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Although canonical NF-κB signaling is crucial to generate a normal
mature B-cell compartment, its role in the persistence of resting ma-
ture B cells is controversial. To resolve this conflict, we ablated NF-κB
essential modulator (NEMO) and IκB kinase 2 (IKK2), two essential
mediators of the canonical pathway, either early on in B-cell devel-
opment or specifically in mature B cells. Early ablation severely
inhibited the generation of all mature B-cell subsets, but follicular
B-cell numbers could be largely rescued by ectopic expression of
B-cell lymphoma 2 (Bcl2), despite a persisting block at the transitional
stage. Marginal zone (MZ) B and B1 cells were not rescued, indicating
a possible role of canonical NF-κB signals beyond the control of cell
survival in these subsets. When canonical NF-κB signaling was ab-
lated specifically in mature B cells, the differentiation and/or persis-
tence of MZ B cells was still abrogated, but follicular B-cell numbers
were only mildly affected. However, the mutant cells exhibited in-
creased turnover as well as functional deficiencies upon activation,
suggesting that canonical NF-κB signals contribute to their long-term
persistence and functional fitness.
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Mature B cells comprise three major subsets: follicular and
marginal zone (MZ) B and B1 cells (1). Two receptors, the

B-cell antigen receptor (BCR) and B-cell activating factor of the
tumor necrosis factor family receptor (BAFFR), have been shown
to control the generation and/or persistence of mature B cells
critically (2–5).
Numerous stimuli activate the NF-κB signaling pathways in

mature B cells. In mammals, the NF-κB family of transcription
factors comprises five members (RelA, RelB, c-Rel, NF-κB1,
and NF-κB2) whose activation is initiated by two major signaling
pathways (5). The canonical pathway depends on the IκB kinase
(IKK) complex, consisting of the structural protein NF-κB essential
modulator (NEMO) and the IκB kinases IKK1 and IKK2. This
complex triggers the degradation of a specific set of inhibitors of
NF-κB and the induction of dimers containing RelA and/or c-Rel.
The canonical pathway regulates NF-κB activation downstream of
the BCR (5). The stimulation of the alternative pathway, mediated
by NF-κB–inducing kinase and IKK1, leads to the partial pro-
teolysis of the inhibitory precursor NF-κB2 and the activation of
dimers containing RelB and/or the processed form of NF-κB2
through another set of receptors, including BAFFR (4).
There is abundant evidence for a critical role of the canonical

pathway in the generation and/or maintenance of mature B cells.
The ablation of NEMO or IKK2 in the B-cell lineage, as well as
conditional replacement of the latter by a kinase-dead IKK2, im-
paired the generation of the three mature B subsets and transitional
2 (T2) cells, a developmental stage preceding the mature stage (6–9).
In the case of the kinase-dead IKK2, some mutant cells made it into
the mature compartment but were completely outcompeted by WT
cells over a period of 4 wk, upon blockade of B-cell generation in the
bone marrow (6). Mechanistically, tonic BCR signaling could in-
crease the production of NF-κB2 via canonical NF-κB activation in

T2 and follicular B cells, sensitizing B cells to the prosurvival effect
of BAFFR (10).
However, other work suggested that canonical signals downstream

of the BCR may not be critical for the maintenance of mature fol-
licular B cells. Ectopic expression of a constitutively active form of
IKK2 only slightly rescued the acute loss of B cells upon ablation of
the BCR in these cells, whereas a full rescue was obtained through
signals along the phosphatidylinositol 3-kinase (PI3K)/forkhead
box O1 (FOXO1) axis (11). In addition, a study of the role of
B cells in a prostate cancer model suggested that the absence of
canonical signaling may not result in the rapid disappearance
of mature B cells (12).
In the present work, using conditional ablation of NEMO and

IKK2 either early during B-cell development or specifically in ma-
ture B cells, as well as ectopic expression of B-cell lymphoma 2
(Bcl2), we show that canonical NF-κB signaling contributes to the
functional integrity of follicular B cells and supports their long-term
persistence through its prosurvival activity. However, absence of
canonical NF-κB signaling in these cells only mildly affects their
numbers in steady state, in contrast to its severe impact on transi-
tional B-cell numbers.

Results
Ectopic Expression of Bcl2 Allows Accumulation of Follicular B Cells
upon NEMO Deletion Early in Development. Consistent with previous
work (6, 8, 9), the generation of mature B cells was impaired
upon ablation of NEMO in the B-cell lineage using Mb1-cre (13)
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(Fig. 1 A and B and Figs. S1A and S2A). Within the mature
compartment, MZ B and B1 cells were more affected than follic-
ular B cells. Because overexpression of Bcl2 in RelA and c-Rel
double-deficient hematopoietic cells has been shown to rescue the
generation of mature B cells and promote their survival in vitro
(14), we assessed whether ectopic expression of Bcl2 leads to the
accumulation of mature B cells in the absence of NEMO. Indeed,
the generation of follicular B cells was largely rescued in Nemofl

Mb1-cre+ Bcl2Tg mice (Fig. 1A and Fig. S1B). In contrast, mutant
MZ B cellularity was lower (2- to 5.5-fold) compared with controls
and was similar to the MZ B-cell numbers observed in Nemofl Mb1-
cre+ mice (Fig. 1A and Fig. S1B). However, the difference between
Mb1-cre+ Bcl2Tg and Nemofl Mb1-cre+ Bcl2Tg mice did not reach
statistical significance. Surprisingly, MZ B cellularity was also re-
duced in Mb1-cre+ Bcl2Tg compared with Mb1-cre− Bcl2Tg control
mice. In addition, the ectopic expression of Bcl2 in B cells did not
rescue NEMO-deficient B1 cells in the peritoneal cavity (Fig. 1B
and Fig. S2B).
The absence of canonical NF-κB signaling in B cells has previously

been shown to affect splenic B-cell development also at the T1 to T2
transition (8, 9). We thus investigated whether the accumulation of
mutant follicular B cells could be due to the rescue of T2 cell gen-
eration in Nemofl Mb1-cre+ Bcl2Tg mice. T2 cell numbers demon-
strated a positive correlation with T1 cellularity (Fig. 1C and Fig. S3),

in agreement with T2 cells arising from the T1 subset (15). Notably,
the production of NEMO-deficient T2 cells was clearly reduced
compared with controls, independent of the overexpression of Bcl2
(Fig. 1C). CD23, used to discriminate T1 and T2 cells (15), has been
reported to be an NF-κB target gene (16). We therefore confirmed
the identity of the mutant transitional populations using an in-
dependent marker, CD93, which is expressed at lower levels on T2
cells (3, 9) (Fig. 1D and Fig. S4). Comparable distributions of CD93lo

cells were seen in the transitional subsets of Nemofl Mb1-cre+ Bcl2Tg
and control mice, supporting that genuine T1 and T2 cells were
detected in the mutant mice.
Thus, ectopic expression of Bcl2 permitted the accumulation of

NEMO-deficient follicular B cells close to normal cellularity despite
a persisting developmental block at the transitional stage. In con-
trast, the generation of MZ B and B1 cells was not rescued, possibly
due to a role for canonical NF-κB signaling beyond cell survival
(17), consistent with the inability of a Bcl2 transgene regulated by
vav gene regulatory elements to promote the development of MZ B
cells in NF-κB1–deficient mice (18).
Peripheral B cells from Ikk2fl CD19-cre+ mice showed altered

in vitro and in vivo responses to stimulation (7), but these results
could have been partly due to the reduced numbers of mature B cells
in these mice. The large numbers of follicular B cells in Nemofl

Mb1-cre+ Bcl2Tg mice allowed us to examine their responses to
various kinds of stimulation. The NEMO-deficient B cells over-
expressing Bcl2 exhibited an impaired proliferative response to
various mitogenic stimuli in vitro compared with control B cells
overexpressing Bcl2 (Fig. 2A). Consistent with defective B-cell
functions, IgM and IgG serum Ab levels were strongly reduced
or undetectable (Fig. 2B). In the T-cell–dependent response to
immunization with (4-hydroxy-3-nitrophenyl)acetyl (NP)–chicken
γ-globulin (CGG), the frequency of germinal center cells was
strongly reduced and the production of anti-NP IgG1 Abs was
abolished (Fig. 2 C and D). These data show that canonical NF-κB
signals are essential for the functional activity of follicular B cells,
and complement a large body of evidence for the multifaceted role
of this pathway in the control of humoral immunity (5, 17, 19).

Long-Term Persistence of Follicular B Cells Requires Canonical NF-κB
Signaling. To evaluate directly the contribution of canonical sig-
naling to the maintenance of mature B cells, we ablated NEMO
using CD21-cre (3). We excluded B1 cells from the analysis be-
cause, in our hands, CD21-cre proved to be poorly expressed in the
prototypical CD5+ B1a subset (Fig. S5). A large follicular B-cell
population was detected in the spleens of Nemofl CD21-cre+ mice,
whereas MZ B cells were essentially lost (Fig. 3 A and B). Similar
results were obtained upon IKK2 ablation through CD21-cre (Fig.
3 C and D). These data contrast with the small mature B-cell com-
partment detected in the absence of NEMO or IKK2 using the
CD19-cre or Mb1-cre allele (6–9). Nemofl and Ikk2fl loxP-flanked
exons are efficiently eliminated upon Cre-mediated recombination in
B cells (6, 8), which we verified in the case of follicular B cells from
Ikk2fl CD21-cre+ mice (Fig. 4). The mild reduction of follicular B-cell
numbers in Ikk2fl CD21-cre+mice was not due to the accumulation of
cells that had escaped IKK2 deletion. Indeed, the majority of these
cells expressed a Cre-inducible truncated human CD2 reporter (Fig.
4 A and B), and the reporter-positive cells demonstrated dramatically
reduced IKK2 protein levels compared with controls (Fig. 4C).
Residual splenic mature B cells expressing a kinase-dead IKK2

have been shown to display an increased turnover compared with
controls (6). Thus, we assessed whether follicular B-cell persis-
tence was altered in Ikk2fl CD21-cre+ mice by measuring BrdU
incorporation into their DNA after 2 wk of labeling. Labeling
efficiency was similar among the various mice, as indicated by
comparable proportions of BrdU+ transitional B cells (Fig. 4D). In
agreement with previous work (3, 20), follicular B cells from
CD21-cre− and Ikk2fl/+ CD21-cre+ controls showed low propor-
tions (12–13%) of BrdU+ cells. In contrast, 40% of IKK2-deficient
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Fig. 1. Ectopic expression of Bcl2 rescues follicular (Fo) B-cell generation in
the absence of NEMO. (A) Absolute cell numbers of Fo B and MZ B cells in the
spleens of Mb1-cre−, Mb1-cre+, and Nemofl Mb1-cre+ mice in the absence of
(Left, −Bcl2Tg) or upon (Right, +Bcl2Tg) ectopic expression of Bcl2. Data are
pooled from four to 15 experiments (n = 4–19 per genotype). (B) Percentage
of B1 cells within B cells in the peritoneal cavity. Data are cumulative from
five to 14 experiments (n = 5–15 per group). (C) T2 cellularity as a function of
T1 cell numbers. Data are pooled from six to 15 experiments (n = 5–19 per
genotype). Solid (controls) and dotted (Nemofl Mb1-cre+) lines represent the
best-fitting linear function, forced to go through the origin. (D) Percentage
of CD93lo T1 and T2 cells in the spleens of Mb1-cre−, Mb1-cre+, and Nemofl

Mb1-cre+ mice upon ectopic expression of Bcl2 (+Bcl2Tg). Data are pooled
from nine experiments (n = 7–9 per group). One Mb1-cre+ mouse and one
Nemofl Mb1-cre+ mouse were excluded from the analysis in A (Left) and B
(Left), respectively, due to aberrantly high cell numbers compared with the
other mice of their group. Each symbol indicates one mouse, and horizontal
lines signify the mean in A, B, and D. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 by
one-way ANOVA in A, B, and D.
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follicular B cells had incorporated BrdU (Fig. 4D), suggesting
increased turnover.
Overall, the present results suggest that the main function of

canonical NF-κB signaling in follicular B-cell homeostasis is indeed
the control of cell survival, as demonstrated by the ability of a Bcl2
transgene to rescue a substantial compartment of these cells even
under conditions where the ablation of canonical signaling in the
B-cell lineage leads to a severe developmental block at the transitional
B-cell stage (8, 9). These data are in line with earlier work showing
the accumulation of mature B cells in mice reconstituted with RelA
and c-Rel double-deficient fetal liver cells overexpressing Bcl2 (14).

Discussion
Whereas ablation of components of the BCR in mature B cells led
to a steady state in which BCR-deficient cells were a minority of
the mature B-cell population because of their rapid elimination (2,
3, 11), NEMO or IKK2 ablation by CD21-cre resulted in only a
moderate reduction of follicular B-cell numbers. These data in-
dicate that follicular B cells do not require continuous canonical
NF-κB signaling for their persistence, and contrasts with the rapid
loss of B cells upon BCR deletion (2, 3). Quite fittingly, the latter
process can be rescued by constitutive PI3K activation, but not by
canonical NF-κB activity (11). However, the homeostasis of fol-
licular B cells unable to signal through the canonical NF-κB
pathway is clearly different from the homeostasis of their WT
counterparts. Whereas the latter are long-lived cells with average
life spans of months (21), the mutant follicular B cells appear to

have a limited life span, probably on the order of a few weeks as
indicated by the BrdU labeling data. These results complement our
previous demonstration of the failure of such cells to compete with
WT cells in vivo (6). Together with the accumulation of NEMO-
deficient follicular B cells upon ectopic expression of Bcl2, these
data raise the possibility that canonical NF-κB signals may de-
termine the fitness of mature follicular B cells in their competition
for survival niches in the peripheral immune system (22).
The ablation of NEMO or IKK2 early during B-cell development

results in strongly reduced numbers of follicular B cells (6–9), in
stark contrast to the effects of the deletion of these two molecules
specifically in mature B cells. This difference likely reflects the
critical role of canonical NF-κB signaling in transitional B cells (6, 8,
9). In combination with the limited life span of follicular B cells, the
shortage of newly generated mature B cells is expected to lead to
the suboptimal filling of the follicular B compartment, in the ab-
sence of canonical NF-κB signaling.
Compared with follicular B cells, MZ B and B1 cells demon-

strate a stronger dependency on canonical NF-κB signals for their
development and/or persistence. Thus, MZ B-cell numbers were
strongly reduced in Nemofl and Ikk2fl CD21-cre+ mice, and the
ectopic expression of Bcl2 failed to rescue the generation and/or
maintenance of NEMO-deficient MZ B and B1 cells. These results
are suggestive of a role beyond the control of survival for canonical
NF-κB signaling in MZ B and B1 cells. It is noteworthy in this
context that cyclin D2, a regulator of the cell cycle and a target of
NF-κB, contributes to the development of B1 cells (23).
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Although an important signaling pathway activated in B cells
upon engagement of BAFFR is the alternative NF-κB signaling
pathway (4), there is also evidence for cross-talk between the al-
ternative and canonical pathways, both in the sense of BAFFR
signaling resulting in canonical NF-κB activity (8, 24) and of

canonical signals up-regulating the expression of components of the
alternative pathway (8, 10, 17, 19). Thus, BAFFRmight be involved
in the activation of survival signals in mature B cells through both
the canonical and alternative NF-κB signaling pathways, and/or ca-
nonical signals could contribute to an enhanced sensitivity of the
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corresponding cells to survival signals downstream of BAFFR. In
this scenario, the occasional engagement of the BCR on resting
mature B cells by antigens in the environment, with a resulting
activation of the canonical NF-κB pathway, might enhance the
competitive fitness of the cells in their ability to access survival
niches (22). The activation of canonical NF-κB signaling down-
stream of the BCR and/or BAFFR could be mediated by Bruton’s
tyrosine kinase (Btk) (5, 25). Indeed, similar to the behavior of
follicular B cells in the absence of canonical NF-κB signals, ec-
topic expression of Bcl2 rescues the generation of follicular B cells
in x-linked immunodeficiency (xid) mice, which bear a mutation in
Btk, and CD23+ transitional and follicular xid B cells are out-
competed by WT B cells (26, 27).

Materials and Methods
Mice. Nemofl, Ikk2fl, Mb1-cre, CD21-cre, and R26-Stopfl-hCD2 mice have been
described (3, 6, 13, 28, 29). Bcl2 transgenic Eμ-Bcl-2-22 (Bcl2Tg) mice were
obtained from The Jackson Laboratory (30). Mice were generated on or
backcrossed to the C57BL/6 genetic background. Animal care and mouse work
were conducted according to the guidelines of the Institutional Animal Care
and Use Committee of Harvard University, the Immune Disease Institute, the
Max Delbrück Center for Molecular Medicine, the Landesamt für Gesundheit
und Soziales, and the Bundesministerium für Wissenschaft und Forschung.

For simplicity and clarity, the given denominations include genotypes as fol-
lows (+, f, Δ, and y indicate WT, loxP-flanked, deleted alleles, and the y sex
chromosome, respectively): Mb1-cre−: Nemof/f, Nemof/y, and Nemo+/y; Nemofl

Mb1-cre+:Nemof/f Mb1-cre+ andNemof/y Mb1-cre+; CD21-cre−:Nemof/y or Ikk2f/Δ

and Ikk2+/Δ; Nemofl CD21-cre+: Nemof/y CD21-cre+; Ikk2fl/+ CD21-cre+: Ikk2f/+

CD21-cre+ and Ikk2+/Δ CD21-cre+; Ikk2fl CD21-cre+: Ikk2f/Δ CD21-cre+. Previous
work (6) suggested that B-cell development is unaffected in mice bearing either
a heterozygous deletion of Ikk2 or loxP-flanked Ikk2 or Nemo alleles. The
presence of single Ikk2-deleted alleles in some of our mice resulted from the
occasional deletion of loxP-flanked alleles by CD21-cre in the germ line (11).

Flow Cytometry. Cell suspensions from the spleen and peritoneal cavity were
stained with the following Abs coupled to FITC, phycoerythrin (PE), peridinin
chlorophyll (PerCP), PerCP-Cy5.5, allophycocyanin (APC), PE-Cy7, Pacific Blue,
Brilliant violet (BV) 421, BV605, or BV785: anti-CD1d (1B1), anti-human CD2
(TS1/8), anti-CD19 (6D5 and 1D3), anti-CD21 (7G6 and 7E9), anti-CD23 (B3B4),
anti-CD38 (90), anti-CD93 (AA4.1), anti-CD95 (Jo2), anti-B220 (RA3-6B2) and
anti-IgM (II/41 and goat anti-mouse Fab) purchased fromAffymetrix eBioscience,
BD Biosciences, Biolegend, and Jackson ImmunoResearch Laboratories. Data
were recorded on a FACSCalibur, FACSCanto II, or LSRFortessa (all from BD
Biosciences) and analyzed with FlowJo software (TreeStar).

In Vitro B-Cell Proliferation and Isotype Class Switching. Splenic B cells were
purified by magnetic depletion using anti-CD43 beads (Miltenyi Biotec), la-
beled with 10 μM Cell Proliferation Dye eFluor 450 (Affymetrix eBioscience),
10 μM Cell Proliferation Dye eFluor 670 (Affymetrix eBioscience), or 2.5 nM
carboxyfluorescein diacetate succinimidyl ester (Molecular Probes), and cul-
tured in six-well plates at 106 cells per 4 mL of DMEM (Gibco) supplemented
with 10% (vol/vol) FCS, 2 mM L-glutamine, 10 mM Hepes, 1 mM sodium
pyruvate, 1× nonessential amino acids, 1× penicillin/streptomycin, and 50 μM
β-mercaptoethanol. Cells were either left untreated or stimulated with 10 μg/mL
F(ab′)2 fragment anti-IgM (Jackson ImmunoResearch Laboratories), 20 μg/mL
LPS (Sigma), and 1 or 2 μg/mL anti-CD40 (HM40-3, Biolegend) plus 25 or
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Fig. 4. IKK2-deficient Fo B cells persist but exhibit increased turnover. (A) Flow cytometry of human CD2 (hCD2) expression on Fo B cells in the spleens of
CD21-cre+ R26-Stopfl-hCD2, Ikk2fl/+ CD21-cre+ R26-Stopfl-hCD2 and Ikk2fl CD21-cre+ R26-Stopfl-hCD2 mice. Numbers adjacent to outlined areas specify the
percentage of cells in each gate. (B) Proportions of hCD2+ Fo B cells. Data are cumulative from five experiments (n = 3–5 per group). (C) Western blot analysis
of IKK2 and PLCγ2 protein levels in flow cytometry-purified splenic B220+CD93−CD1d+IgM+hCD2+ Fo B cells from control and mutant mice; Fo B cells from
CD21-cre+ mice were hCD2−. Western blotting was performed twice. (D) Proportions of splenic BrdU+ B220+CD19+CD93−IgM+CD23+ Fo (Left) and
B220+CD19+CD93+ transitional (Right) B cells in mice given BrdU in drinking water for 14 d, as determined by flow cytometry. Data are cumulative from
two experiments (n = 5–6 per group). One Ikk2fl CD21-cre+ mouse in D was excluded from the analysis due to sickness. In B and D, symbols represent indi-
vidual mice and horizontal bars signify the mean. **P ≤ 0.01; ***P ≤ 0.001 by one-way ANOVA in B and D.
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100 ng/mL IL-4 (R&D Systems) for 4 d. Dead cells were stained using 1 μg/mL
propidium iodide (Sigma), 10 nM TO-PRO-3 (Molecular Probes), or
AnnexinV-FITC (Biolegend). Cell division of live B cells was subsequently
determined by flow cytometry.

Immunization and Serum Ab Titers. Mice were immunized and Ab titers were
determined as previously described (31). Briefly, animals were injected i.p. with
100 μg of NP-CGG (Biosearch Technologies) in alum (Sigma). The presence of
germinal center B cells in the spleen was determined by flow cytometry at day 14
postimmunization. Blood was collected from unimmunizedmice, as well as 7 and
14 d after the injection of NP-CGG, to measure serum Ig titers or NP-specific IgG1

by ELISA.

Western Blotting. Flow cytometry-purified (FACSAriaII, BD Biosciences)
B220+CD93−IgM+CD1d+hCD2+ or B220+CD93−IgM+CD1d+hCD2− follicular B cells
were lysed using a whole-cell extract buffer [25 mM Hepes (pH 7.9), 0.3 M
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5% Triton X-100, 10 mM NaF, 10 mM
Na-pyrophosphate, 100 μM Na-o-vanadate, 2 mM DTT] completed with
protease inhibitors (aprotinin and PMSF). Proteins were separated by SDS/
PAGE, and transferred on PVDF membranes (Millipore). The expression of
IKK2 and PLCγ2 was visualized using 10AG2 (Millipore) and Q20 (Santa Cruz
Biotechnology) primary Abs, anti-mouse and anti-rabbit IgG secondary Abs

coupled to HRP (Jackson ImmunoResearch Laboratories), and ECL detection
reagent (Amersham).

BrdU Labeling.Micewere given 1mg/mL BrdU (Sigma) in the drinkingwater for
14 d. BrdU incorporation into the DNA of transitional and follicular B cells was
determined by flow cytometry using the FITC BrdU Flow Kit (BD Biosciences).

Statistics and Graphs. Prism software (GraphPad Software) was used to perform
statistical analysis of the data, compute best-fitting linear function, andgenerate
graphs. Statistical significance of data was determined using a one-way analysis
of variance (ANOVA) followed by a post hoc Tukey’s multiple comparisons test
or a two-tailed unpaired Student’s t test.
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