica-

tion algorithm is employed to train a PPI classifier to

recognize whether an interaction exists in a sentence.

Feature-based approaches and kernel-based approaches

are frequently used for PPI extraction, where the former

exploit instances of both positive and negative relations in

a training corpus to identify effective text features. For in-

stance, Landeghem et al. (8) proposed a rich-feature-based

(RFB) method that applied feature vectors in combination

with automated feature selection for PPI extraction. In

addition, a co-occurrence-based method was introduced by

Airola et al. (7), which explored co-occurrence features of

dependency graphs for representing the sentence structure.

However, feature-based methods often have difficulty in

finding the effective features to extract entity relations

(14). In order to address this problem, the kernel-based

methods have been proposed to implicitly explore various

features in a high dimensional space by employing a kernel

to directly calculate the similarity between two objects

(17). Formally, a kernel function is a mapping

K : X�X! ½0:1Þ: from input space X to a similarity

score,

Kðx; yÞ ¼ /ðxÞ � /ðyÞ ¼
X

i

/iðxÞ/iðyÞ;

where /i (x) is a function that maps X to a higher dimen-

sional space without needing to know its explicit represen-

tation. Such a kernel function makes it possible for us to

compute the similarity between objects without enumerat-

ing all features, therefore reducing the burden of feature

engineering on structured objects in Natural Language

Processing (NLP) research, such as the tree structure in PPI

extraction (18, 19). Examples include Erkan et al. (20)

defining two kernel functions based on the cosine similar-

ity and the edit distance among the shortest paths between

protein names in a dependency parse tree; Satre et al. (9)

also developed a system named AkanePPI, which extracted

features using the combination of a deep syntactic parser

to capture the semantic meaning of the sentences with a

shallow dependency parser for the tree kernels. The latter

enabled automatic generation of rules to identify pairs of

interacting proteins from a training corpus.

The tree kernel-based method is widely used in PPI ex-

traction due to its capability to utilize the structured infor-

mation derived from sentences, especially for the

constituent dependencies knowledge. Vishwanathan and

Smola (12) proposed a subtree (ST) kernel which con-

sidered all mutual subtrees in the tree representation of

two compared sentences. Here a ST comprised a node with

all its descendants in the tree; two STs were considered

identical if nodes in both STs had identical labels and order

of their children. Likewise, Collins et al. (21) introduced a

subset tree (SST) kernel that relaxed the constraint that re-

quires all leaves to be included in the substructures at all

times while preserving the grammatical rules; for any given

tree node, either none or all of its children were included in

the resulting subset tree. In addition, Moschitti (11)

adopted a partial tree (PT) kernel which was more flexible
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by virtually allowing any tree sub-structures; the only con-

straint was that the order of child nodes must be identical.

Both SST and PT kernels are CTKs. Kuboyama et al. (13)

proposed a spectrum tree (SpT) kernel which emphasized

the simplest syntax-tree substructures among these four

tree kernels; it compared all directed vertex-walks, each of

which represented by a sequence of edges connecting syn-

tax tree nodes of length q. When comparing two protein

pairs, the number of shared sub-patterns, or tree q-grams,

were measured as the similarity score.

Current studies attempt to use multiple kernels to over-

come the shortcoming of information loss of single kernel

approaches. For instance, Miwaa et al. (16) proposed a

composite kernel (CK) approach for PPI extraction that ex-

tracted and combined several different layers of informa-

tion from a sentence with its syntactic structure by using

several parsers. They outperformed other state-of-the-art

PPI systems on four out of the five corpora because the

combination of multiple kernels and parsers could gather

more information and cover a certain fraction of the losses.

In addition, Giuliano et al. (15) defined the Shallow

Linguistic (SL) kernel as the sum of the global context and

the local context kernel. For the global context kernel, the

feature set was generated based on the position of words

appearing in a sentence under three types of patterns

(‘fore–between, between’ and ‘between–after’) relative to

the pair of investigated proteins. Each pattern was repre-

sented using ‘bag of words’ as a term frequency vector; the

global context kernel was in turn defined as the total count

of mutual words in these three vectors. For the local con-

text kernel, they utilized orthographic and SL features of

sentences respect to the candidate proteins of the pair, of

which the similarity was calculated using dot product. On

the other hand, Airola et al. (7) integrated a parse structure

sub-graph and a linear order sub-graph to develop the all-

path graph kernel (GK). The former sub-graph represented

the parse structure of a sentence and included words or

link vertices; a word vertex contained its lemma and its

parts-of-speech (POS), while a link vertex contained its

link only. Both types of vertices possessed their positions

relative to the shortest path. The linear order sub-graph

represented the word sequence in the sentence. Thus, it

accommodated word vertices, each of which contained its

lemma, relative position to the target pair and POS. The

experimental results demonstrated that their method is ef-

fective in retrieving PPIs from biomedical literatures.

The above discussion suggests that the hierarchical-

structured features in a parse tree might not be fully utilized

in previous work. On the other hand, we believe that the tree

structure features could play a more important role than pre-

viously reported. Since convolution kernels (22) is capable of

capturing structured information in terms of sub-structures

(which provides a viable alternative to flat features), we there-

fore integrated the syntactic, content and semantic informa-

tion of text into an interaction pattern tree structure to

capture the sophisticated nature of PPIs. The concept is incor-

porated in PIPE to discriminate interactive text segments.

3. Methodology

Figure 1 shows an overview of the proposed PPI extrac-

tion method, which is comprised of three key compo-

nents: ‘interaction pattern generation, IPT construction’

and ‘CTK’. The paragraphs and related protein names in

paragraphs are extracted from original XML files with

the help of official BioC API, while candidate sentence

generation produces a set of candidate sentences by cap-

turing every sentence that contains at least two types of

protein names. The candidate sentences then undergo the

semantic class labeling (SCL) process, which help group

together the synonyms. Since we treat PPI extraction as a

classification problem, we use the interaction pattern gen-

eration component to automatically produce representa-

tive patterns for mentioned interactions between proteins.

Subsequently, the IPT construction is used to integrate

the syntactic and content information with generated

interaction patterns for text representation. Finally, the

CTK measures similarity between IPT structures via SVM

to classify interactive expressions, followed by saving the

results using official BioC API in XML format. Each com-

ponent is elucidated in detail in the following sections.

Candidate sentence generation

Our system is constructed with official BioC library. The

API offers built-in functions for us to parse the documents

as paragraphs and retrieve the annotations. It also pro-

vided function for separating sentences in a paragraph;

Figure 1. Overview of the PPI extraction method.
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nevertheless, to be able to use this function, the input XML

files are required to place each sentence between specific

tags. Since the example files for this sub-task do not pos-

sess such information, we have no other option but to

come up with our own version of sentence splitter. To ex-

tract the sentences from the paragraphs that contain pos-

sible PPI, we retrieve each sentence that have at least two

kinds of protein names. Since the names are specified with

annotations and are already available with the metadata

that comes with each paragraph, we can do a first-level fil-

tering of each paragraph to see whether it contains over

two different types of protein, with which the program

proceeds if it does. We save the distinct protein names in a

paragraph to a set PG.

Later on, we try to segment the sentences in a para-

graph. Intuitively, using string splitting functions in pro-

gramming language library with period as the separator

seem like a good choice; unfortunately, bio-related docu-

ments tend to have periods used in purposes other than

dividing sentences, such as in float number or abbrevi-

ation. As such, we took rule-based approach by inserting

several conditions for the program to ignore the period

under certain situations. Examples include neglecting

period in Figure 3, ‘ph 6.5’, ‘Lin et al.’ etc. After each para-

graph has been broken down, we save the sentences into a

set S¼ {s1,. . .,si}, where each sentence is denoted as Si.

Each sentence is tokenized to find the protein names, since

most protein names exist in the form of unigram. For pro-

tein names that contain spaces within, substring match of

the whole sentence is used. In cases where there exist more

than one type of protein in a single sentence, a function is

used to list all protein names contained in a sentence and

save them into a temporary set K. The program would

then generate all possible pair-wise protein combinations,

each of which will be attached at the end of the original

sentence to produce a ‘candidate sentence’. The algorithm

is illustrated in Figure 2. Output is then written to a text

file, each line of which consist of the original sentence and

two protein names.

Provided with the generated candidate sentences, we

further process them with normalization and parsing be-

fore feeding them to the next step; normalization replaces

all protein names found in a sentence with the label of

“PROTEIN”, whereas parsing identifies the POS for each

term. For instance, the sentence ‘We have identified a third

Sec24p family member, which we call Iss1p, as a protein

that binds to Sec16p’ contains recognized genes ‘Sec24p’,

‘Iss1p’ and ‘Sec16p’; thus we obtain a corresponding entity

set E¼ {s1, p1, p2, p3}¼ {‘We have identified a third Sec24p

family member, which we call Iss1p, as a protein that binds

to Sec16p.’, ‘Sec24p’, ‘Iss1p’, ‘Sec16p’}, which could pro-

duce candidate sentences {s1, p1, p2}, {s1, p2, p3}, {s1, p1,

p3}. The corresponding normalized sentences (ni) and

parsed sentences (q- j) for an original sentence si are added

to its candidate sentence to form ‘expanded candidate sen-

tences’; in this case, we get {s1, n1, q- 1, p1, p2}, {s1, n2, q- 2,

p2, p3} and {s1, n3, q- 3, g1, g3}, as illustrated in Figure 3. To

explore in more detail, the content of the expanded candi-

date sentence set {s1, n2, q- 2, p2, p3} is shown in Figure 4 as

an example. The data are now ready for SCL.

Learning interaction pattern from biomedical

literature

The human perception of a PPI is obtained through the rec-

ognition of important events or semantic contents to rap-

idly narrow down the scope of possible candidates. For

example, when an expression contains strongly correlated

words such as ‘beta-catenin’, ‘alpha-catenin 57-264’ and

Figure 2. Candidate sentence generation algorithm.

Figure 3. An example of expanded candidate sentence extraction.
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‘binding’ at the same time, it is natural to conclude that

this is an expression of PPI, with a less likelihood of a non-

interactive one. This phenomenon can be used to explain

how humans can skim through an article to quickly cap-

ture the interactive expression. In light of this rationale, we

propose an interaction pattern generation approach to

automatically produce representative patterns from se-

quences of PPI expressions.

We formulate interaction pattern generation as a fre-

quent pattern mining problem, starting by feeding the ex-

panded candidate sentences sets obtained in the previous

phase into SCL process. To illustrate the process of SCL,

consider the instance In¼ ‘Abolition of the gp130 binding

site in hLIF created antagonists of LIF action’, as shown in

Figure 5. ‘gp130’ and ‘hLIF’ are two given protein names

first tagged as PROTEIN1 and PROTEIN2, respectively.

Remaining tokens are later stemmed using the porter stem-

ming algorithm (23). Finally, trigger words ‘bind’ and ‘an-

tagonist’ are labeled with their corresponding types by

using our compiled trigger word list extracted from a

BioNLP corpus (24). Evidently, the SCL can group the

synonyms together through the same label. This enables us

to find distinctive and prominent semantic classes for PPI

expression in the following stage.

After SCs are introduced into the sequences, we con-

struct a graph based on the co-occurrence of distinct SCs to

describe the strength of relations between them. Since these

sequences are of an ordered nature, the graph is directed

and can be made with association rules. In order to avoid

generating interaction patterns with insufficient length, we

empirically set the minimum support of a SC to 20 and the

minimum confidence to 0.5 in our association rules.

[According to (25), rule support and confidence are two

measures of rule value. Typically, association rules are con-

sidered valuable if they satisfy both a minimum support

threshold and a minimum confidence threshold. Therefore,

in our article, we set the minimum support of a SC to 20;

i.e. we only consider SCs whose occurring frequency are

more than 20.] This setting is derived from the observation

that the rank-frequency distribution of SCs followed Zipf’s

law (26), therefore does the normalized frequency of inter-

action patterns. SCs with lower frequencies are generally ir-

relevant to PPI. For that reason, we select the most frequent

occurring SCs with accumulated frequencies exceeding

70% of the total SC frequency count in the positive PPI sen-

tences. An association rule is represented as Equation (1).

Figure 6 is an illustration of a semantic graph. In this

graph, vertices (SCx) represent semantic classes; edges

Figure 4. An example of the expanded candidate sentence {s1, n2, p2, g2, g3}.

Figure 5. SCL process.
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represent the co-occurrence of two classes, SCi and SCj,

where SCi precedes SCj. The number on an edge denotes

the confidence of two connecting vertices. After construct-

ing all semantic graphs, we then generate interaction pat-

terns by applying the random walk theory (27) in search of

high frequency and representative classes for PPIs.

Assuming we have a semantic graph G defined as G¼ (V,

E) (jVj¼ v, jEj¼ u), a random walk process consists of a

series of random selections on the graph. Every edge Enm

has its own weight Mnm, which denotes the probability of

a semantic class SCn followed by another class SCm. For

each class, the sum of weights to all neighboring classes

N(SCn) is defined as Equation (2), while the probability

matrix of the graph is defined as Equation (3). A series of a

random walk process now essentially becomes a Markov

Chain. According to (28), the cover time of a random walk

process on a normal graph is 8SCn;En � 4u2 with the se-

lection of frequent SCs and their neighbors as the starting

nodes of a random walk process. We conclude that with

the use of random walk in finding frequent patterns on the

interactive graph, we not only could capture combinations

with low probability but also shorten the processing time.

confidence SCi) SCj

� �
¼P SCjjSCi

� �
¼

suppport SCi[SCj

� �
support SCið Þ ;

where supportmin¼ 20; confidencemin¼ 0:5

(1)

8SCn

X
m2NðSCnÞ

Mnm ¼ 1 (2)

Pr¼ Xtþ1¼SCm

�����
Xt¼SCn

Xt�1¼SCk

. . .

X0¼SCi

2
666664

3
777775¼Pr Xtþ1¼SCmjXt¼SCn½ �¼Mnm

(3)

Although the random walk process can help us capture

representative interaction patterns in semantic graphs, it

can also create some redundancy; a merging procedure is

required to eliminate the redundant results by retaining

patterns with long length and high coverage, and dispose

of bigram patterns that could be covered by another pat-

tern. For example, the pattern [PROTEIN1]-> [Binding]

is completely covered by [PROTEIN1]-> [Binding]-

> [Regulation]-> [Transcription]-> [PROTEIN2]; there-

fore we can incorporate the former with the latter. On

the other hand, if a bigram pattern only partially matches

another, the overlapping part is used as the pivot to concat-

enate the two patterns to form a longer pattern. For in-

stance, [Positive_regulation]-> [Regulation] overlaps with

[Regulation]-> [Gene_expression]-> [PROTEIN1] on

[Regulation], thus the two patterns are merged into a single

pattern: [Positive_regulation]-> [Regulation]-> [Gene_

expression]-> [PROTEIN1].

Reduction of SC labels through pattern selection is crit-

ical; it allows the successful execution of more sophisticated

text classification algorithms, which leads to improved per-

formance for PPI extraction. These algorithms cannot be

executed on patterns before they are processed since redun-

dant SC labels will result in excessively high execution time,

making them impractical (26). To perform pattern selection,

we use the log likelihood ratio (LLR) (26), an effective fea-

ture selection method to discriminate SCs for PPI instances.

Given a training dataset comprised of positive instances,

LLR employs Equation (4) to calculate the likelihood of the

assumption that the occurrence of a semantic class SC in the

expressions of PPI is not random,

�2log

pðSCÞNðSC^IÞð1� pðSCÞÞNðIÞ�NðSC^IÞ

pðSCÞNðSC^:IÞð1� pðSCÞÞNð:IÞ�NðSC^:IÞ

pðSCjIÞNðSC^IÞð1� pðSCjIÞÞNðIÞ�NðSC^IÞ

pðSCj:IÞNðSC^:IÞð1� pðSCj:IÞÞNð:IÞ�NðSC^:IÞ

2
666664

3
777775

(4)

where I denotes the set of positive PPI sentences in the

training dataset; N(I) and N(´I) are the numbers of posi-

tive and negative PPI sentences, respectively; and N(SC^I)

is the number of positive PPI sentences containing the se-

mantic class SC. The probabilities p(SC), p(SCjI), and

p(SCj´I) are estimated using maximum likelihood estima-

tion. A SC with a large LLR value is thought to be closely

associated with the interaction. Lastly, we rank the inter-

action patterns in the training dataset based on a summa-

tion of these semantic classes’ LLR values and retain the

top 20 for representing PPIs.

IPT construction

Next, we represent a candidate sentence by the proposed

IPT structure, which is the SPET of a sentence enhanced by

three operations: ‘branching’, ‘ornamenting’ and ‘pruning’.Figure 6. An interactive graph for pattern generation.
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In reference (14), the authors show that SPET is effective in

identifying the relation between two entities mentioned in

a text sentence. Specifically, the SPET of a candidate sen-

tence is the smallest sub-tree of the sentence’s syntactic

parse tree that links target protein pi and pj. To show how

we are improving SPET with IPT, we exemplify the oper-

ators by applying them to the sentence ‘Active, phosphory-

lated CREB, which is important to brain development,

effects CRE-dependent genes via interaction with CBP

which tightened the connection between CREB and down-

stream components.’. that expresses the interaction be-

tween ‘CREB’ and ‘CBP’. Figure 7a show the syntactic

parse tree of the example sentence and the corresponding

SPET is illustrated in Figure 7b. The three operations are

described as follows.

IPT branching. Although Zhang et al. (29) demon-

strated that the SPET is effective in identifying the relation

between two entities mentioned in a textual sentence, the in-

formation in SPET is sometimes insufficient for detecting

interaction between target proteins. For instance, in

Figure 7a, the term ‘tightened’ and the corresponding syn-

tactic constituent are critical for recognizing the interaction

between CREB and CBP. However, they are excluded from

the sentence’s SPET, as shown in Figure 7b. To include use-

ful sentence context, the branching operator first examines

the existence of verb behind the last target protein of the

sentence. If a verb and the target protein form a verb phrase

in the sentence’s syntactic parse tree, the verb is treated as a

modifier of the target protein and is concatenated into the

IPT. As shown in Figure 8, the branched IPT has included

richer context information than its original.

IPT pruning. In later process we adopt SVM to classify

interactive patterns. SVM is a vector space classification

model that hypothesizes data of different classes form dis-

tinct contiguous regions in a high-dimensional vector space

(25, 26); the hypothesis; however, is invalid if data repre-

sentation is chosen improperly. We observed that IPTs

would contain redundant elements that would influence

the performance of interaction classification therefore we

use the pruning operator to condense IPTs via the follow-

ing procedures.

i. Middle clause removal: Middle clauses of inter-clause

candidate sentences may (or may not) be irrelevant to

protein interactions. To discriminate middle clauses

associated with the proteins, we adopted the Stanford

parser (30) to label dependencies between text tokens

(words). A labeled dependency is a triple of depend-

ency name, governor token and dependent token. The

labeled dependencies form a directed graph G¼<V,

E>, where each vertex in V is a token and the edges in

E denote the set of dependencies. Figure 9 shows the

dependencies extracted from the example sentence and

the corresponding dependency graph is showed in

Figure 10. Next, we search for the protein dependency

path which we defined as the shortest connecting path

of the target protein-pair in G. The example’s protein

dependency path is highlighted in red in Figure 10

(CREB!
conj

effects  
dobj

genes  
nmod

interaction  
nmod

CBP).

The pruning operator removes a middle clause and all

its elements in IPT if the clause is not involved in the

protein dependency path for the clause’s inability to

Figure 7. The FPT and SPET of the example sentence (a)FPT (b) SPET.
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make the target proteins associated. In Figure 11, the

middle clause “that is important to brain develop-

ment” is pruned because it is the complement of

CREB, which is irrelevant to protein interactions.

ii. Stop word removal: Frequent words are not useful for

expressing interactions between proteins. For in-

stance, the word ‘with’ in Figure 8 is a common prep-

osition and cannot be utilized to discriminate

interactive expressions. To remove stop words and

the corresponding syntactic elements from the IPT, we

sort words according to their frequency in the text

corpus, and the most frequent words are used to com-

pile a stop word list. More specifically, we selected the

most frequent words whose accumulated frequencies

reached 80% of the total word frequency count in

the five corpora, since the rank-frequency distribution

of words follows Zip’s law (26). Protein names

and verbs are excluded from the list for refinement,

since both are key constructs of protein-protein

interactions.

iii. Duplicate element removal: Nodes in an IPT would be

duplicated and therefore are redundant. A node is

duplicated if it has a single child and its tag is also

identical to that of its parent. For instance, the node

VP in the last branch of Figure 8 is a duplicate node.

Since the tree kernel we adopted to compute the simi-

larity between text sentences is based on the percent-

age of overlap between IPTs, duplicate nodes would

degrade our system performance. To reduce their influ-

ence, the pruning operator deletes all duplicate nodes

in an IPT. As shown in Figure 11, the pruned IPT is

more concise and clearer than its original.

IPT ornamenting. Finally, the generated interaction pat-

terns can help us capture the most prominent and

representative patterns for expressing PPI. Highlighting

interaction patterns closely associated with PPIs in an IPT

would improve the interaction extraction performance.

For each IPT that matched an interaction pattern, we add

Figure 8. The branching operation of IPT of the example sentence.

Figure 9. The typed dependencies representation of the example

sentence.
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an IP tag as a child of the tree root to incorporate the inter-

active semantics into the IPT structure (as shown in Figure

12).

Convolution tree kernel

Kernel approaches are frequently used in SVM to compute

the dot product (i.e. similarity) between instances modeled

in a complex feature space; here we employ the CTK (21)

for measuring the similarity between sentences. A convolu-

tion kernel captures structured information in terms of

substructures, hence we can represent a parse tree T by a

vector of integer counts of each sub-tree type (regardless of

its ancestors):

/ðTÞ¼ ð#subtree1ðTÞ; . . . ;#subtreeiðTÞ; . . . ;#subtreenðTÞÞ;
(5)

where subtreei(T) is the occurrence number of the ith sub-

tree type (subtreei) in T. Since the number of different sub-

trees is exponential with the parse tree size, it is computa-

tionally infeasible to directly use the feature vector /ðTÞ.
To solve this computation issue, the CTK computes the

syntactic similarity between the above high dimensional

vectors implicitly as follows:

KCTK T1jT2ð Þ¼ h/ T1ð Þj/ T2ð Þi

¼
X

i

#subtreeiðT1Þ � subtreeiðT2Þ

¼
X

i

X
n12N1

I1subtreeiðn1Þ

 ! X
n22N2

Isubtreeiðn2Þ

 !

¼
X

n12N1;n22N2

D n1;n2ð Þ

(6)where N1 and N2 are the sets of nodes in trees T1 and

T2. Isubtreei
ðnÞ is a function whose value is 1 if there is a sub-

treei rooted at node n, and zero otherwise. Specifically, the

CTK KCTK considers the number of common sub-trees as

Figure 10. The dependency graph of the example sentence.

Figure 11. The pruning operation of IPT of the example sentence.

Figure 12. The ornamenting operation of IPT of the example sentence.
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the measurement of syntactic similarity between two inter-

action pattern trees IPT1 and IPT2 as follows:

KCTKðIPT1; IPT2Þ ¼
X

n12N1;n22N2

Dðn1;n2Þ; (7)

N1 and N2 are the sets of nodes in IPT1 and IPT2, respect-

ively. In addition D(n1, n2) evaluates the common sub-trees

rooted at n1 and n2 and is computed recursively as follows:

i. if the productions (i.e. the nodes with their direct chil-

dren) at n1 and n2 are different, D(n1, n2)¼ 0;

ii. else if both n1 and n2 are pre-terminals (POS tags),

D(n1, n2)¼1�k;

iii. else calculate D(n1, n2) recursively as:

Dðn1;n2Þ ¼ k
Y
k¼1

#
chðn1Þ
ð1þ Dðchðn1;kÞ; chðn2;kÞÞÞ (8)

where #ch(n1) is the number of children of node n1; ch(n,

k) is the kth child of node n; and k(0<k< 1) is the decay

factor used to make the kernel value less variable with re-

spect to different sized sub-trees. The parse tree kernel

counts the number of common sub-trees as the syntactic

similarity measure between two PPI instances. The time

complexity for computing this kernel isOðjN1j � jN2jÞ (21).

Experiments

Evaluation dataset

Due to the very recent completion of the BioCreative V

BioC task, during edition of this article we have yet received

the official annotation of the data used; therefore, we eval-

uated our method with five publicly available corpora that

contain PPI annotations: LLL (31), IEPA (32), HPRD50

(33), AIMed (34) and BioInfer (35). AIMed, IEPA,

HPRD50 and LLL were constructed specifically for PPI,

while BioInfer is a more general-purpose corpus. All of

them are commonly served as the standard corpora for

training and testing PPI extraction programs. Specifically,

AIMed contains 200 abstracts from PubMed that were iden-

tified as containing PPI by Database of Interacting Proteins

[DIP (32)), from which the interactions between human

genes and proteins in the abstracts were annotated manu-

ally. Additionally, certain abstracts that do not contain PPIs

were added as negative examples. The current release of

AIMed corpus is comprised of 225 of abstracts (10).

BioInfer contains annotations for not only PPI but also other

types of events. Pairs of interacting entities were extracted

from DIP and used as query inputs to PubMed retrieval sys-

tem, from which the returned abstracts were broken down

into sentences; only sentences possessing more than one pair

of interacting entities were kept. A random subset of the

sentences was also annotated for entities of protein, gene

and RNA relationships. After combining the above resultant

sets into a PPI corpus, BioInfer consists of the maximum

number of instances among the five corpora within 1100

sentences. In addition, IEPA was constructed of 486 sen-

tences containing a specific pair of co-occurring chemicals

from PubMed abstracts; the interactions between pairs of

entities were annotated while the majority of the entities

were proteins. Unlike the above corpora, HPRD50 was con-

structed by taking 50 random abstracts referenced by the

Human Protein Reference Database [HPRD (33)]. Human

proteins and genes were identified by ProMiner (36) soft-

ware, while direct physical interactions, regulatory relations

as well as modifications were annotated by experts. The cor-

pus was developed as a test set for the RelEx (33) system,

containing 145 sentences with annotations and lists of posi-

tive/negative PPI. LLL corpus was originally created for the

Learning Language in Logic 2005 (LLL05) challenge, a task

to learn rules to extract protein/gene interactions from biol-

ogy abstracts from the Medline bibliography database. It

contains three types of gene interaction of Bacillus subtilis:

explicit action, binding of a protein on the promoter of the

target gene, and membership in a regulon family (10). The

corpus, albeit serving as an independent test set, contains

only 77 sentences, making it the smallest dataset among the

five corpora.

Experimental setting and evaluation methods

The description of the corpora is shown in Table 1; both

the size and the distribution of positive/negative elements

are shown. All corpora are parsed using the Stanford

parser (http://nlp.stanford.edu/software/lex-parser.shtml)

to generate the output of parse tree and POS tagging. For

our implementation, we use the Moschitti’s tree kernel

toolkit (22) to develop the convolution kernel of an IPT.

Following conventions, we set the parameters C for SVM

to the ratio of negative instance to positive ones in respect-

ive corpora, and k for the CTK to default 0.4 (18, 19, 29).

To derive credible evaluation results, we utilize various

performance measures on all of the corpora including

cross-validation (CV) (26), cross-learning (CL) (10) and

cross-corpus (CC) (37). This guarantees the maximal use

of the available data and allows comparison to the previ-

ous relevant research results. In the setting of CV, we

trained and tested each method on the same corpus using

10-fold CV. Although the 10-fold CV has become the de

facto standard of PPI extraction evaluation, it is also some-

what biased due to the fact that training and the test data

sets are similar in nature. Since the ultimate goal of PPI ex-

traction is the identification of PPIs in biomedical texts
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with unknown characteristics, we performed experiments

with learning across corpora, where the training and test

data sets are drawn from different distributions. For the

CL experiments, each corpus was selected as the testing set

once, where ensemble of four remaining corpora was used

for training. Finally, for the CC experiments, we trained

the model on one corpus and tested it on each of the other

four corpora separately. The evaluation metrics are preci-

sion, recall and F1-measure (26), as well as the micro-

average used for comparing the average performance.

These measures are defined based on a contingency table

of predictions for a target corpus Ck. The precision P(Ck),

recall R(Ck), F1-measure F1(Ck) and micro-average Fl are

defined as follows:

PðCkÞ ¼
TPðCkÞ

TPðCkÞ þ FPðCkÞ
(9)

RðCkÞ ¼
TPðCkÞ

TPðCkÞ þ FNðCkÞ
(10)

F1ðCkÞ ¼
2� PðCkÞ � RðCkÞ

PðCkÞ þ RðCkÞ
(11)

Fl ¼

Xn

k¼1

2� PðCkÞ � RðCkÞ

Xn

k¼1

PðCkÞ þ RðCkÞ
(12)

TP(Ck) denotes the number of true positives, i.e. the num-

ber of positive instances that are correctly classified. The

FP(Ck) denotes the number of false positives, which are

negative instances that are erroneously classified as posi-

tives. Analogously, TN(Ck) and FN(Ck) stand for the num-

ber of true negatives and false negatives, respectively. The

F1 value is used to determine relative effectiveness of the

compared methods.

Results and Discussion

For our CV experiment, the proposed IPT structure uses

three operators, ‘branching, pruning’ and ‘ornamenting’,

to enhance SPET. In the following, we evaluate the per-

formance of these operators to demonstrate the effective-

ness of IPT. Table 2 shows the marginal performances in

10-fold cross-validation of applying IPT branching,

pruning and ornamenting, denoted asþIPTbranching,þ
IPTpruning andþIPTornamenting respectively. As shown in the

table, IPT branching (i.e.þIPTbranching) outperforms SPET

because branching operator correctly incorporated extra

context information to remedy the context-limited prob-

lem of the SPET (see Section ‘IPT construction’). The prun-

ing operator further improves the system performance for

successfully eliminating indiscriminative and redundant

IPT elements and thereby helps SVM learn representative

syntactic structures of PPIs. Notably, the IPT ornamenting

operator improves the F1 performance significantly, be-

cause generated interaction patterns are highly correlated

with PPIs. Thus, tagging them in the IPT structure helps

our method discriminate PPI passages. As the operators

polish the SPET from different perspectives without having

conflicts with one another. Consequently, applying the op-

erators altogether achieves the best performance.

The proposed IPT kernel uses the PPI patterns to en-

hance the SPET, and it is compared with several feature-

based, kernel-based and multiple kernel PPI extraction

methods mentioned in related work to demonstrate its ef-

fectiveness. As shown in Table 3, the proposed method sig-

nificantly outperforms AkanePPI. Furthermore, the syntax

tree-based kernel methods (i.e. ST, SST, PT and SpT) only

examine the syntactic structures within texts but cannot

sense the semantics of protein interactions. In contrast, our

method analyzes the semantics and contents (i.e. PPI pat-

terns) within the text to identify PPIs, making its perform-

ance superior to those of the syntax tree-based kernel

methods. It is noteworthy that the syntax tree-based kernel

methods are at times only on par with the co-occurrence

approach in terms of F1-measure. This can be observed on

the relatively small corpus LLL, in which their results prac-

tically coincide with the co-occurrence method. On the

other hand, PIPE delivers good result on both precision

and F1-measure in a broader corpus such as BioInfer.

The RFB and Cosine method also outperform SPET,

AkanePPI and syntax tree-based kernel methods as they in-

corporate dependency features to distinguish PPIs.

Nevertheless, although the Cosine method can accomplish

higher performance by further considering term weighting,

it is difficult to demonstrate word relations through sym-

bolic representations in this approach. On the contrary,

Table 1. Distribution of the five corpora used for performance

evaluation of PPI extraction.

Statistics Corpora

LLL IEPA HPRD50 AIMed BioInfer

no. POS. 164 335 163 1000 2534

no. NEG. 166 482 270 4834 7132

no. sentence 77 486 145 1955 1100
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our method can extract word semantics and generate PPI

patterns that can capture relations between distant-located

mentions in the text; consequently we can achieve compar-

able outcome. SL, GK and CK approaches outperform our

method because their hybrid kernels can adequately encap-

sulate information required for relation prediction based

on sentential structures involved in two entities; nonethe-

less, our method is able to capture more PPI instances

through the acquired PPI patterns. Thus, we can achieve

higher recall than both CK-based approaches on all five

corpora, which leads to a comparable overall performance.

Table 4 lists our results regarding the CL performances.

Five additional methods were used in comparison with our

proposed method. First, it is interesting to note that while

the SPET had a F1-measure of 41.6% in the CV setting, it

showed a decrease by 12% in the CL setting due to the

lower performance in AIMed and BioInfer; SpT, Cosine

and edit methods too suffered a significant drop in their

performance. SpT achieved rather poor performance in

this scenario, especially on the IEPA corpus. It obtained a

very low score due to the extremely low recall. The Cosine

and edit method were on par with SpT, each of which sur-

passed the other two in certain corpora. The SL kernel

showed a modest drop on the average F1-measure by about

6%, and demonstrated a relatively consistent performance

across all five corpora in terms of the major evaluation

measures. Finally, our method exhibited the highest stabil-

ity, with each and every case under the CL setting outper-

forming those of the CV results. The overall performance

of our IPT kernel is improved with the CL setting, and also

outperformed all other methods on the five corpora.

Due to the existing variety of the nature of the five cor-

pora, such as the types of named entities annotated, the

definition of what exactly constitutes an interaction, and

the relative positive/negative distributions of relation pairs,

we conducted a CC evaluation to shed light on whether the

learned models can be generalized beyond the specific

characteristics of the training data. Table 5 shows the CC

results, in which different methods were trained on one

corpus, and subsequently tested on the four remaining cor-

pora. The rows and columns correspond to the training

and test corpora, respectively. Cross-validated results were

Table 2. Incremental contribution of the IPT branching, pruning and ornamenting operators

IPT structure LLL IEPA HPRD50 AIMed BioInfer Fl

Precision, recall, F1-measure (%)

SPET 56.4/96.1/69.6 55.5/28.8/37.1 46.2/13.4/20.8 29.2/39.9/32.4 26.7/89.4/41.0 30.0/67.8/41.6

þIPTbranching 58.3/96.3/72.6 58.3/42.6/49.2 56.3/38.9/46.0 38.3/46.4/42.0 42.3/81.8/55.8 42.5/68.1/52.3

þIPTpruning 62.3/93.5/74.8 58.9/60.5/59.7 59.1/63.9/61.4 49.6/55.8/52.5 55.6/73.8/63.4 54.1/67.7/60.2

þIPTornamenting 73.2/89.6/80.6 62.5/83.3/71.4 63.8/81.2/71.5 57.2/64.5/60.6 68.6/70.3/69.4 64.4/69.6/66.9

Table 3. CV results of the compared methods

System LLL IEPA HPRD50 AIMed BioInfer Fl

Precision, recall, F1-measure (%)

SPET 56.4/96.1/69.6 55.5/28.8/37.1 46.2/13.4/20.8 29.2/39.9/32.4 26.7/89.4/41.0 30.0/67.8/41.6

AkanePPI 76.7/40.2/52.8 66.2/51.3/57.8 52.0/55.8/53.8 29.1/52.9/37.5 56.8/85.4/68.2 48.1/71.0/57.3

Co-occurrence 55.9/100./70.3 40.8/100./57.6 38.9/100./55.4 17.8/100./30.1 26.6/100./41.7 25.2/100./40.2

PT 56.2/97.3/69.3 63.1/66.3/63.8 54.9/56.7/52.4 39.2/31.9/34.6 45.3/58.1/50.5 44.5/50.3/47.2

SST 55.9/100./70.3 54.8/76.9/63.4 48.1/63.8/52.2 42.6/19.4/26.2 47.0/54.3/50.1 46.1/44.6/45.3

ST 55.9/100./70.3 59.4/75.6/65.9 49.7/67.8/54.5 40.3/25.5/30.9 46.8/60.0/52.2 45.4/49.9/47.6

SpT 55.9/100./70.3 54.5/81.8/64.7 49.3/71.7/56.4 33.0/25.5/27.3 44.0/68.2/53.4 41.1/54.9/47.0

RFBa 72.0/73.0/73.0 64.0/70.0/67.0 60.0/51.0/55.0 49.0/44.0/46.0 �/-/-

edit 68.0/98.0/78.4 77.2/60.2/67.1 71.3/45.2/53.3 68.8/27.7/39.0 50.4/39.2/43.8 58.8/37.6/45.9

Cosine 70.2/81.7/73.8 61.3/68.4/64.1 59.0/67.2/61.2 43.6/39.4/40.9 44.8/44.0/44.1 46.0/44.8/45.4

SL 69.0/85.3/74.5 69.5/71.2/69.3 64.4/67.0/64.2 47.5/65.5/54.5 55.1/66.5/60.0 53.7/66.8/59.5

GK 72.5/87.2/76.8 69.6/82.7/75.1 64.3/65.8/63.4 52.9/61.8/56.4 56.7/67.2/61.3 56.5/66.4/61.1

CK 77.6/86.0/80.1 67.5/78.6/71.7 68.5/76.1/70.9 55.0/68.8/60.8 65.7/71.1/68.1 62.4/71.1/66.5

PIPE 73.2/89.6/80.6 62.5/83.3/71.4 63.8/81.2/71.5 57.2/64.5/60.6 68.6/70.3/69.4 64.4/69.6/66.9

aSince the original work did not include experiment on BioInfer, we therefore leave out Fl in the table.
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enclosed in parentheses for reference in the table, and

bold-texted results indicate the best overall result for a par-

ticular corpus. We speculated that the average CC per-

formances would be worse than the CL performances due

to the smaller size of the training dataset; however, the CC

results did not completely substantiate our hypothesis. For

instance, PIPE achieves 71.3% F1-measures on HPRD50

trained on the BioInfer, whereas it achieves only 70.3%

when trained using the combination of other four corpora.

In general, the overall performance of our method is super-

ior to those of other kernel-based methods. Specifically,

the model tested on the HPRD50 corpus achieved F1-meas-

ures of 69.3, 67.8, 69.4 and 71.3% when trained on the

LLL, IEPA, AIMed and BioInfer, respectively. It outper-

formed all other approaches using the same training data-

set. This is because the PPI patterns generated successfully

captured the accurate PPIs. For instance, the interaction

pattern ‘[PROTEIN1]-> [Positive_regulation]-

> [PROTEIN2]-> [Negative_regulation]’ generated from

the HPRD50 corpus is capable of matching the positive in-

stance ‘Amyloid beta protein stimulation of phospholipase

C was absent from LA-N-2 cells previously treated with nor-

epinephrine, trans-1-amino-1,3-cyclopentanedicarboxylic

acid, bombesin, or amyloid beta peptide’ in the IEPA cor-

pus, which describes the interaction between the protein

‘Amyloid beta protein’ and ‘phospholipase C’. In addition,

our method trained on the IEPA corpus achieved compar-

able performances to that of the CK when tested on LLL

and HPRD50. This also demonstrates that the generated

PPI patterns from our method of IEPA are effective in

matching positive instances of the tested corpora. For in-

stance, the generated interaction pattern ‘[PROTEIN1]-

> [Negative_regulation]-> [PROTEIN2]-> [Localization]’

from the IEPA corpus is able to capture texts such as ‘Both

leptin and insulin can reduce hypothalamic NPY production

and secretion’, in which ‘leptin’ and ‘NPY’ represent

PROTEIN1 and PROTEIN2, respectively. On the other

hand, the performance of our method is slightly inferior to

both multi-kernel-based approaches when trained on the

smallest LLL corpus. More specifically, when trained on

larger corpora (IEPA and HPRD50), our method can gener-

ate more extensive PPI patterns, leading to a broader cover-

age and hence a higher recall. As a result, our method is

more effective than the others, since the generated PPI pat-

terns can retrieve more information within PPIs.

Note that the evaluation results using other corpora are

no better than those from internal 10-fold CV. This is be-

cause the annotation policies are different, and the classi-

fiers cannot predict these differences. The model based on

an original corpus performs better than the models based

on other corpora in other cases, but the results are up to

7.3% better F1-score than for the best performing model

based on other corpora. However, the results on the LLL

corpus using classifiers trained on IEPA are better than the

10-fold CV result using LLL corpus itself for training.

Based on our further analysis, we conclude that IEPA and

LLL are very similar regarding PPI. Thus, learning with

IEPA is more robust than 10-fold CV within LLL. It is

interesting to note that PIPE is able to perform well when

trained on IEPA, which is much smaller than AIMed and

BioInfer. In general, learning with larger corpora produces

better performance. Nevertheless, the better annotation

quality of IEPA enables PIPE to learn discriminative inter-

action patterns.

Based on our preliminary observations, PIPE is able to

achieve comparable performance on BioC corpus, which

contains mostly full-text articles. This is because a rela-

tively high proportion of PPI passages are short, and PIPE

can thus capture interaction expressions. For instance, the

candidate segment ‘We have identified a third Sec24p fam-

ily member also known as Iss1p, as a protein that binds to

Sec16p.’ is correctly recognized as PPI passage due to suc-

cessful match of generated interaction pattern

‘[PROTEIN1]-> [Binding]-> [PROTEIN2]-> [Negative_

regulation]’. However, based on our further analysis of the

detection performance, our approach cannot effectively

deal with longer candidate segments. For one, PIPE incor-

rectly classifies ‘Chromosomal deletion of LST1 is not le-

thal, but inhibits transport of the plasma membrane

proton-ATPase (Pma1p) to the cell surface, causing poor

Table 4. CL results of the compared methods

System LLL IEPA HPRD50 AIMed BioInfer Fl

Precision, recall, F1-measure (%)

SPET 74.5/48.2/58.5 58.8/31.9/41.4 58.2/39.3/46.9 28.9/27.8/28.3 33.9/21.0/26.0 34.8/24.8/29.0

SpT 48.2/83.5/61.2 41.6/19.6/15.5 44.7/77.3/56.6 20.3/48.4/28.6 38.9/48.0/43.0 33.0/48.2/39.2

edit 68.1/48.2/56.4 58.1/45.1/50.8 58.1/55.2/56.6 26.8/59.7/37.0 53.0/22.7/31.7 44.7/37.7/40.9

Cosine 80.3/37.2/50.8 46.3/31.6/37.6 63.0/56.4/59.6 27.5/59.1/37.6 42.1/32.2/36.5 38.6/42.1/42.3

SL 79.0/57.3/66.4 71.0/52.5/60.4 56.9/68.7/62.2 28.3/86.6/42.6 62.8/36.5/46.2 51.6/55.6/53.5

PIPE 68.6/90.7/78.1 55.6/87.2/67.9 62.7/80.1/70.3 52.9/61.2/56.7 63.3/64.6/63.9 59.5/65.4/62.3
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growth on media of low pH’ as a PPI passage. This is be-

cause it is possible that the long text segments in the syn-

tactic structures were so complex that they confused the

dependency parsing process. As a result, the generated pro-

tein dependency paths were prone to errors that affected

the accuracy of the removed middle clause and the corres-

ponding extraction performance. In addition, we paired

proteins in order to enumerate text segments that may con-

vey PPIs; nevertheless, the issue of coreference resolution is

not considered in this article as related studies are still in

progress (38, 39). Therefore, a relatively low proportion of

PPI passages cannot be captured by the candidate segment

generation algorithm if the target protein name is referred

to by a pronoun. We acknowledge this as an important

issue for future research.

In summary, the proposed IPT kernel approach is able to

generated discriminative interaction patterns that can describe

the syntactic and semantic relations within a PPI expression

and assist in detecting the interactions. We consider it as the

foundation for a more profound understanding of the PPI

structures to enhance the SPET. This method not only outper-

forms feature-based and kernel-based approaches, but also

achieves comparable performances to those of multi-kernel-

based methods. In addition, the patterns are easily interpret-

able by humans, and can be considered as the fundamental

knowledge in understanding PPI expressions.

Concluding remarks

Automated extraction of PPIs is an important and widely

studied task in biomedical text mining. To this end, we

proposed an interaction pattern generation approach for

acquiring PPI patterns, which was utilized in the

Collaborative Biocurator Assistant Task at BioCreative V.

We also developed a method that combines the SPET struc-

ture with the generated PPI patterns to analyse the syntac-

tic, semantic and context information in text. It then

exploits the derived information to identify PPIs in

Table 5. CC results of the compared methods with F1-

measure

System Training

corpus

LLL IEPA HPRD50 AIMed BioInfer Fl

F1-measure (%)

SPET LLL (69.6) 63.0 57.0 23.3 39.9 36.3

IEPA 55.9 (37.1) 47.8 25.3 37.2 33.8

HPRD50 48.8 38.6 (20.8) 26.2 35.1 32.1

AIMed 28.3 26.2 18.6 (32.4) 32.0 31.4

BioInfer 30.5 27.7 17.5 26.9 (41.0) 34.7

PT LLL (69.3) 55.2 55.5 30.0 43.3 40.1

IEPA 43.5 (63.8) 43.0 28.4 19.8 25.9

HPRD50 40.7 57.1 (52.4) 35.8 29.7 33.9

AIMed 13.6 25.2 47.9 (34.6) 17.8 24.6

BioInfer 60.2 25.6 38.6 34.6 (50.5) 43.8

SST LLL (70.3) 58.2 54.7 29.3 41.5 39.0

IEPA 56.6 (63.4) 53.1 32.7 29.9 33.6

HPRD50 49.3 57.2 (52.2) 31.6 38.0 37.3

AIMed 11.4 01.2 24.2 (26.2) 13.3 17.4

BioInfer 65.0 36.8 37.2 34.1 (50.1) 44.0

ST LLL (70.3) 61.7 53.8 32.4 47.9 43.8

IEPA 43.1 (65.9) 41.4 33.1 44.2 41.4

HPRD50 44.7 52.8 (54.5) 38.2 39.9 40.4

AIMed 12.4 33.9 45.8 (30.9) 21.4 25.7

BioInfer 58.1 23.5 30.5 33.5 (52.2) 44.0

SpT LLL (70.3) 59.0 54.7 31.7 50.3 44.9

IEPA 54.4 (64.7) 49.0 32.7 31.1 34.2

HPRD50 49.3 55.4 (56.4) 32.5 40.0 38.8

AIMed 17.2 18.6 43.2 (27.3) 24.3 25.4

BioInfer 58.2 56.4 51.3 34.7 (53.4) 47.2

Cosine LLL (73.8) 63.8 56.0 30.2 42.6 40.3

IEPA 66.5 (64.1) 53.5 30.1 41.4 39.4

HPRD50 53.0 45.5 (61.2) 32.7 37.7 37.3

AIMed 32.7 23.0 51.2 (40.9) 30.3 34.1

BioInfer 64.7 43.6 63.0 36.5 (44.1) 42.4

edit LLL (78.4) 63.1 61.5 32.0 44.7 42.3

IEPA 64.3 (67.1) 52.4 34.0 38.5 39.2

HPRD50 47.5 41.9 (53.3) 39.4 31.7 35.7

AIMed 03.6 07.5 38.3 (39.0) 15.9 23.7

BioInfer 60.8 58.4 62.4 39.6 (43.8) 43.9

SL LLL (74.5) 62.6 59.0 32.4 47.9 44.1

IEPA 66.4 (69.3) 58.2 33.1 44.2 42.4

HPRD50 61.4 53.3 (64.2) 38.2 39.9 41.0

AIMed 36.5 25.5 59.0 (54.5) 29.2 38.6

BioInfer 74.6 64.0 61.8 41.5 (66.5) 57.9

GK LLL (76.8) 64.9 59.8 33.3 42.5 41.5

IEPA 77.6 (75.1) 67.5 39.1 51.7 49.4

HPRD50 77.6 65.1 (63.4) 42.2 42.5 44.7

AIMed 74.5 67.4 69.0 (56.4) 47.1 52.3

BioInfer 78.0 68.0 63.9 47.2 (61.3) 57.2

CK LLL (80.1) 65.6 64.0 38.6 48.9 47.2

IEPA 83.2 (71.7) 66.5 40.4 55.8 52.1

HPRD50 72.2 67.8 (70.9) 43.9 48.6 48.9

AIMed 73.5 68.1 68.3 (60.8) 53.1 57.2

BioInfer 76.9 71.4 68.3 49.6 (68.1) 62.1

PIPE LLL (80.6) 65.1 69.3 42.3 51.9 50.2

(Continued)

Table 5. Continued

System Training

corpus

LLL IEPA HPRD50 AIMed BioInfer Fl

F1-measure (%)

IEPA 84.5 (71.4) 67.8 44.5 62.1 57.1

HPRD50 72.1 68.2 (71.5) 46.8 53.3 52.6

AIMed 75.2 69.0 69.4 (60.6) 58.2 60.1

BioInfer 78.5 72.3 71.3 52.1 (69.4) 63.9

Bold typeface indicates our best overall result for a corpus (differences

under 1 base point are ignored).
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biomedical literatures. Our experiment results demonstrate

that the proposed method is effective and also outperforms

well-known PPI extraction methods.

In the future, we will investigate other aspects, such as

the dependency construction in texts, to incorporate even

deeper semantic information into the IPT structures. We

will also utilize information extraction algorithms to ex-

tract interaction tuples from positive instances and con-

struct an interaction network of proteins.
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