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Abstract

Hierarchical processes spanning several orders of magnitude of both space and time underlie 

nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are 

central to designing, implementing and assessing treatment strategies that account for these 

hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline 

that is close to influencing and facilitating clinical successes. The purpose of this review is to 

capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in 

clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale 

modeling in clinical oncology, including the synthesis of disparate data types into models that 

reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate 
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the mathematical techniques employed most widely and present several examples illustrating their 

application as well as the current gap between pre-clinical and clinical applications. We conclude 

with a discussion of what we view to be the key challenges and opportunities for multi-scale 

modeling in clinical oncology.
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cancer; mathematical modeling; predictive oncology; numerical modeling; computational 
modeling; agent-based modeling; cancer screening; epidemiology

Introduction

Cancer involves spatial scales ranging from RNA to gene networks to patients to entire 

populations, and mathematical modeling has provided valuable insights at each level. 

Successes include uncovering the impact of genetic regulatory circuits on spatial dynamics 

at cell and tissue levels1, identifying molecular targets for therapeutic interventions2,3, 

establishing tumor angiogenesis as a therapeutic target4–6, and uncovering the potential of 

cancer immunology7. Cancer also involves diverse temporal scales ranging from gene 

expression and receptor-ligand interactions (minutes to hours) to tumor growth and 

metastasis (months to years). Multi-scale modeling that transforms diagnosis and treatment 

by bridging these diverse spatio-temporal scales has long been pursued, and is now maturing 

to the point where it shows strong promise for solving critical problems in biology in 

general8, and clinical oncology in particular.

The review begins with an overview of the role that multi-scale modeling can play in 

oncology, before discussing several of the common mathematical techniques used to attack 

those problems. The overarching goal of these models is to make a prediction which can 

then be tested against experiment (either in silico, in vitro, or in vivo) which can lead to 

model improvement and, eventually, clinical application. We then examine the various areas 

that are currently barriers to success in applying the methods of multi-scale modeling to 

clinical oncology. This review is designed for members of the cancer biology and oncology 

communities who are interested in learning more about multi-scale modeling, as well as 

those in the modeling community who have recently become interested in using their skills 

to study cancer.

The role of multi-scale modeling in cancer

Dissecting the multiscale character of cancer to identify therapeutic targets

The long-envisioned promise of multi-scale modeling in clinical oncology revolves around 

quantification of the hierarchical disease process and the multi-scale feedback structures that 

enable genetic abnormalities to manifest at the levels of tissues, organs, and systems (see 

Figure 1 for an overview and Figure 2 for a specific example). A goal of multi-scale 

modeling is to identify how perturbations at each level can affect the system as a whole, and 

then to exploit this to attack cancers. Well-known genetic mutations can initiate oncogenesis 

as these genes translate to the scale of molecular processes, which in turn translate to 
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cellular behavior. These molecular processes can be seen as functional consequences of 

genetic abnormalities, and involve changes in cell signaling, receptor status activation, 

genetic regulation, cellular movement and interactions with the extracellular milieu. A key 

role of multi-scale modeling at this level has been developing knowledge of how “normal” 

molecular control structures function and, by contrast, how genetic abnormalities produce 

dysfunction.

At the cellular level, tumors are complex, non-clonal cell populations with their own internal 

dynamics arising from multi-scale interactions between mutated and normal cells exposed to 

an abnormal signaling environment. This manifests inappropriately in contextual cell-cell 

interaction, and is both a byproduct and further enhancer of intra-tumor heterogeneity9; cells 

housing mutations can “hijack” healthy neighbors into propagating a tumor. This in turn 

fosters selection within tumor cell populations, bringing evolutionary and ecological factors 

into the behavior of cancers, and defines the context by which tumors interact with their 

surrounding host tissue. Multiscale models hold the potential to reveal therapeutic targets 

arising from the ways that cells interact with their neighbors and with their physical 

environment during these processes.

At the tissue level, all tumors start to develop within normal tissue, and therefore have access 

to an “interaction space” at the border with the host that presents a potential area for 

“hijacking” normal processes and cellular populations. This interaction space not only 

directly affects the growth and selection within the tumor, but also selects for tumor 

processes best able to release cells into the blood stream and initiate the process of 

metastasis. The modeling of interactions across the cell, tumor and tissue hierarchy therefore 

holds the potential for unlocking additional therapeutic targets.

The progression of a tumor from a local to a system-level phenomenon represents another 

key point in the control of cancer, and motivates a desire to individualize the representation 

of tumor characteristics to better determine the specific factors involved in a particular 

tumor’s progression. Personalized tumor modeling might integrate genetic profiling of the 

primary tumor cells or tumor stem cells with the set of possible behavioral trajectories in a 

multi-cellular tumor that is actively interacting with its host. These latter characteristics 

might be represented by tumor-level properties determined by different modalities, such as 

histology or imaging, which would provide calibration targets for the lower-level 

mechanisms incorporated into such a model, and then be used to project multiple possible 

outcomes based on other personal factors, such as health status or interventions.

Finally, at the patient population level, the ability to potentially “simulate” an individual 

tumor provides a pathway to the generation of computer-generated populations of cancer 

patients. These simulated populations would provide a more sophisticated accounting for 

mechanisms than traditional population modeling. They would be key to represent and 

explain the observed “rarity” of cancer events, thereby accounting for stochastic processes 

involved in mutational events and allowing the generation of finer grained data sets for 

identification of subtler patterns in the pre-cancerous and early stage conditions. Ultimately, 

these models would form the basis of in silico clinical trials for potential therapeutic 
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regimens, and provide another potential pathway for the design and development of cancer 

therapeutics.

Characterizing drug targets

Molecular targets that are cancer drivers are ultimately part of a mechanistic cascade10. 

Antitumor effects can be caused by many pharmacological interventions, both direct (e.g., 

kinase inhibition11) or indirect (e.g., immune-mediated therapy12). Given the broad 

landscape of potential pharmacological agents, modeling and simulation has a fundamental 

role in facilitating the investigation of potential targets. Systems pharmacology13 is an 

emerging and powerful tool in the quantitative modeler’s toolbox for guiding the early 

stages of discovery14, especially when tool compounds are unavailable and information is 

sparse about target properties such as abundance in target tissues and turnover15. 

Pharmacokinetic-pharmacodynamic (PK-PD) models incorporate compartmental16, or 

physiologically-based17, models of drug distribution and empirical or semi-mechanistic 

models of drug action18. They are most suited for investigating the effects of drugs on 

molecular targets when tool molecules are available to probe disease pathways. At the other 

end of the scale, pharmacometric19 models, which incorporate statistical and mechanistic 

features of the patient population being studied, can be used to quantify the effects of a 

particular treatment on populations. The statistical technique of mixed effects modeling can 

be applied to find explanatory variables (covariates) and, eventually, correlates of clinically 

significant endpoints such as overall or progression-free survival20. All of these modeling 

approaches ultimately characterize drug targets across the spectrum21 of target qualification 

(cell and tissue), pharmacology (nonclinical models and humans) and disease effect 

(populations).

Adverse side-effects and lack of efficacy are the two major sources of attrition in the field of 

drug design22. Substantial efforts have been devoted to addressing this challenge, and 

modeling approaches have been playing increasingly important roles in addressing the lack 

of efficacy and undesired off-targets effects22,23. Recent advances in structural 

bioinformatics have enabled the reliable prediction of drug off-target binding sites across the 

proteome24. Large-scale network models have also been widely applied to predict the 

functional effects of various therapeutics22. These two approaches have been integrated to 

provide a framework for assessing drug responses in silico25. A recent effort incorporated 

signaling pathway information for evaluating side effects on primary human hepatocytes, 

and obtained insightful results with clinical implications26. Collectively, the traditional 

experiment-based screening strategy to reduce drug off-target effects is becoming time- and 

resource-consuming, while a variety of recently developed computational models have 

begun to make significant contributions to rational drug design. In addition, many 

computational tools based on ordinary differential equations (ODEs) systems have been 

widely used to model and predict the effects of therapeutics on intracellular signaling 

pathways27–30. These model tools were developed based on protein-protein interaction 

networks with applications on exploring optimal therapeutic strategies. Collectively, ODE-

based models with perturbations can be used to explore in silico candidate conditions, screen 

out critical factors, and guide biological experiments, by investigating drug combination 

effects with well-known evaluation indexes such as Loewe additivity31 and Bliss 
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independence32. Finally, agent-based modeling techniques can be used to integrate multiple 

biological scales together, especially including intracellular signaling pathways33–35.

Computing the design of anticancer drugs

It is increasingly clear that there must be an extension from the “rational discovery” of 

potential drug candidates, often based on molecular-level assumptions of effect, to a 

“rational design” process, that moves beyond target identification towards characterizing the 

larger scale consequences of interfering with a particular target gene. This necessarily 

incorporates recognition of the multi-scale nature of cancer, where there are higher-order 

properties that involve accounting for the behavior of multi-cellular populations within a 

tumor, as well as the interactions of that tumor with its host environment. Given this 

understanding, in any attempt to recognize the potential downstream consequences of a 

molecular level intervention (as is the case with many anti-cancer drugs), it is critical to 

account for compensatory processes that remain in either the tumor or adjacent host tissue. 

Quantitative models that can contextualize the multi-scale processes involved in the 

development and behavior of cancer have an important role to play in this line of 

investigation36.

Digital screening of anticancer drugs

Traditional drug discovery relies upon high-throughput screening using a library that 

contains millions of compounds selected for and then screened for efficacy against a target 

of interest. While this approach has been successfully used to discover many effective 

anticancer drugs, it can be enhanced through digital drug screening, a powerful drug 

discovery technology in the post genomic era. In addition to advances in 

chemoinformatics37 and the deciphering of the human genome, there has been an enormous 

increase in the types of chemical compounds, biological and physiological systems, and 

diseases that have been digitized, stored and archived in publically accessible databases, 

such as PubChem, ChemSpider and ChEBI38. These databases offer a platform for releasing 

and publishing experimental data on chemical compounds and their associated structure and 

functional data. They also offer user-driven search engines that allow users to define and 

search a particular drug molecule or a class of chemical compounds37.

Conversely, while large sets of biological and medical data are frequently generated, the 

validation and further standardization of these data remains a significant challenge. One of 

the difficulties is the poor reproducibility and reliability of these biological and clinical data 

due to the intrinsic complexity of biological systems and hard-to-access human samples. The 

development of bioartificial tissue and organ-on-a-chip39 systems could help accumulate 

more clinically relevant biological and physiological data for digital screening of anticancer 

drugs. The digitalization of cancer diagnoses offers another opportunity to deposit clinical 

oncology data into publically available databases. Some of these databases (e.g., Therapeutic 

Targets Database40 and PharmGKB41) are available today for drug screening.

Another critical element of digital drug screening is provided by computational models that 

link the data to a specific cancer target. Such models must be multi-scale and target-driven 

due to the multiple spatial and temporal scales at which the motivating biological and 
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clinical data are collected. Algorithms also need to be developed to predict whether 

compounds (including proteins or peptides) can be translated into anticancer drugs. For 

example, BioMap® (human primary cell phenotypic profiling services developed by 

DiscoveRx Co.) consists of primary human cell-based assay systems, a database of reference 

compound profiles, and computational data mining and analysis tools. A system 

(ChemScore) that uses reactivity based fingerprints of compounds as filters has been 

developed to determine a reactant-like and a product-like score for virtual drug screening42.

Taken together, the combination of available databases and computational models offers 

unprecedented opportunities to build computational models for drug screening, thereby 

enabling a fundamental shift from traditional high-throughput screening to data-driven 

screening of potential anticancer drugs.

Optimizing dosage, drug combinatorics, scheduling, and safety

The classical “maximal tolerated dose” (MTD) approach currently used in early Phase 1 

clinical trials of anticancer drugs can be irrelevant in many situations43. For example, some 

compounds simply do not present a toxicity profile appropriate for reaching the MTD in a 

dose finding phase. For other compounds with a well-identified MTD, the upper-limit dose 

may not be appropriate when the compound is given in combination with other 

therapeutics44. Efficacy and toxicity are central issues in design of patient-specific 

chemotherapy regimens, but do not lend themselves well to trial-and-error approaches. A 

broad range of coupled in vitro and numerical modeling techniques are becoming available 

that offer much promise for rapid efficacy and toxicity screening45,46. Cellular and tumor-

level responses may be deduced from the responses of bioartificial tissues, organ-on-a-chip 

systems, and murine systems in typical screening procedures. These systems also show 

promise for assessing toxicity of drug regimens. A particularly promising avenue is 

screening of compounds on bioartificial tissues whose cells are derived from a patient’s own 

induced pluripotent stem cells47.

A critical challenge in the development of anti-cancer drugs is the optimization of the 

delivery strategy including the proper dosing, timing, and scheduling of drug 

administration48. Optimally selecting treatments for a particular cancer subtype, particularly 

treatments that involve combination therapy, is an extraordinary challenge, for the number of 

potentially relevant adjustable parameters is too large to adequately investigate in clinical 

trials. Multi-scale simulation can play a pivotal role in addressing this problem by 

anticipating potential synergies between compounds’ mechanisms of action, thus providing 

a rational method for selecting a dose that would improve efficacy without affecting safety. 

Progress has already been made using bioinformatics algorithms49; however, applications of 

multi-scale modeling to solving this very important clinical problem remain to be fully 

explored.

Assessing intervention, prevention, and cancer screening strategies

Multi-scale frameworks that explicitly model clinical outcomes in terms of underlying 

biological processes, in conjunction with the physical and physiological characteristics of 

the instrumentation used for screening or drug delivery, are likely to suggest improvements 
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that cannot be gleaned from traditional natural history models of cancer development and 

drug response. Such traditional models typically ignore important biological processes and 

time scales in the formation of cancer and its precursors. In contrast, multi-scale models are 

appropriate for providing a more comprehensive understanding of the underlying 

mechanistic processes, as well as the spatio-temporal characteristics of cancer screening and 

surveillance protocols (e.g., using high-resolution imaging, or biopsies). An illustrative 

example of this reasoning is presented in Figure 350. Although regular biopsy-based 

surveillance is the standard-of-care for most Barrett’s Esophagus (BE) patients who have not 

progressed to dysplasia or cancer, it is not clear whether screening under current guidelines 

is clinically optimal and cost-effective. Curtius et al. describe a computational cell-level 

multiscale model for the neoplastic progression of Barrett’s metaplasia to esophageal 

adenocarcinoma allowing for variation in segment length, presence of dysplastic cells in the 

crypt-structured epithelium and their potential detection by biopsy50. Thus, multi-scale-

based screening models can potentially be used to better understand the clinical performance 

(sensitivity/specificity) of various screening methods and the sources that limit their clinical 

utility.

State-of-the-art multi-scale approaches to cancer

Multi-scale network signaling models

Advances in mechanistic modeling of signaling networks present opportunities for better 

understanding of therapeutic targets, designing therapeutic regimens (including combination 

therapies), as well as the de novo design of drugs. Models of growth factor signaling 

networks, such as vascular endothelial growth factor (VEGF) and epidermal growth factor 

(EGF), have been particularly well developed. The VEGF models describe molecular-

detailed kinetic interactions between different splice isoforms of VEGF and their cognate 

receptors VEGFR1 and VEGFR2 and co-receptors neuropilins-1 and -2. The models 

comprise the blood, normal, and tumor compartments and they also take into account VEGF 

binding to the extracellular matrix, and soluble factors such as soluble VEGFR151,52. 

Molecular-detailed intracellular signaling models that include receptor dimerization, 

internalization, recycling, and degradation can potentially be used for simulating 

intracellular drug targeting with, for example tyrosine kinase inhibitors53. The kinetic 

receptor-ligand interaction model has been extended to describe the pharmacokinetics and 

pharmacodynamics (PK/PD) of VEGF-neutralizing anti-angiogenic drugs including the 

antibody bevacizumab52, and aflibercept51, a fusion of specific domains of VEGFR1 and 

VEGFR2. They were compared with extensive available clinical data. The difference 

between these molecular-detailed PK/PD models and more conventional models is in the 

mechanistic level of detail with which the molecular interactions are represented. Therefore, 

the model predicts the amounts not only of the drug in the compartments, but also the 

detailed distribution of the different ligands (e.g., those bound to the cell-surface receptors, 

extracellular matrix, and free in the interstitium)4. For the EGF system a molecular-detailed 

approach has been used to design and optimize an antibody for cancer applications54,55.
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Pharmacometrics and nonlinear mixed effects models

A popular definition of pharmacometrics is “the science of developing and applying 

mathematical and statistical methods to: a) characterize, understand, and predict a drug’s PK 

and PD behavior, b) quantify uncertainty of information about that behavior, and c) 

rationalize data-driven decision making in the drug development process and 

pharmacotherapy”56. In practice, pharmacometrics often employs nonlinear mixed effects 

modeling techniques57 that combine structural models (algebraic or differential equations) 

that are nonlinear in their parameters with nested variability in the clinical observations (i.e., 

variation among and within patients) and trial execution components (i.e., patient adherence 

and dropout rate). There have been many applications of nonlinear mixed effects models to 

clinical oncology PK/PD58,59. In general, nonlinear mixed effects modeling of PK and PD 

benefited from the early availability of computer software60,61 and frequent application to 

situations where other techniques would have been difficult to deploy, such as clinical 

studies. Since this class of models is informed by data, mechanistic detail is a function of 

available information, which can be limited in clinical oncology. However useful, nonlinear 

mixed effects are not the only tool that can be used to understand dose-exposure-response 

relationships in vivo. It is through the combination and use of multiple, “fit for purpose” 

modeling approaches, depending on the appropriate biological scale, that we can hope to 

understand cancer etiology and pharmacotherapy36.

Partial differential equations

For handling clinical data that have spatial dimensions as independent variables (i.e., data 

that do not depend solely on time), mathematical models based on partial differential 

equations (PDEs) may be more appropriate than those based on ordinary differential 

equations (ODEs), which are more amenable to the applications described in the previous 

two sections. For example, medical images which are composed of rectangular, spatially-

resolved voxels describing the shape, location, and texture of the tumor in addition to 

underlying physiological, cellular, and molecular processes62, cannot be readily handled by 

ODE models. More generally, PDE models are appropriate when the available data is 

multidimensional63. Most spatial models describe the movement of cancer cells through 

reaction-diffusion64 or advection65 terms. The applications are numerous, ranging from 

monitoring the evolution of slowly evolving tumors such as lung metastases66 to defining 

surgery or irradiation margins67,68, and improving the insight offered by images69. (See 

Figure 4). PDE models have also been used to evaluate the spatio-temporal distribution of 

metastases over time70, as well as mutations and resistance to treatment71. However, most 

applications require being able to recover the parameters of the model from clinical data in 

order to perform patient-specific simulations or predict patient-specific outcome.

It is important to note that PDE models are (relatively) computationally expensive to solve. 

Classical optimization techniques can often be too expensive to be realistically used. More 

advanced techniques relying on reduced-order models72 or exploiting the features of the 

solution to a model73, may prove more successful for assimilating clinical data.
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Spatially discrete/cellular agent models

One class of biological computational modeling that has recently increased in popularity is 

that of spatially discrete, cell-as-agent models. Methods in this category are agent-based 

models (ABMs), individual based models (IBMs), cellular automata, and cellular Potts 

Models. For simplicity’s sake, these methods will be globally described as agent-based 

modeling, and can be generally described as discrete event, object oriented, rule based, and 

often spatially explicit methods for dynamic computer modeling that represent systems as a 

series of interacting components74. ABMs are programs that generate populations of discrete 

computational objects (or agents) that correspond to the component-level at which the 

reference system is being examined. These computational agents are organized into agent 
classes representing groupings of agents of a similar type defined by shared properties and 

characteristics. Agents are governed by agent rules; i.e., instructions that allow the agent to 

be treated as an input-output object. Individual agents incorporate the properties and rule-

structures of their parent agent class, but are able to manifest diverging behavior based on 

local inputs. ABMs intrinsically cross scales of biological organization, utilizing behavioral 

rules (scale 1) to determine individual agent behavior (scale 2), and then aggregating 

individuals into population dynamics of the global system (scale 3). When applied to 

biological systems, cells form a natural agent level within this organizational structure. 

Subcellular components (e.g., genes, enzymes, receptors, and structural elements) are 

represented as state variables for the cellular agents. Their behavior and interactions (e.g., 

gene transcription, intracellular signaling, protein synthesis) can be represented by a wide 

range of mathematical and computational formulations. Individual cellular agents interact 

with each other by manipulating state variables of their neighbors or their shared 

environment. Figure 5 depicts an ontological description of an agent-based model, with an 

emphasis on its generality that can be tailored to specific modeling tasks. Given this 

framework, ABMs have been extensively used to study tumor growth and behavior74–77.

Multi-scale, agent based modeling has been used to generate high-fidelity replications of 

tumor structure. The spatial representation of ABMs allows them to generate “realistic” 

tumor structures incorporating multiple cell types and capturing cancer heterogeneity78. This 

permits a detailed investigation of the multi-scale consequences of genetic or molecular 

perturbations, and offers the promise of potentially personalizing models based on 

histological features79. ABMs also allow examination of fundamental processes involved in 

oncogenesis by facilitating a parsimonious approach that provides insight into fundamental 

processes involved in tumor growth and development80. ABMs can also provide linkages to 

the role of general biological processes, like inflammation, in the development and 

progression of cancer81.

As with all modeling methods, agent-based modeling is not without its limitations. Most of 

these stem from the fact that ABMs do not have a common formal description, which limits 

the ability to subject them to formal analysis. Their “similarity” to biological systems, 

particularly in terms of the heterogeneity and non-linearities in their behavior, makes formal, 

comprehensive exploration of their parameter space difficult and only able to be 

accomplished using very large sets of simulations. Additionally, ABMs are relatively 

computationally expensive and difficult to distribute across modern, distributed computing 
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architectures, with the result that very often biomedical ABMs are treated more akin to 

experimental objects where their use is dependent upon finding some subset of parameters 

that can provide “realistic” behavior. Despite this limitation, however, ABMs can serve a 

very useful purpose that can bridge between biological objects/knowledge and more formal 

mathematical representations.

Branching processes

Disruption of normal cell proliferation and differentiation is the sine qua non of the 

malignant state. However, numerous experimental and clinical studies provide evidence that 

the proliferation and differentiation kinetics in normal and premalignant cells are also of 

critical importance in the carcinogenic process. This notion was further enforced by analytic 

findings from mathematical modeling of cancer incidence patterns82. A prototype branching 

process model of cancer is the two-stage clonal expansion (TSCE) model83. Initially, this 

model was formulated with stochastic clonal expansions of both normal and intermediate (or 

premalignant) stem cells. However, due to the typically very large (and highly regulated) 

size of the normal tissue stem cell pool, the version most frequently used assumes a 

deterministic number of normal tissue stem cells. The basic TSCE model is characterized by 

two rate-limiting events in normal tissue stem cells (premalignant tumor initiation and 

malignant transformation) together with a stochastic growth process of premalignant cells 

that can undergo malignant transformation. Various extensions of this model have been put 

forward (multistage clonal expansion (MSCE) models) to better explain cancer incidence 

patterns in registries and cohort studies84. The availability of analytical tools and likelihood 

expressions for population-level clinical observations (e.g., cancer incidence, prevalence of a 

precursor such as colonic adenoma or dysplasia in Barrett’s esophagus patients) greatly 

facilitates likelihood-based parameter estimation via gradient methods or Markov-Chain 

Monte Carlo techniques. An example of a ‘mathematical bridge’ that connects the cellular-

level with the tissue-level is the filtered Poisson process.

Homogenization approaches

Linear homogenization approaches comprise the simplest techniques for estimating 

parameters describing cell health and function from measurements conducted on a tissue 

construct. From the perspective of screening for safety, the desired outcomes are parameters 

describing electrophysiological and mechanical functioning of individual cells. From the 

perspective of screening for efficacy, cancer culture models such as the Xu model85 exist, 

and the challenge is determining how chemotherapy agents affect the tumor periphery and 

factors promoting malignancy. Models estimating tissue and cellular mechanics from 

multiple loadings of tumor models are capable of estimating these changes86, and for 

estimating effects on cells, protein structures, and networks87. Although techniques are 

preclinical at present, the capacity to test chemotherapy regimens on both heart tissue 

equivalents from a patient’s own transdifferentiated cells and tumor equivalents from a 

patient’s own tumor cells shows much promise. Ongoing challenges relate to refinement of 

electrophysiological and mechanical models to account for local variations within tissues, 

and to include nonlinear phenomena.
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Hybrid models

Multi-scale hybrid models combine different modeling methodologies; e.g., intracellular 

signaling described by ODEs combined with 3D distributions of oxygen, growth factors and 

cells described by PDEs, or oxygen and growth factor distributions described by PDEs 

combined with discrete cell dynamics represented by agent-based modeling. In principle, 

hybrid models could include all types of models. The advantage of hybrid modeling is that 

different parts of the system can be described using the methodologies most appropriate for 

the biological question to be answered, and with a spatial and temporal resolution that makes 

the problem tractable.

Anderson presented a hybrid model describing the invasion of a solid tumor into healthy 

tissue that is governed by tumor cells, extracellular matrix, matrix-degrading enzymes and 

oxygen88. In his formulation, the tumor cells themselves are considered as discrete objects, 

while the remaining three entities are considered continuous variables. His results indicated 

that cell–cell interactions drive the early stages of development, but it is the loss of cell–cell 

interaction (due to mutation) that increases the importance of cell-matrix interactions which 

drive tumor invasion. Many have built on Anderson’s approach. For example, Jiang et al 
have extended Anderson’s approach to systematically investigate tumor cell invasion within 

a generalized diffusion framework89. The authors found that tumor cells can migrate by a 

host of diffusion modes and these predictions were supported by patterns seen both in vitro 
and in standard-of-care images obtained in the clinical setting. In particular, they found that 

in the case of invasion and metastases, tumor cells display both superdiffusion and ballistic 

diffusion.

Barriers to and opportunities for progress

Technical/methodological issues

Mathematical complexity—As seen in fields ranging from atomistics to astrophysics, a 

tradeoff exists between mathematical and computational complexity in modeling 

oncological problems, especially when the problem involves a large number of interacting 

components (cell-types), non-linear signaling between components (feedback loops), and 

stochastic behavior (noise). A main challenge in developing useful multi-scale models is 

therefore the choice of mathematical abstraction (continuum, discrete, lattice) and choice of 

relevant (rate-limiting) processes, which may operate at different time and length scales. 

However, these scales may not be known a priori and the appropriate choice may require 

preliminary studies and/or additional bio-mechanistic information. A case in point is the 

problem of emerging resistance to therapy in heterogeneous tumors, specifically whether or 

not the ‘resistance conferring’ alterations are preexisting, a result of the tumor and its 

microenviroment being under selection pressure caused by the drug, or simply due to the 

hypermutability or genomic instability of the tumor90. Each of these causes requires a 

distinct mathematical description. For example, the size fluctuations of preexisting mutants 

may well be captured by a Luria-Delbrück type of distribution, which allows for mutational 

jackpots, while a drug-induced response is unlikely to do so given the much shorter time 

scale of treatment91–92.
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Mathematical complexity in oncologic applications of multi-scale modeling arises in the 

formulation of the dynamics of bulk behavior and description of underlying constituent 

processes in the forms described above93. It is important to note that only in exceptional 

cases (and often only with many simplifying assumptions) are closed form solutions 

available and parameter identifiability issues addressed. Further adding to the mathematical 

complexity is the stochastic nature of many cell-level and sub-cellular processes94. Although 

the implementation and mathematical treatment of the stochastic process may be complex, a 

considerable advantage is that it often lends itself to likelihood-based methods for parameter 

estimation and hypothesis testing.

Linking models with clinically available data—It is important to acknowledge that 

while the multi-scale cancer modeling community is rich in models from the nanoscale to 

the macroscale, many models are framed in terms of parameters and variables that are 

extraordinarily difficult to obtain in the clinical setting. This a fundamental challenge facing 

the validation and clinical application of multi-scale modeling. This is particularly true for 

cases in which electrophysiological, transport, and mechanical factors of cells and a 

pericellular region are of interest. For the case of the screening of anti-cancer agents, the key 

difficulties are measuring in the mesoscale range, characterizing the pericellular region, and 

sampling a sufficient number of cells to overcome the high cell-to-cell variability so inherent 

to three dimensional culture. These challenges result in modeling approaches that require 

many (often heuristic) assumptions on model parameters. Consequently, application of such 

models to make clinically relevant predictions can be quite limited. More specifically, the 

field of multi-scale modeling in cancer has largely been developed independent of the data 

types that are typically available in the clinical setting. The community needs to 

acknowledge that it is not simply enough to test a myriad of modeling approaches in silico 
by systematically varying parameters, coupling constants, etc. Rather, to be of clinical 

relevance, the community needs to build multi-scale models that can be initialized and 

constrained with patient specific data that is readily available in the clinical setting95. Only 

by proceeding along this route will we be able to test hypotheses about patients that directly 

testable. One area that is underexplored in making progress is the utility of medical imaging 

data67,69,96.

The medical imaging technologies of magnetic resonance imaging, x-ray computed 

tomography, positron emission tomography, single-photon emission computed tomography, 

and ultrasound can quantify, at multiple time points and in 3D, tumor characteristics at the 

physiological, cellular, and molecular levels62. Furthermore, the images themselves present a 

natural gridding (i.e., the image pixel or voxel) that enables direct application of finite 

difference and finite element methods. While using such data in statistical and informatics 

driven approaches has launched the fields of radioomics and radiogenomics97,98, such data 

are only beginning to be incorporated into mechanism-based, predictive models of tumor 

initiation, growth, invasion, and response to treatment.

Mathematical models of tissue health and function—There is a pressing need for 

multi-scale modeling techniques that enable the use of in vitro tissue surrogates and organ-

on-a-chip models for safety and efficacy screening of chemotherapy agents. Although well-
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established methods exist for applying integrated multi-scale modeling and experiment to 

assess subtle, drug-induced changes to the health and function of cells within simple 

bioartificial tissue constructs46, advances are required to account for such tissues and organ-

on-a-chip systems with heterogeneous cell populations. With these models in place, the 

potential to, for example, test a library of anti-cancer agents on bioartificial tissues 

mimicking a patient’s own tissues may one day become possible, enabling rapid 

optimization for both efficacy against a patient’s malignant cells and for tolerance by a 

patient’s healthy cells through quantitative evaluation of changes to cell function.

Institutional issues

Intrinsic to trans-disciplinary endeavors, from medicine to management, are the challenges 

of reconciling both different views of the world, and the different rhetorical frameworks that 

are used to reflect those views99. Cancer modeling, in its earliest days, involved little 

communication between modelers and clinicians100. Although efforts to reconcile 

pathophysiology with principles from the physical sciences have progressed a great deal 

since the 19th century courtroom battles over the topic of model validation101, many cancers 

remain too complex for identification of abstractions that can approximate natural laws, and 

validation remains a central challenge102. However, dynamic computational models 

representing sets of mechanistic hypotheses can stand in for formal mathematical theories 

for a defined context and for a constrained use103. Within this context the importance of the 

choice of computational methods is lessened; sufficiently strong hypothesis structures 

should perform equally well when instantiated in a multiplicity of modeling methods. This is 

the principle of cross platform validation103.

High quality, validated implementations are crucial to establishing the trustworthiness of a 

particular computational model, and accounting for the relative strengths, weaknesses, and 

representational capabilities of the different methods is essential. There also needs to be 

some means by which the appropriate use-context of a particular model is explicitly defined 

and determined, in order to avoid the misapplication and misinterpretation of a particular 

model. Dating back to the earliest multiphysics codes and standards (e.g., the American 

Society of Mechanical Engineering boiler codes104), these issues have been common to the 

general use of models and simulations, and have been pragmatically addressed through the 

establishment of guidelines and standards for model credibility, testing, and reporting in a 

domain specific fashion. However, for multiscale modeling of cancer, this process is in its 

infancy. Notable efforts to advance this include, for example, the Committee on Credible 

Practice in Modeling and Simulation in Healthcare105, and the EFPIA MID3 Workgroup 

which recently published a white paper on good practices in model-informed drug discovery 

and development106. We view such collaborative efforts as important, as the field continues 

to advance towards systematically using model-aided design and testing in the regulatory 

arena (for testing of drugs and devices) and for personalized/precision decision support.

Conclusion

No shortage of powerful—and promising—computational techniques exists for use in the 

multi-scale modeling of cancer and cancer treatments. What is lacking, however, is access to 
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relevant clinical data and practical modeling approaches to incorporating such data into 

relevant models. This will allow modelers, experimentalists, and oncologists to effectively 

close the “build-test-refine cycle” by directly testing the predictive power of a particular 

model and then improving upon it to the point where it can, ultimately, be applied to clinical 

problems. We also need a more rigorous understanding of the key components that go into 

the growth and response to treatment of individual tumor subtypes. Both of these issues are 

exacerbated by the social constructs in academia. In practice, future progress in clinically 

relevant multi-scale modeling in oncology requires interdisciplinary collaborations between 

clinicians, experimentalists (biologists, physiologists, biophysicists, bioengineers, etc.), and 

mathematical and computational modelers. Although this truth is clearly recognized at the 

level of the funding agencies, the difficulty in developing such collaborations is generally 

underappreciated. However, a corollary of successfully working across multiple disciplines 

is the education and training of a future generation of students and postdocs who are 

accomplished at both the bench and computer, thereby allowing them to explore and 

integrate their data into clinically useful models. We believe this is happening as we speak, 

and that such integration of disciplines through multi-scale modeling will bring great value 

to clinical oncology.
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Figure 1. 
The continuum of multi-scale components of cancer pharmacological therapy, and the role 

of each of the modeling techniques described in the text. The process starts with discovery 

and characterization of a target, followed by drug lead optimization and extensive in vitro 

and pre-clinical testing. A new medicine will also require successful testing in the clinical 

setting. Public domain image credits (bottom to top): NCI Center for Cancer Research 

(Luana Scheffer, Stephen Lockett, Jairaj Acharya); Wikimedia Commons; NCI Center for 

Cancer Research (Thomas Ried); National Cancer Institute (Leidos Biomedical Research, 

Inc.); National Cancer Institute (Rhoda Baer); photo courtesy photos-public-domain.com.
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Figure 2. 
Proposed Generative Hierarchies for Cancer and the Effect of Inflammation. A depiction of 

an example of the multi-scale effects of inflammation on the development and subsequent 

behavior of a tumor, incorporating evolutionary and selection effects across the scales from 

DNA to cellular populations. This paradigm posits that increased and accumulating genetic 

damage in an inflammatory milieu leads to a progressive loss of the cellular and molecular 

control structures that govern stable multi-cellular organization. The loss of these control 

structures in the tumor leads a more “colony-like” behavior, where the genetic plasticity of 

the increasingly disordered tumor cells provides a potential selection benefit when subjected 

to therapeutic interventions, akin to how microbial colonies utilize genetic heterogeneity as 

an adaptive strategy (as seen in antibiotic resistance). The incorporation of these concepts 

into a multi-scale computational model allows the exploration of various fundamental 

processes and behaviors involved in this hypothesis. Reprinted with permission from ref. 81.
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Figure 3. 
The Multi-scale nature of screening in Barrett’s esophagus (BE). The standard screening 

protocol for BE involves scales from stem cells in the crypt (left) to the BE cylindrical 

segment of the esophagus depicted (right) with rectangles representing biopsy samples taken 

during endoscopy. The BE segment may have dysplasia and/or malignant tissue patches that 

may be missed. During histological preparation, portions of each biopsy are sliced by 

microtome and placed on slides for pathologic assessment. A diagnosis is made by 

microscopic interpretation of crypt and cellular architecture, reflecting the most severe tissue 

grade found from all slides. Given the multi-scale nature of the problem, it is natural that a 

multi-scale-based screening model would have great clinical utility. (EAC = Esophageal 

Adenocarcinoma; HGD = High Grade Dysplsia.)
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Figure 4. 
This illustrative example uses serial diffusion weighted magnetic resonance imaging data to 

estimate tumor cellularity before and after the first cycle of neoadjuvant therapy. The top 

row indicates the apparent diffusion coefficient (ADC) obtained from diffusion weighted 

MRI data at three time points during therapy. Given the known relationship between ADC 

values and cellularity, this data is then converted to tumor cell number (middle row). The 

cell number data from the initial and post one cycle time points are then fit to a 

biomechanical model of tumor growth to estimate patient-specific parameters of tumor cell 

proliferation and migration. The model, calibrated with the patient-specific parameters 

determined from the fitting procedure, is then run forward in time to predict residual tumor 

burden at the conclusion of neoadjuvant therapy. Model predicted cell number can be 

compared to cell number imaging observations at the final time point in order to assess 

predictive performance. Details are presented in ref. 69.
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Figure 5. 
A schematic of an Agent-based modeling format (ABM). The structure of an ABM 

intrinsically incorporates at least three representational scales of the system being modeled. 

For most biomedical ABMs, cells are used for the middle level representation (the agent 
level). Figure reprinted with permission from Elsevier Ltd.
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Figure 6. 
Patient-specific drug and cardiotoxicity systems are available, but require integrated multi-

scale modeling and experiment to apply. Tumor cells can be multiplied in systems like the 

Xu system (ref. 85) for patient-specific drug screening. Commercial systems exist for testing 

patient-specific cardiotoxicity on tissue constructs derived from induced pluripotent stem 

cells (iPSCs); for example. Multi-scale models are required to derive metrics of cellular 

health from measurements of the mechanical function of tissue constructs, and for scaling 

dosages. Image credits: Top center and top right: ref. 71; bottom left and bottom center: 

Invivosciences, LLC. All images used with permission.
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