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ABSTRACT

Campylobacter jejuni is a foodborne pathogen that often leads to human infections through the consumption of contaminated
poultry. Wild birds may play a role in the transmission of C. jejuni by acting as reservoir hosts. Despite ample evidence that wild
birds harbor C. jejuni, few studies have addressed the role of host ecology in transmission to domestic animals or humans. We
tested the hypothesis that host social behavior and habitat play a major role in driving transmission risk. C. jejuni infection and
host ecology were studied simultaneously in wild American crows (Corvus brachyrhynchos) in Davis, CA, over 3 years. We found
that 178 of 337 samples tested were culture positive (53%), with infection varying by season and host age. Among adult crows,
infection rates were highest during the winter, when migrants return and crows form large communal roosts. Nestlings had the
highest risk of infection, and whole-genome sequencing supports the observation of direct transmission between nestlings. We
deployed global positioning system (GPS) receivers to quantify habitat use by crows; space use was nonrandom, with crows pref-
erentially occupying some habitats while avoiding others. This behavior drastically amplified the risk of environmental contami-
nation from feces in specific locations. This study demonstrates that social behavior contributes to infection within species and
that habitat use leads to a heterogeneous risk of cross-species transmission.

IMPORTANCE

Campylobacter jejuni is the most common cause of gastroenteritis in industrialized countries. Despite efforts to reduce the colo-
nization of poultry flocks and eventual infection of humans, the incidence of human C. jejuni infection has remained high. Be-
cause wild birds can harbor strains of C. jejuni that eventually infect humans, there has long been speculation that wild birds
might act as an important reservoir in the C. jejuni infection cycle. We simultaneously studied infection prevalence, social be-
havior, and movement ecology in wild American crows (Corvus brachyrhynchos). We found that social behavior contributed to
patterns of infection and that movement behavior resulted in some areas having a high risk of transmission while others had a
low risk. The incorporation of ecological data into studies of C. jejuni in wild birds has the potential to resolve when and how
wild birds contribute to domestic animal and human C. jejuni infection, leading to better control of initial poultry contamina-
tion.

Campylobacter jejuni is the leading cause of gastroenteritis in
industrialized countries (1, 2), with most infections in hu-

mans resulting from the consumption of contaminated and im-
properly cooked poultry (3). Generally, infected individuals re-
cover in a few days, but in some cases, infection can lead to
hospitalization (�15% of culture-positive cases in the United
States [1]), chronic autoimmune disorders (�2% of cases [4, 5]),
and even death (�0.06% of cases [1]). These health concerns de-
mand that food producers manage flock infection and disinfect
suspect meat at a considerable cost, yet some surveys suggest that
even with the precautions taken, up to 70% of poultry sold in U.S.
and United Kingdom grocery stores is contaminated with C. jejuni
(6, 7). Given the human health and financial costs caused by C.
jejuni, it is unsurprising that major research efforts have been de-
voted to reducing flock infection (8–11), developing genetically
resistant lines of poultry (12), and limiting transmission from
poultry to humans (13, 14). Despite these efforts, human infection

rates in the United States have failed to match CDC targets and
have actually increased 14% over the past 10 years (1). Although
most research is carried out in the laboratory or on poultry farms,
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scientists have long known that C. jejuni can also be carried by wild
birds (e.g., see reference 15), and there has been extensive specu-
lation that wild bird populations might act as reservoirs of C.
jejuni, thereby contributing to domestic animal infection or even
to direct human infection via environmental contamination from
feces (reviewed in reference 16).

Studies documenting C. jejuni prevalence in wild animals have
increased rapidly in the past 15 years (17–20). Many studies now
show that diverse families of wild birds harbor C. jejuni (reviewed
in reference 16) and that, at least in some cases, these strains are
similar to those that infect poultry, livestock, and humans (9, 21).
The majority of this work has been conducted in Europe, but a
smaller number of studies in the United States demonstrate sim-
ilar patterns (22, 23). Relatively few studies, however, go beyond a
simple culture test to detect the presence of C. jejuni. In rare cases,
direct transmission from wild birds to humans has been demon-
strated beyond any doubt (24, 25), but direct transmission is dif-
ficult to verify, and the actual transmission rates are probably un-
derestimated. One recent study concluded that 2.1 to 3.5% of
annual human C. jejuni cases in Oxfordshire, United Kingdom,
are directly attributable to wild birds (26). Despite ample evidence
that C. jejuni infection in birds is common, the importance of wild
birds in the human C. jejuni infection cycle is still unclear.

Studies that survey wild birds for C. jejuni often implicitly as-
sume that high prevalence is a good proxy for high risk of trans-
mission to humans or domestic animals (22). Carriage of human-
pathogenic strains by wild birds is a necessary antecedent for
undesirable cross-species transmission, but host ecology and be-
havior are also likely to be major determinants of the actual risk of
transmission posed by specific wild birds. In a recent review, Wal-
denström and Griekspoor (16) argue that the lack of information
on the ecology of wild hosts infected by C. jejuni has limited our
ability to make informed risk assessments. Even basic host ecology
studies of wild bird species that carry C. jejuni might greatly in-
crease our understanding of factors that contribute to transmis-
sion. For example, Ramos et al. (27) demonstrated that C. jejuni
infection rates vary among populations of yellow-legged gulls
(Larus michahellis), and that these variations are attributable to
the amount of human refuse in the diet at both the individual and
population level. How pervasive such patterns are and how
strongly they influence the risk of cross-species C. jejuni transmis-
sion are open questions.

American crows (Corvus brachyrhynchos), members of the cor-
vid family, are excellent candidates for studying links between host
ecology and C. jejuni association. Corvids are a globally distrib-
uted clade of birds known for their close association with domestic
animals, agricultural fields, and urban areas. Corvids have the
highest rates of C. jejuni infection of any sampled clade (16, 28, 29)
and, among those families with relatively high infection rates, cor-
vids arguably have the most direct contact with humans and do-
mestic animals. We established previously that C. jejuni infection
is common in American crows in the suburban town of Davis, CA,
and that at least some of the isolates found have characteristics of
strains that are pathogenic to humans (28). In addition to the high
prevalence of C. jejuni infection, American crows exhibit social
behavior and movement patterns that may influence the risk of
transmission from crows to domestic animals or directly to hu-
mans (30). Each winter, crows form large communal roosts that
may facilitate both within-species transmission and amplify cross-
species transmission risks in areas surrounding the roost (31).

Crows are also strong flyers and social foragers; thus, the risk of
contamination may be spread far from the roost but may also be
highly concentrated in areas that attract crows (e.g., feedlots or
particular crops) rather than be equally distributed across the
landscape.

Here, we build on previous work on the molecular character-
istics of C. jejuni isolates from American crows (28) by integrating
those results with host ecology. Specifically, we conducted exten-
sive year-round sampling of crow feces to look for evidence of
seasonal prevalence patterns associated with social behavior and
differences in C. jejuni prevalence in feces between adults and
nestlings. We hypothesized that C. jejuni prevalence would be
higher in nestlings than adults, due to a less-developed immune
system and high exposure to social sources of infection from par-
ents and nest mates (32). We also predicted that overall C. jejuni
prevalence in feces would be highest at the peak of the communal
roosting season, when thousands of crows spend each night in
close proximity and up to 58% of crows have visible fecal staining
on their feathers from roost mates perched on higher branches
(31). For nestlings, we predicted that the shared nest environment
would drive transmission, with nest mates tending to be either all
uncolonized or all colonized with a similar strain of C. jejuni.
Finally, we combined our information on prevalence with move-
ment data from global positioning system (GPS) receivers de-
ployed on adult crows to describe winter foraging behavior and
patterns of landscape use during the roosting season.

MATERIALS AND METHODS
Study population and general field methods. We studied C. jejuni infec-
tion in wild American crows in Davis, CA, from May 2012 until June 2015.
During that time, year-round fecal samples were collected for C. jejuni
testing from adults and nestlings. Crow density varied seasonally, because
migratory crows overwintered in Davis from October to March each year.
During this period, migrants and year-round residents formed a large
communal roost each night. Each morning before dawn, crows dispersed
from the roost to daytime feeding locations. In the winters of 2014 and
2015, periodic roost counts were conducted before dawn to estimate the
onset and duration of roosting along with the peak winter roost atten-
dance (as described in reference 31). Resident crows also formed much
smaller roosts in the summer between May and August. These roosts were
unpredictable in size and location and generally only included 100 to 400
individuals. Samples were collected from summer roosts when possible,
but data from summer roosts were sparse, and no samples were collected
in August or September when the birds did not roost in large numbers.

After migrants left the winter roost, local crows began their breeding
season, which typically lasted from early April until late June. During the
2012, 2013, and 2014 breeding seasons, breeding activity was monitored
closely at crow territories on and around the University of California,
Davis campus (described in reference 33). Once a nest was located, a
regular census was conducted until hatching, and then each nest was vis-
ited to collect samples for C. jejuni testing. In 2012, fecal samples were
collected from most nestlings that were visited, but in 2013 and 2014,
samples were collected only opportunistically when a nestling defecated
during handling.

Similar samples were collected from adult birds captured during the
winter roosting season in 2014 and 2015. Adults were captured using a
drop-in trap that was baited and set before dawn so that crows would
encounter it when leaving the roost. After capture, crows were held in
plastic carriers until processing; a fresh fecal sample was collected from
each carrier as crows were removed. Some of the captured adults were
fitted with GPS receivers to quantify winter habitat use (see below). All
trapping, banding, and sampling procedures were conducted with ap-
proval from the United States Geological Survey (USGS) Bird Banding
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Laboratory permit no. 23777, the California Department of Fish and
Wildlife permit no. 12065, and University of California Davis IACUC
protocol no. 16897.

Campylobacter testing. All fecal samples were collected by swabbing
fresh feces and storing the swab in Amies clear gel transport medium
(Remel BactiSwab; Fisher Scientific) in a cooler until submission for test-
ing (within 6 h of collection) (28). In addition to the captured nestling and
adult samples described above, feces were collected periodically from di-
rectly under the large winter roost or the much smaller summer roost. In
order to collect the freshest samples, fecal samples were always collected
before sunrise. To prevent ground contamination, only the top portion of
the feces was collected. In total, 119 samples were tested from the winter
roost between 31 October and 3 April, 71 samples from the small and
less-predictable summer roost between 23 April and 31 July, 102 samples
from nestlings between 6 May and 29 June, and 45 samples from captured
adults between 8 January and 14 March. All samples were submitted for
testing to the U.C. Davis Veterinary Medicine Teaching Hospital Clinical
Laboratory Services Facility. Samples were cultured and, if candidate col-
onies were identified, subjected to biochemical testing to confirm the
presence of C. jejuni (28). For a subset of samples (n � 16), duplicate
swabs were collected and submitted for independent testing to evaluate
the repeatability of the lab results. We calculated 95% binomial confi-
dence intervals of infection prevalence for each type of sample using the
‘binconf’ function of the ‘Hmisc’ package in R; we report the Wilson score
interval, as recommended by Agresti and Coull for binomial proportions
(34).

GPS deployment. In January 2015, eight GPS receivers were deployed
on adult crows captured in the drop-in trap. The receivers were 15-g
FLR-II units produced by Telemetry Solutions (Concord, CA, USA),
which recorded locations that were accurate to within about five meters.
Crows fitted with receivers weighed 353 to 398 g, so that the weight of the
receiver was always �4.5% of the bird’s body weight. Receivers were se-
cured by a backpack harness that looped around each wing to attach at the
breast; harnesses were made from 1.5-mm nylon cord and fastened with
copper crimps, superglue, and stitches applied by needle and thread at
each connection point. After the harnesses were attached, crows were
released into a holding aviary for at least 1 h to ensure that the GPS unit
was functioning properly and that the harness was safely attached. Crows
were released following this holding period. Receivers were programmed
to attempt to collect nine location points each day at the following fixed
times: 1:00, 3:00, 7:00, 9:00, 11:00, 13:00, 15:00, 17:00, 19:00, and 23:00.
To preserve battery life, the units were programmed to time out if a loca-
tion fix could not be established within 65 s, so the complete data set for
each bird did not always contain all scheduled locations.

The receivers were equipped for remote transfer so that locations
could be downloaded to a base station held within �30 m of the receiver
without needing to recapture the bird. Surveys of the roost occurred well
before dawn 2 to 3 times per week after the receivers were deployed to
download locations. At these visits, observers systematically walked under
each tree and held the base station aloft to establish connections. An
unmanned base station was also deployed in the field at areas of known
crow activity to maximize chances of recovering location data. Location
recovery efforts were continued until the roost had completely dispersed
during the first week of April 2015.

Spatial analysis. The Quantum Geographic Information Systems
(QGIS) software (Quantum GIS Development Team, 2015, http://qgis
.osgeo.org) was used to match our GPS locations with landscape charac-
teristics using the USDA CropScape cropland 2014 data layer (USDA
2014; http://nassgeodata.gmu.edu/CropScape/). The cropland data layer
draws basic land use data from the National Land Cover Database 2011
layer (35) but further subdivides agricultural areas into specific crop types.
Nearly all nocturnal (19:00 to 7:00) locations were at or near the roost in
developed areas, while diurnal (7:00 to 19:00) locations were more vari-
able. Thus, diurnal and nocturnal time budgets were analyzed separately.
Locations were pooled across individual birds before calculating the

amount of time spent in each land use or crop type as a simple average of
the number of locations in each area divided by the total number of loca-
tions collected. To provide context for interpreting habitat use, the total
percentage of land in the study area for each habitat or crop type was also
calculated. The study area was defined as a circle with a 12.5-km radius
from the roost, which contained �95% of the observed daytime crow
locations. Although the individual tracked birds did not utilize the entire
area of this circle, this boundary was chosen because it best represented
the choice of habitat that crows could have exploited given the distance
that they traveled from the roost each day. Calculating habitat use with a
95% minimum convex polygon rather than a circle yielded qualitatively
similar conclusions, and only the results using a 12.5-km buffer are pre-
sented for simplicity. We calculated the approximate home range of each
individual crow using minimum convex polygons from all observed loca-
tions.

The predicted amount of crow feces was calculated per square kilome-
ter per day in each habitat type at the peak of the roosting season by
multiplying the percentage of time spent in each habit by the maximum
number of crows at the roost (�6,000) and by the estimated number of
fecal samples per day per crow (Table 1). We recorded the number of
defecations by nine adult crows held in aviaries for 6.3 � 2.8 h (mean �
standard deviation). These individuals defecated 7.9 � 3.5 times per hour
(mean � standard deviation), but this rate was almost certainly elevated
by the stress of capture, especially immediately after placement in the
aviary. For the purposes of illustration, a very conservative daytime defe-
cation rate of 18 fecal samples per day per crow was adopted (1.5 feces per
hour). This rate should not be considered definitive but provides a mini-
mum estimate of crow defecation across the landscape.

A randomization test was used to determine if daytime habitat use was
biased toward or against certain habitat types. First, the habitat type was
identified at 50,000 regularly spaced locations within the 12.5-km buffer
surrounding the roost. Using this set of locations as a starting point, 1,430
points were randomly sampled (the number of daytime crow observa-
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tions) 10,000 times, and for each set of points, the percentage of locations
in each habitat type was calculated. Repeated sampling of the same point
was allowed to account for the fact that crows could be observed in the
same location multiple times. The observed crow usage of each habitat
was then compared to the distribution generated by random sampling.
Crows were considered to significantly favor a habitat if the observed
value was greater than the 97.5th percentile of the random distribution or
significantly disfavor a habitat if the observed value was less than the 2.5th
percentile of the random distribution. No similar test was performed for
nighttime locations, because these locations were focused solely on the
roost.

Genomic analysis. To assess the similarity of C. jejuni isolates ob-
tained from nest mates, we analyzed whole-genome sequences (WGS) of
isolates collected from 23 individually marked nestlings from 9 nests (see
collection methods above). For this analysis, isolates were included when
at least two positive samples were available from separate nestlings in the
same nest. High-molecular-weight genomic DNA (gDNA) was obtained
from colonies isolated from blood agar plates after growth at 37°C under
microaerophilic gas conditions, as previously described by the 100K
Pathogen Genome Project (36–38). Briefly, the cells were lysed with an
enzyme cocktail, mixed by vortexing, and purified gDNA was isolated
using whole-genome kits, according to the manufacturer’s instructions
(Qiagen, Valencia, CA, USA). gDNA purity and integrity were confirmed
on a 2200 TapeStation with the genomic DNA ScreenTape (Agilent Tech-
nologies, Santa Clara, CA, USA) (39–41). gDNA with A260/280 and A260/230

of �1.8 was used for library construction.
Following isolation, gDNA was sheared using the Covaris E220 with

the 96 microTUBE plate (Covaris, Inc., Woburn, MA, USA) (42). Librar-
ies were made using Kapa high-throughput (HTP) library preparation kit
(KR0426 version 3.13; Kapa Biosystems, Wilmington, MA, USA) with
dual-SPRI size selection (43). Libraries were constructed using the Agilent
Bravo (Agilent Technologies, Santa Clara, CA). Library quantitation was
done using Kapa SYBR Fast qPCR kits (Kapa Biosystems) to ensure a
starting concentration of 400 ng and a fragment insert size between 350

and 450 bp (43). Libraries were indexed using Bioo Scientific NEXTflex-
96 DNA barcodes version 13.05 (Bioo Scientific Corp., Austin, TX) and
Integrated DNA Technologies Weimer 384 TS-LT DNA barcodes. Se-
quencing was done by BGI@UCDavis (Sacramento, CA, USA) on an
Illumina HiSeq 2000 platform using paired-end 100 bp (PE100) reads
(Illumina, Inc., San Diego, CA, USA) (44, 45).

Sequences were aligned using progressiveMauve (46, 47), and contigs
were reordered using the reorder contigs option in Mauve under standard
parameters using C. jejuni subsp. jejuni NCTC 11168 as the reference
genome (see Fig. S1 in the supplemental material). Genomic distances
were determined using the Genome-to-Genome Distance Calculator
(GGDC) (http://ggdc.dsmz.de/distcalc2.php) (48, 49). Distances were
calculated using formula 2, as recommended for draft genomes. Distance
matrices were translated into Newick tree format in the T-Rex Web server
software using the neighbor-joining method (50, 51). Trees were edited
using Dendroscope 3.0 (52) and Geneious version 6.1.8 (53).

To assess whether nest mate isolates were more similar than expected
by chance, we conducted a randomization test using our strain GGDCs.
For this test, the GGDC matrix was held constant while randomly reas-
signing nestlings to different C. jejuni strains and then calculating the
average nest mate similarity based on the matrix of GGDC values. This
procedure was iterated 100,000 times to generate an expected nest mate
similarity distribution assuming random infection; the empirical isolate
similarity that was observed was then compared to the random distribu-
tion. Given the a priori prediction that nest mates would have more sim-
ilar strains than expected by chance, a P value was calculated as the num-
ber of random permutations with more similar nestling isolates divided
by the total number of permutations (100,000). Randomization tests and
all other statistical procedures were conducted in R version 3.2.2 (R Core
Development Team, Vienna, Austria).

Accession number(s). Data from isolates that were sequenced as
part of this study are accessible through NCBI (SRA accession numbers
SRR1815854 to SRR1815856, SRR1815858, SRR1815860, SRR1816035,
SRR1816037 to SRR1816040, SRR1816044, SRR1816046 to SRR1816049,
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SRR1816118, SRR1816122, SRR1816123, SRR1816125, SRR1816131, and
SRR1816132; see Table S2 in the supplemental material).

RESULTS
Campylobacter prevalence by date, subject age, and social be-
havior. Overall, 337 individual fecal samples were examined for C.
jejuni. Of those, 178 (53%) tested positive for C. jejuni. Prevalence
varied by crow age and season. Nestlings had the highest preva-
lence, with 73 out of 102 (72%) samples testing positive. Samples
collected in the winter from captured adults or swabs under the
roost had intermediate prevalence, with 51% of samples testing
positive (22 of 45 captured adults and 61 of 119 roost swabs). The
summer roost had the lowest prevalence, with 22 of 71 (31%) fecal
samples testing positive. Differences in prevalence among samples
collected during winter roosting, during summer roosting, or
from nestlings all were significant (Fig. 1; Fisher’s exact test, P �
0.01). Sixteen of these samples were submitted in duplicate, and all
produced the same test result (9 positive, 7 negative). The differ-
ence in prevalence for adult samples collected during winter or
summer roosting was consistent with the hypothesis that roost
size drives transmission (Fig. 2A and B), but our data did not

allow us to test for a causal link between roost size and trans-
mission per se.

We also found that social proximity in the nesting environ-
ment was a strong predictor of C. jejuni infection (likelihood ratio
test comparing a full and reduced logistic mixed model with nest-
ling infection status as the binary response, presence of a colonized
nest mate as a predictor, and nest identity as a random effect: n �
69 nestlings from 26 nests, �2 � 21.4, P � 0.0001). In general, nest
mates were either all colonized with C. jejuni or all uncolonized,
with only a few nests (4 out of 26) containing a mix of colonized
and uncolonized individuals.

GGDC calculations for each pair of sequenced isolates from
these nestlings indicated that many nest mates were colonized
by very similar strains of C. jejuni (GGDC for nest mates,
0.012 � 0.003; GGDC for non-nest mates, 0.021 � 0.001; Fig.
3). The randomization test demonstrated that the GGDC for
strains for C. jejuni isolates from the same nest was significantly
(P � 0.006) smaller than expected by chance. In a few cases,
strains from the same nest were genomically divergent, sug-
gesting that multiple strains may be infecting individuals in a

FIG 3 Genomic distance relationship of Campylobacter jejuni strains collected from nests where at least two nestlings sampled were positive (n � 9 nests) and
where full-genome sequences were available. Tips with the same letter indicate isolates that came from different nestlings in the same nest. Nest mates with GGDC
values of �0.003 are shown in bold. Isolates from the same nest had smaller GGDC values than expected by chance (P � 0.006). The isolate identification
numbers can be used to find NCBI accession numbers from Table S2 in the supplemental material.

Host Ecology and C. jejuni in a Wild Bird Species

August 2016 Volume 82 Number 15 aem.asm.org 4815Applied and Environmental Microbiology

http://www.ncbi.nlm.nih.gov/sra/SRR1816118
http://www.ncbi.nlm.nih.gov/sra/SRR1816122
http://www.ncbi.nlm.nih.gov/sra/SRR1816123
http://www.ncbi.nlm.nih.gov/sra/SRR1816125
http://www.ncbi.nlm.nih.gov/sra/SRR1816131
http://www.ncbi.nlm.nih.gov/sra/SRR1816132
http://aem.asm.org


single nest (i.e., acquired from both parents and/or from adult
helpers-at-the-nest [54]).

Movement data and habitat use. Location data were collected
from seven of the eight GPS receivers deployed. The bird carrying
the eighth unit was never seen after initial deployment, and we
assume that this bird did not return to the communal roost that
we were monitoring, although the lack of data could also have
been caused by a hardware malfunction. From the seven birds we
reencountered, we collected a total of 2,147 locations between 9
January and 27 March 2015 (Fig. 4). Of these locations, 717 were
collected at night and 1,430 during the day. The average home
range size (and standard deviation) for these seven birds based on
minimum convex polygons was 235 � 207 km2 (range, 78 to 684
km2).

On average, crows forayed 7.7 � 4.1 km (mean � standard
deviation) from the roost each day, with a maximum observed
distance of 29 km. During the night, 96.7% of the collected loca-
tions were in developed areas, with the vast majority occurring at
the communal roost. Daytime locations were recorded from both
developed (25.9%) and agricultural (71.5%) areas, with the ma-
jority of daytime foraging occurring in the agricultural areas sur-
rounding the town. Overall, daytime habitat usage differed from
random expectations in every habitat category that we assessed

except for areas of low-intensity development (Table 1). After
accounting for the amount of each habitat type that was available,
crows preferentially spent time in fallow fields, grasslands, hay
fields, almond trees, walnut trees, and areas of medium- or high-
intensity development (Table 1; randomization test, P � 0.04)
and avoided tomatoes, winter wheat, sunflower, alfalfa, rice, and
other crops (Table 1; randomization test, P � 0.001). We also
noted heavy daytime use of two particular locations outside the
roost. First, 3.2% of the daytime locations were at a local dairy
barn, which encompassed �0.00001% of the available land area in
the study site. Second, 19.4% of the daytime locations were at a
local primate research center, which encompassed �0.001% of
the available land area (Table 2).

DISCUSSION

Although many studies have suggested that wild birds play a role
in C. jejuni transmission, the contributions of host ecology, move-
ment, and social behavior to the risk of cross-species transmission
have been largely unexplored. We documented high year-round
prevalence of C. jejuni in American crows inhabiting an urban-to-
rural landscape in Davis, CA. Further, we demonstrated that pat-
terns of infection and environmental contamination are depen-
dent on social behavior and space use; thus, studies focused solely

FIG 4 (A) Map of the study site displaying 2,147 GPS locations collected from American crows. The large yellow circles indicate the nests included in Fig. 3. The
remaining symbols indicate the 7 individual birds from which locations were obtained. Insets show zoomed-in views of the nests included in Fig. 3, with the letters
corresponding to those included on the phylogeny (B) and the primate research center (C). This map uses satellite imagery available from the U.S. Geological
Survey; the map was constructed using the QGIS software.
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on infection prevalence may serve as a poor proxy for actual trans-
mission risk at a given location and time. Overall C. jejuni preva-
lence in feces varied between seasons with high and low social
aggregation, while patterns of movement and habitat use served to
amplify fecal contamination at certain times of the year and in
certain locations. As a result, the risk of cross-species transmission
of C. jejuni appeared to be concentrated in a predictable pattern
across the landscape. Our study is among the first to combine
extensive sampling and whole-genome sequencing of C. jejuni
with relevant information on host ecology, movement, and social
behavior.

Even with very high rates of infection, it is still unclear how
important crows are in the overall C. jejuni transmission cycle that
includes domestic animals and humans. At the peak of the winter
roosting season, approximately 6,000 crows congregated at our
study site. We estimated that 51% of those birds were infected
with C. jejuni; however, many of the collected isolates may be crow
specific (28) and thus might not be a threat for human infection.
Furthermore, even with high rates of infection, most infected feces
will not result in transmission because they may not contact an-
other host, or the bacteria may die before another host is con-
tacted. Still, with more than 6,000 birds occupying a small area at
one time of the year, the cumulative risk of transmission might be
high, especially considering the way that nonrandom space use
can amplify the risk of transmission in specific areas. For example,
the strong habitat associations with a local dairy barn and primate
research center likely resulted in extensive exposure to crow feces
at those locations during the peak of the roosting season. Even if

each fecal deposition event represents a very low risk of cross-
species transmission, the collective effect might be large. Although
a primate facility is clearly not a typical landscape feature that
crows encounter, we expect that similar patterns would be found
at any animal facility where crows can access easy and abundant
food resources.

Given the high prevalence that we observed in this study, it is
likely that crows are continually reexposed to C. jejuni and that
these exposures result in repeated infection, or that infection is
long-lasting. Unfortunately, the methods used in this study did
not allow collection of longitudinal data from the same individu-
als, so it is not clear how long crows shed C. jejuni in feces after the
initial infection. In other wild birds, very little is known about the
length of infection or the possibility of cross-strain immunity
(16). In one aviary-based study, Waldenström et al. (55) found
that experimental infection of European robins (Erithacus rube-
cula) with C. jejuni isolated from a song thrush (Turdus philome-
los) resulted in detectable bacteria shedding for 6.8 days, but in-
fection of the same species with a human-pathogenic strain only
resulted in 0 to 1 day of detectable shedding. In contrast, broiler
chickens typically remain colonized throughout their lifetime (up
to 7 weeks [56]), although experimental administration of differ-
ent C. jejuni strains can produce variation in the persistence of
infection (57). In one case, 3-week-old herring gulls (Larus argen-
tatus) that were naturally infected with C. jejuni were taken into an
aviary, and all had cleared their infection by 4 weeks after capture,
indicating that the total infection length was less than 7 weeks
(58). Although there is some indication that infection may result
in acquired immunity, relatively little is known about the effec-
tiveness or strain specificity of immunity, and reinfection by iden-
tical or novel strains is common (32, 56). Assuming that infection
persists for 1 to 7 weeks in crows, the average individual would
need to be exposed to C. jejuni frequently to maintain the 51%
prevalence that we observed in the winter. At present, it is uncer-
tain how this high rate of exposure is maintained, but there are a
few potentially contributing factors.

TABLE 1 Winter habitat use by American crows based on locations from GPS receivers compared to baseline percentage of each habitat

Habitat type
Night use (19:00
to 7:00) (%)

Day use (7:00
to 19:00) (%)

Baseline
use %

Day vs baseline
P valuea Crows/km2/day

Estimated
feces/km2/day

Developed 96.7 25.9 11.3 27.3 491
Open or low intensity 10.5 7.7 6.5 0.08 14.0 252
Medium intensity 80.0 12.6 4.1 ��0.0001 32.1 578
High intensity 6.2 2.3 0.7 ��0.0001 35.1 632

Agricultural 3.3 71.5 87.7 10.0 180
Alfalfa 0.7 7.3 14.7 	�0.0001 6.2 112
Almonds 0.1 8.9 5.1 ��0.0001 21.8 392
Fallow/idle cropland 0.4 19.5 16.2 �0.002 14.3 257
Grassland/pasture 0.1 4.8 1.8 �0.0001 34.5 621
Other hay/nonalfalfa 0.0 4.9 3.8 �0.034 16.6 299
Sunflowers 0.4 2.2 7.8 	�0.0001 3.3 59
Tomatoes 0.8 4.9 15.3 	�0.0001 3.9 70
Walnuts 0.1 9.0 4.5 ��0.0001 24.4 439
Winter wheat 0.0 5.7 8.3 	�0.0001 8.6 155
Rice 0.0 0.0 3.2 	�0.0001 0.0 0
Other crops 0.7 4.3 7.0 	�0.0001 8.0 144

Other (e.g., wetlands, barren) 0.0 2.6 1.0 ��0.0001 31.8 572
a From randomization test.

TABLE 2 Sample collection data by specific location

Specific location

Collected
at night
(%)

Collected
during
day (%)

Total area
(km2)

No. of
crows/day

No. of fecal
samples/day

Primate center 0.0 19.4 0.25 1,164 20,952
Local dairy barn �0.1 3.2 0.001 192 3,456
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Foraging ecology and habitat use may contribute to high rates
of crow infection. Foraging guild has been implicated as a driver of
C. jejuni infection, and opportunistic ground feeders, such as
crows, are among the most colonized groups (20). Unsurprisingly,
then, a high prevalence of C. jejuni infection has been found in
corvids around the world (15, 25, 28, 29, 59). Our study suggests
that social behavior may also be an important consideration in
understanding the high rates of corvid infection. For adults, we
found that infection was highest in the winter months and lowest
in the summer. Although we could not test directly for a causal
relationship between roost size and infection prevalence, the sea-
sonal change in prevalence broadly parallels population-level
changes in social aggregation. Whether this seasonal pattern is
driven by roosting behavior or some other factor is unknown at
present. For example, during the winter roosting season, migrants
intermingle with local birds, and it is possible that an infusion of
novel C. jejuni strains, rather than roosting density per se, drives
seasonal differences. We could not evaluate this possibility in our
study because samples collected under the winter roost came from
birds of unknown migratory origin. Regardless of the mechanism
driving seasonal changes in prevalence, the highest infection rates
occurred when crows roosted communally in one densely packed
area each night and foraged together in large flocks during the day.
During these months, up to 58% of individuals had fecal staining
on their feathers (31); because birds preen feathers regularly with
their beaks, the potential for fecal-oral bacterial transmission is
high. In addition to preening, crows often forage socially on highly
concentrated food resources, which may result in frequent fecal-
oral transmission during foraging. In general, C. jejuni does not
survive well in the environment outside the wet and warm condi-
tions of its host (60), but the social behaviors of crows could per-
mit transmission even if C. jejuni survival in feces is brief. For
nestlings, we found strong evidence that the infection status of
nest mates influenced the risk of infection and that infected nest
mates had more similar isolates than expected by chance.

Whether crows represent a major source of domestic animal
and, ultimately, human C. jejuni infection remains uncertain, but
our study indicates that data on infection prevalence and molec-
ular characteristics of isolates alone will be insufficient for under-
standing C. jejuni transmission dynamics. Rather, more studies
are needed that combine laboratory techniques and sampling of
wildlife for C. jejuni with rigorous field work characterizing the
ecology, movement, and behavior of potential wild bird vectors.
Interestingly, some data suggest that the size of crow roosts has
increased and that their locations have shifted from rural to in-
creasingly urban areas over the last 50 years, with unknown im-
pacts on disease dynamics (61). As human-altered landscapes
continue to bring wildlife, humans, and domestic animals into
increasingly close contact, understanding the shifting ecological
interactions and patterns of cross-species transmission will only
become more important.
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