
Part mutual information for quantifying direct
associations in networks
Juan Zhaoa,1, Yiwei Zhoua,b,1, Xiujun Zhanga, and Luonan Chena,b,c,2

aKey Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China; bSchool of Life Science and
Technology, ShanghaiTech University, Shanghai 200031, China; and cCollaborative Research Center for Innovative Mathematical Modelling, Institute of
Industrial Science, University of Tokyo, Tokyo 113-8654, Japan

Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved March 22, 2016 (received for review November 17, 2015)

Quantitatively identifying direct dependencies between variables is
an important task in data analysis, in particular for reconstructing
various types of networks and causal relations in science and
engineering. One of the most widely used criteria is partial correla-
tion, but it can only measure linearly direct association and miss
nonlinear associations. However, based on conditional independence,
conditional mutual information (CMI) is able to quantify nonlinearly
direct relationships among variables from the observed data, superior
to linear measures, but suffers from a serious problem of underes-
timation, in particular for those variables with tight associations in a
network, which severely limits its applications. In this work, we pro-
pose a new concept, “partial independence,” with a new measure,
“part mutual information” (PMI), which not only can overcome the
problem of CMI but also retains the quantification properties of both
mutual information (MI) and CMI. Specifically, we first defined PMI to
measure nonlinearly direct dependencies between variables and then
derived its relations with MI and CMI. Finally, we used a number of
simulated data as benchmark examples to numerically demonstrate
PMI features and further real gene expression data from Escherichia
coli and yeast to reconstruct gene regulatory networks, which all
validated the advantages of PMI for accurately quantifying nonli-
nearly direct associations in networks.
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Big data provide unprecedented information and opportunities
to uncover ambiguous correlations among measured variables,

but how to further infer direct associations, which means two vari-
ables are dependent given all of the remaining variables (1),
quantitatively from those correlations or data remains a challenging
task, in particular in science and engineering. For instance, dis-
tinguishing dependencies or direct associations between molecules
is of great importance in reconstructing gene regulatory networks in
biology (2–4), which can elucidate the molecular mechanisms of
complex biological processes at a network level. Traditionally, cor-
relation [e.g., the Pearson correlation coefficient (PCC)] is widely
used to evaluate linear relations between the measured variables
(2, 5), but it cannot distinguish indirect and direct associations due
to only relying on the information of co-occurring events. Partial
correlation (PC) avoids this problem by considering additional in-
formation of conditional events and can detect the direct associa-
tions. Thus, PC becomes one of the most widely used criteria to
infer direct associations in various areas. As applications of PC to
network reconstruction (6), recently Barzel and Barabási (7) pro-
posed a dynamical correlation-based method to discriminate direct
and indirect associations by silencing indirect effects in networks,
and Feizi et al. (8) developed a network deconvolution method to
distinguish direct dependencies by removing the combined effect of
all indirect associations. However, PC-based methods including
these two works (8) can only measure linearly direct associations
and will miss nonlinear relations, which play essential roles in many
nonlinear systems, such as biological systems. Analogous to PCC
and PC, distance correlation (9, 10) and partial distance correlation

(Pdcor) (11) were proposed to measure dependence of random
vectors, and these statistics are sensitive to many types of departures
from dependence (9). However, Pdcor suffers from the false-posi-
tive problem, that is, Pdcor(X;YjZ) may be nonzero even if X and
Y are conditional independent given Z (11).
Based on mutual independence, mutual information (MI) can be

considered to be a nonlinear version of correlation that can detect
nonlinear correlations but not direct associations or dependencies
owing to the information of only joint probability, having the same
overestimation problem as PCC (12, 13). As one variant of MI, the
maximum information coefficient (MIC) method (3) was proposed to
detect both linear and nonlinear correlations between variables. MIC
is based on MI but has a few different features on measuring non-
linear associations. However, recently, it has been shown that MI is
actually more equitable than MIC (14). By further considering con-
ditional independence from MI, conditional mutual information
(CMI) as a powerful tool can quantify nonlinearly direct de-
pendencies among variables from the observed data, superior to PC
and also MI, and thus has been widely used to infer networks and
direct dependencies in many fields (12, 15–17), such as gene regu-
latory networks in biology (16). However, CMI-based methods the-
oretically suffer from a serious problem of underestimation, in
particular when quantifying the dependencies among those variables
with tight associations among them, which severely limits its appli-
cations. For example, when we measure the dependency between
variables X and Y given variable Z, CMI cannot correctly measure
the direct association or dependency if X (or Y) is strongly associated
with Z. For an extreme case, if X and Z are almost always equal
[i.e., the conditional probability p(xjz) = 1 provided that the joint
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probability p(x,y,z) ≠ 0], then CMI between X and Y given Z is always
zero no matter whether X and Y are really dependent or not (18).
Clearly, CMI underestimates the dependency because of this false-
negative shortcoming, in stark contrast to MI, which generally over-
estimates the dependency due to its false-positive drawback (16, 19).
To overcome these problems of MI and CMI, we propose a new

measurement, “part mutual information” (PMI), by defining a new
type of “partial independence” and also deriving an extended
Kullback–Leibler (KL) divergence (SI Appendix, section S1) to
accurately quantify the nonlinearly direct associations from the
measured variables. We show that PMI not only can theoretically
avoid the problems of CMI and MI but also keeps the quantifi-
cation properties. Similar to CMI, it can also be used to reconstruct
various types of networks even with loops or circles, for which
Bayesian-based methods generally failed. Specifically, in this paper
we first define PMI to measure nonlinearly direct dependencies
between variables, and then derive its theoretical relations with MI
and CMI. Finally, we use a number of benchmark examples to
numerically demonstrate PMI features and, further, real gene ex-
pression data to reconstruct gene regulatory networks in Escher-
ichia coli and yeast, which all validated advantages of PMI for
quantifying nonlinearly direct associations in networks.

Results
MI and CMI.Assuming that X and Y are two random variables, MI in
information theory represents the information that we need when
using Y to code X, and vice versa. MI is defined on the basis of KL
divergenceD (13). For discrete variables X and Y,MI is calculated as

MIðX;YÞ=Dð pðx, yÞjj pðxÞ pðyÞÞ=
X
x, y

pðx, yÞlog pðx, yÞ
pðxÞ pðyÞ, [1]

where pðx, yÞ is the joint probability distribution of X and Y and
pðxÞ and pðyÞ are the marginal distributions of X and Y, respec-
tively. MI is nonnegative, and clearly it equals zero if and only if the
two variables are independent. Hence, when MI is larger than zero,
the two variables are associated. For this reason, we can use MI to
measure nonlinear associations between variables, in contrast to
correlation (e.g., PCC, which measures linear associations). If the
value of MI between two variables is larger, their association is
stronger. Clearly, MI in Eq. 1 is evaluated against the “mutual
independence” of X and Y, which is defined as

pðxÞ pðyÞ= pðx, yÞ. [2]

However, as shown in Fig. 1A, if two independent variables X and
Y are both associated with a common random variable Z, MI
between X and Y is larger than zero, thus wrongly indicating the
direct association between X and Y. The reason is that MI relies on
the information of mutual independence in Eq. 1 and cannot cor-
rectly measure the direct association, which leads to overestimation
(i.e., the false-positive problem) (16). However, CMI can correctly
measure the direct association for the case of Fig. 1A by further
considering the information of conditional probability or condi-
tional independence. In contrast to partial correlation for linearly
direct association, CMI for variables X and Y given Z can further
detect nonlinearly direct association and is defined as

CMIðX;Y jZÞ=Dð pðx, y, zÞjj pðx j zÞ pð yj zÞpðzÞÞ, [3]

which can be also represented as

CMIðX;YjZÞ=
X
x, y, z

pðx, y, zÞlog pðx, yj zÞ
pðxj zÞpðyj zÞ, [4]

where pðx, y j zÞ is the joint probability distribution of X and Y with
the condition Z, p(z) is the marginal probability, and p(xjz) and p(yjz)
are conditional marginal probability distributions. Clearly, in contrast

to MI in Eq. 1 or the mutual independence of X and Y in Eq. 2,
CMI in Eq. 3 is evaluated against the “conditional independence” of
X and Y given Z, which is defined as

pðxj zÞpð yj zÞ= pðx, yj zÞ. [5]

Note that X and Y are two scalar variables, and Z is a vector or
(n-2)-dimensional variables (n > 2), and thus Fig. 1 represents a
general case for evaluating the direct association of any pair of
variables X and Y in a network with n nodes. CMI is also non-
negative, and thus a positive or high CMI implies the dependency
of X and Y. In addition to Fig. 1A, as shown in Fig. 1B where X and
Y have direct dependency CMI can also correctly measure the non-
linear dependency between X and Y, in particular for those cases
where both X and Y have weak associations with Z (e.g., both X and
Y are almost independent of Z). However, CMI theoretically suffers
from the false-negative or underestimation problem, that is, even
when CMI equals zero, X and Y are not necessarily independent
(see SI Appendix, Property S6). As shown in Fig. 1C, Left, when X or
Y is strongly associated with Z, CMI between X and Y always
approaches zero even though X and Y have direct dependency,
which means that CMI fails to measure the correct association. In
fact, theoretically CMI(X;YjZ) always suffers from this underesti-
mation problem provided that there are certain associations between
X (or Y) and Z (see SI Appendix, Property S6) in a general network.
Such cases are general in various natural or engineered systems
where variables are associated or interconnected to form a network.

PMI. To overcome those problems of MI and CMI, we propose a
novel measure, PMI, to quantify nonlinearly direct dependencies
between variables, by introducing a new concept, partial in-
dependence. Specifically, in contrast to the conditional independence
Eq. 5, partial independence of X and Y given Z is defined as

p*ðxj zÞp*ðyj zÞ= pðx, yj zÞ, [6]

where p*(xjz) and p*(yjz) are defined (18) as

p*ðxj zÞ=
X
y

pðxj z, yÞ pðyÞ,   p*ðyj zÞ=
X
x

pð yj z, xÞ pðxÞ. [7]

Then, PMI is defined based on this partial independence Eq. 6.

A B C

Fig. 1. A brief Interpretation of differences among MI, CMI, and PMI. (A) X
and Y have no direct dependency, but both are associated with Z. For such a
case, MI between X and Y is high due to the influence of their common
neighbor Z (i.e., MI gives an incorrect result). However, CMI is zero and gives
the correct signal. (B) X and Y have direct dependency; CMI between X and Y is
high and gives the correct signal, in particular for the cases when X and Y are
weakly associated with Z. (C) X and Y have direct dependency, but X or Y is
strongly associated with Z. CMI between X and Y approaches zero, thus giving
a wrong signal. However, PMI is high and can correctly quantify the de-
pendency for this case. Actually, PMI can give the correct results for all cases
(i.e., A–C). a, CMI(X;YjZ) is the CMI; b, MI(X;Y) is the MI. a′ and a′′ represent
the information flow from two virtual nodes of Y and X to the original X and
Y, respectively, and they are the second and third terms of PMI in Eq. 10.
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Definition 1: X and Y are two scalar variables and Z is an (n-2)-
dimensional vector (n > 2). Then, the PMI between variables X
and Y given Z is defined as

PMIðX;Y jZÞ=Dð pðx, y, zÞjj ppðxj zÞ ppðyj zÞ pðzÞÞ, [8]

where p(x,y,z) is the joint probability distribution of X, Y, and Z, and
D(p(x,y,z)jjp*(xjz)p*(yjz)p(z)) represents the extended KL divergence
(see SI Appendix, Definition S1) from p(x,y,z) to p*(xjz)p*(yjz)p(z).
From Eq. 8, it is obvious that PMI is always larger than or

equal to zero owing to the extended KL divergence (see SI Ap-
pendix, Theorem S1). Eq. 8 can also be rewritten as

PMIðX;Y jZÞ=
X
x, y, z

pðx, y, zÞlog pðx, yj zÞ
ppðx j zÞ ppð yj zÞ . [9]

Comparing Eq. 4 and Eq. 9, clearly PMI is similarly defined as
CMI by replacing p(xjz) p(yjz) in CMI with ppðx j zÞppðy j zÞ in PMI,
and it is clearly evaluated against the partial independence Eq. 6.
In addition, Eq. 9 can be further decomposed as follows:

PMIðX;Y jZÞ=CMIðX;Y jZÞ
+Dðpðx j zÞjj ppðx j zÞÞ
+Dðpðy j zÞjj ppðy j zÞÞ

. [10]

The second and the third terms in the right-hand side of Eq. 10
correspond to a′ and a′′ in Fig. 1C, respectively. The proof of Eq. 10
is given in SI Appendix. Clearly, CMI(X;YjZ) is the first term of
PMI in Eq. 10, and the second and third terms implicit include the
associations between X and Y, respectively, due to Eq. 7.
Next, we show that PMI can overcome the problems of MI and

CMI owing to the term of partial independence in Eq. 8. From Eqs.
8–10, we can derive the specific properties of PMI and its relations
with CMI and MI, shown in SI Appendix, Table S15 and Properties
S1–S9. The properties of the conditional independence Eq. 5 and
partial independence Eq. 6 are given in SI Appendix, Properties S7
and S8 and Fig. S1.
First, PMI is symmetric, that is, PMI(X;YjZ) = PMI(Y;XjZ).

Second, PMI is always larger than or equal to CMI, that is,
PMI(X;YjZ) ≥ CMI(X;YjZ), which implies the potential of PMI
to overcome the underestimation problem of CMI. Third,
PMI(X;YjZ) = 0 only if X and Y given Z are independent, and
otherwise PMI(X;YjZ) > 0, which implies that PMI can measure
nonlinearly direct dependency between X and Y given Z. All
major features of PMI and their related proofs can be found in SI
Appendix, Properties S1–S9. When X and Y are independent of Z,
that is, Z⊥X and Z⊥Y, PMI equals CMI and also MI, that is,
PMI(X;YjZ) = CMI(X;YjZ) = MI(X;Y). In other words, PMI has
features similar to CMI and MI (see SI Appendix, Property S5) when
the variables of interest are isolated from others of the system.
Next, we theoretically show that PMI overcomes those problems of

CMI and MI. If X and Y are strongly associated, we denote the
relation as X ≈ Y, which implies the strongly mutual dependency
between X and Y. If X or Y is strongly associated with Z, for example,
X ≈ Z or Y ≈ Z, then CMI(X;YjZ) = 0 regardless of the dependency
between X and Y, but PMI(X;YjZ) relying on the direct dependency
of X and Y (see SI Appendix) is generally not necessarily zero. Hence,
in Fig. 1C, PMI can detect the direct association, for which CMI
failed. Actually, PMI can measure the direct associations correctly for
all cases in Fig. 1 (see SI Appendix, Properties S1–S9 for the proofs).
The analyses on the differences between the conditional in-

dependence and partial independence are given in SI Appendix,
Properties S7 and S8 and Fig. S1. Actually, we can show that both the
conditional independence Eq. 5 and the partial independence Eq. 6
hold, that is, p(xjz)p(yjz)= p(x,yjz) and p*(xjz)p*(yjz)= p(x,yjz), if X and
Y are conditionally independent given Z (see SI Appendix, Property
S7). Thus, both CMI and PMI based on Eq. 5 and Eq. 6 can detect the

conditional independence of X and Y given Z (i.e., there is no direct
association). However, if X and Y are conditionally dependent given Z
(i.e., there is a direct association), the conditional independence Eq. 5
always holds approximately provided that X (or Y) strongly depends
on Z, but the partial independence Eq. 6 does not necessarily hold (see
SI Appendix, Property S8) and it relies on the direct association of X
and Y. Therefore, although both CMI and PMI can give the correct
results on the independence of X andY given Z, PMI can also give the
correct results on the dependence of X and Y given Z due to the
partial independence Eq. 6, and CMI generally cannot give the correct
results on the dependence due to the conditional independence Eq. 5.
Similar to MI and CMI, there are many ways to numerically

estimate joint and marginal probabilities (20–22) in PMI directly
from the observed data. The most straightforward and widespread
method to estimate p(x,y,z) is partitioning the supports of X, Y, and
Z into bins of finite size, approximating the continuous distribution
by the finite discrete distribution, and converting the integration
operators into the finite sum operators. The number of the bins
may have some impact on the computing result, but it would not
affect the statistical P value so much. Empirically, if Z has n-2 di-
mensions and there are N data points, the whole n-dimension space
will be partitioned into bins with a magnitude of O

�
N

n−2
n
�
(20–22),

where n is the number of total measured variables. However, this
approximate method works in the case that N>>n-2. Otherwise,
the error of the estimation will be quite large because of the “curse
of dimensionality.” If we assume the Gaussian distribution for
variables, MI between X and Y can be simplified as below (16, 22):

MIðX;YÞ=−
1
2
log

�
1− ρ2

�
, [11]

where ρ is the Pearson correlation coefficient of X and Y. Eq. 11
provides a simple way to calculate MI. By analogy to MI and CMI
(16, 22), PMI can be accurately expressed from the covariance
matrix of X, Y, and Z.

Theorem 1. Assume that X and Y are two one-dimensional variables,
and Z is an n-2 dimensional (n-2 > 0) vector, and they are defined in
an appropriate outcome space. Letting the vector (X,Y,Z) follow
multivariate Gaussian distribution, then PMI between X and Y given
Z is simplified as follows:

PMIðX;YjZÞ= 1
2
�
tr
�
C−1Σ

�
+ lnC0 − n

�
, [12]

where C, C0, and Σ are all measured matrices given in SI Appendix,
section S2 and n is the dimension of vector (X,Y,Z).
The proof of Theorem 1 is given in SI Appendix, section S2.

Theorem 1 yields the formula to calculate PMI in a simple but
approximate way due to the Gaussian distribution assumption.
Besides, we can derive the following relation between PMI and PC:

PMIðX;YjZÞ=−
1
2
log

�
1− ρ2XY ·Z

�
+ Dð pðxjzÞjjppðxjzÞÞ 
+ Dð pðyjzÞjjppðyjzÞÞ, [13]

where ρXY ·Z is the PC of X and Y when given Z. The proofs can be
found in SI Appendix, section S2,Lemmas S1 and S2 and Theorem S2.

Numerical Studies by Simulated Data. Theoretically, we have shown
that PMI is superior to CMI and other linear measurements for
quantifying the nonlinearly direct dependencies among variables
(SI Appendix, section S1), in particular for those cases that CMI or
MI fails. To numerically investigate these, we first used simulated
data to study both linear and nonlinear relationships as in the pre-
vious work of Barzel and Barabási (7). We compared the perfor-
mances of PMI with CMI and PC about these direct associations,
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including linear, parabolic, cubic, sinusoidal, exponential, checker-
board, circular, cross-shaped, sigmoid, and random relation-
ships. Three variables, X, Y, and Z, were simulated, satisfying
Y= f ðX,ZÞ+ aη, where η is noise and a is noise amplitude. Here we
first set that a equals zero, that is, we consider noiseless relations.
f (X,Z) given Z can be linear, parabolic, cubic, sinusoidal, exponential,
checkerboard, circular, cross-shaped, sigmoid, and random func-
tional relations and nonfunctional relations (see SI Appendix, Table
S1 and Fig. S2). Various cases, for example X (or Y) is independent
of Z or strongly associated with Z, were considered during simula-
tions, and the results for all are displayed in Table 1 and SI Appendix,
Tables S4 and S5, where PC(X;YjZ) is the partial correlation be-
tween X and Y given Z and PS(X;YjZ) is the partial spearman
correlation between X and Y given Z. All of the P values are pro-
vided in SI Appendix, Tables S2, S3, S6, and S7. We also compared
PMI with CMI and PC when X is moderately correlated with Z and
results indicated that PMI performs the best, as shown in SI Ap-
pendix, Tables S13 and S14.
All PMI, CMI, and PC between X and Y were calculated as the

means over 1,000 repeats, and the values less than 0.01 were set to
zero. The probability distributions were estimated by “bins” -based
method (see SI Appendix, section S3) (21). We considered both
uniform and normal distributions, shown in Table 1 for uniform
distribution and SI Appendix, Tables S4 and S5 for normal distribu-
tion, respectively. When Z is independent of X, Table 1 shows clearly
that PMI and CMI can detect the true dependency effectively in all
relations with high significance (see SI Appendix, Table S2), whereas
PC and PS are correct almost only for the linear relation due to its
linear nature, and they are also sensitive to cubic, exponential, and
sigmoid because these relations are mostly resemble to linear re-
lations in the given interval. However, in Table 1 where X is strongly
associated with Z, that is, p(xjz) = 1 for p(x,y,z) ≠ 0, CMI completely
failed to measure all direct associations and PC and PS only
detected the linear relation as expected, whereas PMI correctly
identified all direct dependencies. For the cases where Y is strongly
associated with Z, that is, p(yjz) = 1 for p(x,y,z) ≠ 0, we got the same
conclusion. From Table 1, we can find that for the random cases (i.e.,
when X and Y are actually independent or have no direct

dependency) all of PMI, CMI, and PC gave the correct results, which
agrees well with our theoretical results. For the normal distribution,
as shown in SI Appendix, Tables S4 and S5 and the matched P
values in SI Appendix, Tables S6 and S7, we have similar conclu-
sions. In addition to the nonlinear relations in SI Appendix, Table
S1, we also conducted the simulations on other types of relations in
SI Appendix, Table S8, and, as shown in SI Appendix, Tables S9–S12,
all of the results demonstrate the robustness of the PMI.

Comparison for Statistical Power. As an association measure, sta-
tistical power is an important and widely used tool to interpret the
results calculated by the measure as well as statistical significance
(23). Here, statistical power, or simply “power,” defined similarly as
in ref. 14, is the probability that we reject the hypothesis of variables
X and Y given Z are independent when X and Y given Z are truly
associated. The PMI value shows a significant difference from the
value that X and Y given Z are independent. If the false-negative
rate, namely a type II error in statistics, is equal to β, then the
statistical power is 1− β. Hence, when the power increases, type II
error will decrease.
The relationships considered here are the same as in SI Appendix,

Table S1. The power of PMI and CMI was presented as a heat map.
Fig. 2 A and D show the power of PMI and CMI, where the two
measures present almost the same results in the situation when X
and Z are independent (i.e., no association of X and Z). This is
consistent with the theoretical conclusion that PMI performs as well
as CMI when X or Y is not associated with Z. However, in Fig. 2 B
and E, when the association between X and Z becomes moderate
or stronger, the power of PMI is higher than that of CMI. Also, in
Fig. 2 C and F when X is almost always equal to Z (or strongly
associated with Z), that is, p(xjz) = 1 for p(x,y,z) ≠ 0, the power of
CMI is obviously smaller than that of PMI for all of the relationships,
especially for the relationships of sinusoid and exponential, which
numerically demonstrates that PMI is a more powerful measure than

Table 1. Comparing PMI, CMI, and PC

Relation types PMI(X;YjZ) CMI(X;YjZ) PC(X;YjZ) PS(X;YjZ)
X⊥Z
Linear 1.03* 0.95* 1* 0.98*
Quadratic 0.57* 0.52* 0.03 0.04
Cubic 1.27* 1.23* 1* 1*
Sinusoidal 0.88* 0.83* 0.78* 0.78*
Exponential 0.89* 0.80* 0.98* 0.96*
Checkerboard 0.43* 0.42* 0.37* 0.37*
Circular 0.35* 0.30* 0.02 0.02
Cross-shaped 0.62* 0.61* 0.03 0.03
Sigmoid 0.73* 0.69* 0.99* 0.96*
Random 0.08 0.08 0.03 0.03

X ≈ Z
Linear 2.20* 0.03* 1.0* 0.88*
Quadratic 1.28* 0.01 0.03 0.04
Cubic 1.60* 0.02 0.11* 0.87*
Sinusoidal 1.33* 0.01 0.03 0.02
Exponential 1.30* 0.01 0.06* 0.12*
Checkerboard 0.37* 0.02 0.03 0.02
Circular 0.89* 0.01 0.03 0.03
Cross-shaped 1.16* 0.02* 0.02 0.02
Sigmoid 1.38* 0.01 0.06 0.57*
Random 0.26 0.01 0.02 0.03

PS(X;YjZ) is the partial spearman correlation of X and Y given Z. Asterisks
indicate statistically significant P values (see SI Appendix, Tables S2 and S3).

A B C

D E F

Fig. 2. Comparison of statistical power between PMI(X;YjZ) and CMI(X;YjZ).
Ten relationships between X and Y were used Y = f(X,Z) + aη, and the details
of the relation are in SI Appendix, Table S1, where “Random”means X and Y
have no direct association, η is normally distributed noise with mean 0 and
SD 1, and a is noise amplitudes ranging from 0 to 8. Eleven amplitudes were
selected, 0.25, 0.35, 0.50, 0.72, 1.00, 1.41, 2.00, 2.83, 4.00, 5.66, and 8.00,
which are distributed logarithmically between 0.1 and 8. A and D show the
power of PMI and CMI when X and Z are independent, but X and Y are both
related with Y; B and E are the results when X is associated with Z moder-
ately (i.e., X = 0. 5X + 0.5Z). C and F are the cases when X are strongly as-
sociated with Z, which means X is almost a copy of Z; we set X = 0.1X + 0.9Z.
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CMI. Actually, we can show that the power of CMI decreases with
the increase of the dependency between X (or Y) and Z. In addition,
we also tested the equitability (3) of PMI, which demonstrated its
superior ability as shown in SI Appendix, section S4 and Fig. S3.

DREAM3 Challenge Datasets for E. coli and Yeast.We applied PMI to
the widely used DREAM3 challenge datasets for reconstructing
gene regulatory networks (24), where the gold standard networks
were from yeast and E. coli. The gene expression data were gen-
erated with the nonlinear ordinary differential equation systems (19,
25). In this work, we used DREAM3 challenging data with sizes 10,
50, and 100 to construct the gene regulatory network by PMI-based
PC (path consistency) algorithm, which is a greedy iteration algo-
rithm for inferring networks and terminates until the network
converges (16). Simply by replacing CMI with PMI in the original
CMI-based algorithm (i.e., PCA-CMI) (16), we can obtain PMI-
based PC-algorithm, called PCA-PMI, which is based on Eq. 12 in
Theorem 1. The detailed algorithm of PCA-PMI is given in SI Ap-
pendix. The performance of PMI was evaluated by the true-positive
rate (TPR) and false-positive rate (FPR). They were defined as
TPR = TP/(TP + FN) and FPR = FP/(FP + TN), where TP, FP,
TN, and FN represent the numbers of true positives, false posi-
tives, true negatives, and false negatives, respectively. TPR and
FPR are used for plotting the receiver operating characteristic
(ROC) curves and the area under ROC curve (AUC) is calcu-
lated. In addition, we compared PMI and CMI by inferring the
gene regulatory networks.
We first analyzed the yeast knock-out gene expression data

with 10 genes and 10 samples by PCA-PMI algorithm. If PMI of
two genes is less than the threshold, we consider that there is no
direct association between these two genes; otherwise, the two genes
may have the direct regulation. The joint and marginal probabilities
as well as covariance matrices were estimated by Eq. 12 in Theorem
1 with the assumption of the Gaussian distribution due to a large
number of variables. Fig. 3A shows the true gene regulatory net-
work, with 10 nodes and 10 edges, and Fig. 3C is the network
inferred by PCA-PMI with 10 nodes and 9 edges, where only one
edge between G4 and G9 was false-negative. For comparison, we
used CMI-based PC-algorithm (PCA-CMI) to construct the same
network as shown in Fig. 3B, and the threshold was selected when
the accuracy was maximized. Fig. 3B shows that the network pre-
dicted by CMI has two false-negative edges, the edge between G1
and G3 and the edge between G4 and G9. Clearly, PMI is more
accurate than CMI for this case. To further evaluate the perfor-
mance of PMI, the AUC was reported. Fig. 4A shows the ROC
curve of yeast network with 10 genes, where PMI outperforms CMI

apparently in terms of AUC. We also compared PMI with partial
correlation, Lasso, and Pdcor, where PMI performed the best.
Next, we tested the data of yeast gene expression with 100 genes

for datasets of 100 samples. We chose different thresholds ranging
from 0 to 0.5 for PCA-PMI (see SI Appendix, Fig. S4A). The true
network of 100 genes with 166 edges is the real and verified net-
work. We selected the threshold 0.25 with the maximum accuracy
0.97. The ROC curve is shown in Fig. 4C. As a whole, PMI is
superior to CMI in terms of ROC curves.
Finally, we performed PMI and CMI computation on two data-

sets of E. coli network with 50 and 100 genes. Fig. 4 B andD are the
ROC curves for these data, where AUC values of PMI are 0.843
and 0.858, respectively, higher than those of CMI. SI Appendix, Fig.
S4 A and B show that the accuracy is consistent with changing
threshold between 0 and 0.5. As shown in SI Appendix, Fig. S4, with
the increase of the network size, the accuracy is improved. We also
compared PMI with the partial correlation, Lasso, and Pdcor, and
PMI performed the best in all the cases in Fig. 4. In all datasets from
the DREAM3 challenge, PMI was verified to be efficient and ef-
fective to reconstruct real gene regulatory networks from the mea-
sured expression data. Interestingly, when replacing the covariance
matrix of the measured variables by the distance covariance matrix
(8), we have kPCA-PMI algorithm (see SI Appendix), which has
better performance on the above cases than PCA-PMI, shown in SI
Appendix, Fig. S5.

Discussion
MI based on mutual independence and CMI based on conditional
independence suffer from the problems of overestimation and
underestimation, respectively. However, recently, the causal
strength CX→Y(X;YjZ) (see SI Appendix, Property S9) for quantifying
causal strength was proposed by Janzing et al. (18). The causal
strength (CS) can be used to quantify causal influences among vari-
ables in a network. However, CS is asymmetric compared with CMI,

Gene True posi�ve edge False nega�ve edge

True network Network by PMINetwork by CMI

CA B

Fig. 3. Comparison of yeast gene regulatory network reconstructed by PMI-
and CMI-based algorithms. (A) The true network of yeast with 10 genes and
10 edges from DREAM3 challenge datasets. (B) The network predicted by
CMI with 10 genes and 10 edges, where two false-negative edges are
marked by dashed lines. (C) The network predicted by PMI with 10 genes
and 9 edges, where one false-negative edge is marked by a dashed line.

A B

C D

Fig. 4. ROC curves of the Yeast1 gene regulatory network with gene sizes
10 and 100, and E. coli gene regulatory network with gene sizes 50 and 100
by PMI, CMI, PC, Lasso, and Pdcor. (A–D) The ROC curves of the Yeast1
network with 10 genes and 100 genes and the Ecoli1 network with 50 genes
and 100 genes. The red line is for PMI, the green line is for CMI, the orange
line is for PC, the blue line is for Lasso, and the pink line is for Pdcor.
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and it partially solves the problem of CMI (see SI Appendix, Property
S9). In this work, to solve these problems we propose the novel
concept of PMI by defining a new “partial independence” in Eq. 6 that
can measure nonlinearly direct dependencies between variables with
higher statistical power. Owing to this partial independence, PMI can
quantify the direct associations effectively by theoretically avoiding the
false-negative/-positive problems, in contrast to CMI and also other
measures. Moreover, PMI can be also used for reconstructing a net-
work with or without loops. If there is no influence on the two vari-
ables of interest from other variables in a network, PMI for measuring
the association of these two variables is reduced to MI. Combining
with PC-algorithm (16), PMI can efficiently reconstruct various types
of large-scale networks from the measured data, such as gene regu-
latory networks in living organisms. In addition to the theoretical re-
sults, both simulated and real data demonstrate the effectiveness of
PMI as a quantitative measure for nonlinearly direct associations.
To theoretically define PMI, we introduced partial independence

in Eq. 6, in contrast to the conditional independence in Eq. 5 for
CMI and mutual independence in Eq. 2 for MI. As shown in SI
Appendix, Property S8 and Fig. S1, as well as the computational
results, the conditional independence Eq. 5 always holds approxi-
mately for the case that X (or/and Y) is strongly associated with Z,
even if there is strong dependence of X and Y given Z, but the
partial independence Eq. 6 does not necessarily hold. Therefore,
when the associations among variables in a network or system are
weak, both PMI and CMI can correctly quantify the direct de-
pendencies, but when some associations among variables are mod-
erate or strong (it is actually a general case in a network or system),
CMI generally failed due to its false-negative features and actually the
error increases with the association strength, whereas PMI can detect
their true dependencies due to the effect of the partial independence.
Intuitively, if X (or Y) is strongly associated with Z, CMI(X;YjZ) =

H(XjZ) − H(XjY,Z) vanishes due to H(XjZ)≈H(XjY,Z)≈ 0
because knowing Z leaves almost no uncertainty about X (or Y)
from the viewpoint of conditional independence. In other words,
strong dependency between X and Z (or between Y and Z)
makes the conditional dependence of X and Y almost invisible
when measuring CMI(X;YjZ) only (18). However, PMI(X;YjZ)
can measure correctly for this case because the partial

independence makes the conditional dependence of X and Y
visible again by replacing p(xjz) p(yjz) with p*(xjz) p*(yjz), where
p*(xjz) [or p*(yjz)] implicitly includes the association information
between X and Y, different from p(xjz) [or p(yjz)].
We also derived an extended KL divergence (see SI Appendix,

Definition S1 and Theorem S1). The difference between PMI and
CMI is the two conditional probability distributions [p(xjz)p(yjz)
and p*(xjz)p*(yjz)] (see SI Appendix, Fig. S1), and their difference is
clearly related to the relation between X and Y (see SI Appendix,
Fig. S1). For continuous random variables, PMI can be defined in
the same way as Eqs. 7–9, that is,

PMIðX;YjZÞ=
Z

x, y, z

pðx, y, zÞlog pðx, y, zÞ
ppðxj zÞ ppðyj zÞ pðzÞ dxdydz,

where ppðxjzÞ= R
y
pðxjz, yÞpðyÞdy and ppðyjzÞ= R

x
pðyjz, xÞpðxÞdx.

p(x,y,z) is now the joint probability density function of X, Y,
and Z, and all others are the marginal (or conditional) probabil-
ity density functions of random variables X, Y, and Z.
This work mainly introduced a new information criterion, PMI,

to measure direct associations between nodes in a network based
on the observed data, but it cannot give the directions of the
measured associations, which should be detected by other methods,
similar to CMI and MI. Also, PMI is not designed to test the hy-
pothesis on the causal relations for observational studies (26, 27),
for which CMI may be appropriate. In addition, how to numerically
estimate PMI accurately from a small number of samples without
the “bins”-based approximation or Gaussian distribution approxi-
mation is a topic for future research. To serve the communities of
biology and medicine for inferring gene regulatory networks from
high throughput data, all of the source codes and the web tool of
our algorithm PCA-PMI can be accessed at www.sysbio.ac.cn/cb/
chenlab/software/PCA-PMI/.
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