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Abstract

Controlling for imperfect detection is important for developing species distribu-

tion models (SDMs). Occupancy-detection models based on the time needed to

detect a species can be used to address this problem, but this is hindered when

times to detection are not known precisely. Here, we extend the time-to-detec-

tion model to deal with detections recorded in time intervals and illustrate the

method using a case study on stream fish distribution modeling. We collected

electrofishing samples of six fish species across a Mediterranean watershed in

Northeast Portugal. Based on a Bayesian hierarchical framework, we modeled

the probability of water presence in stream channels, and the probability of spe-

cies occupancy conditional on water presence, in relation to environmental and

spatial variables. We also modeled time-to-first detection conditional on occu-

pancy in relation to local factors, using modified interval-censored exponential

survival models. Posterior distributions of occupancy probabilities derived from

the models were used to produce species distribution maps. Simulations indi-

cated that the modified time-to-detection model provided unbiased parameter

estimates despite interval-censoring. There was a tendency for spatial variation

in detection rates to be primarily influenced by depth and, to a lesser extent,

stream width. Species occupancies were consistently affected by stream order,

elevation, and annual precipitation. Bayesian P-values and AUCs indicated that

all models had adequate fit and high discrimination ability, respectively. Map-

ping of predicted occupancy probabilities showed widespread distribution by

most species, but uncertainty was generally higher in tributaries and upper

reaches. The interval-censored time-to-detection model provides a practical

solution to model occupancy-detection when detections are recorded in time

intervals. This modeling framework is useful for developing SDMs while con-

trolling for variation in detection rates, as it uses simple data that can be readily

collected by field ecologists.

Introduction

Species distribution models (SDMs) are widely used for

research on biodiversity patterns and processes, and for

informing conservation action and wildlife management

(Guisan and Thuiller 2005). Despite their value, SDMs

may often be biased due to the use of datasets including

false absences (Lobo et al. 2010; K�ery 2011; Dorazio 2012;

Lahoz-Monfort et al. 2014) because failure to detect a

species where it is present is a common source of error in

biological surveys (Guillera-Arroita et al. 2014; and refer-

ences therein). This problem may be solved using occu-

pancy-detection modeling, whereby presence–absence and

detectability given presence are jointly modeled in relation

to covariates (MacKenzie et al. 2006), although only

recently this approach has been considered in SDM
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development (Chen et al. 2013; K�ery et al. 2013; Lahoz-

Monfort et al. 2014).

Occupancy-detection modeling is generally based on

data from replicate discrete surveys conducted at, at least,

a subset of sampling units (sites; MacKenzie et al. 2006).

Replicated surveys may be made by visiting sites more

than once, but they may also be conducted at the same

site on a single visit but partitioned by time, observer or

method, or they can be conducted at different locations

within a site (MacKenzie et al. 2006; Guillera-Arroita

2011). In the removal design (MacKenzie et al. 2006),

surveying is halted at a site once the species is detected

and it was proposed that detection probabilities could be

modeled as functions of covariates that vary across sites

and also those (“such as local environmental conditions,

time of day, or survey or experience”) that vary across

surveys. This removal design is therefore a very general

approach to modeling first-detections where survey effort

is treated as a series of discrete surveys. As such a crucial

issue is exactly how the detection probabilities are mod-

eled parametrically; MacKenzie et al. (2006) suggested a

logistic model using a combination of covariates that var-

ied only between sites and those that varied between both

sites and surveys.

A potentially more natural approach for developing

SDMs while controlling for imperfect detection is to

model the observation process as continuous process

(e.g., a Poisson point process in time) and use the time

needed to first detect a species, rather than a detection/

nondetection history (Garrard et al. 2008; Guillera-

Arroita et al. 2011). Time to first detection is a decreasing

function of detectability and is known to be affected by

factors such as species abundance, species traits, and sam-

pling efficiency (Garrard et al. 2013; McCarthy et al.

2013; Bornand et al. 2014). The method is based on sur-

vival analysis (Kleinbaum and Klein 2012), using distribu-

tions of times to first detection to parameterize a survival

curve S(t) (i.e., the probability of a species remaining

undetected before a given time t), and to separate the

probability of occupancy from the probability of detection

given occupancy. The method has been mostly used in

visual surveys of vascular plants (e.g., Garrard et al. 2008,

2013; McCarthy et al. 2013; Bornand et al. 2014), but it

is likely useful for a wide range of taxonomic groups and

sampling methods.

One problem of time-to-detection approaches is that the

exact time when a species was first detected may be difficult

to estimate precisely in some circumstances due, for

instance, to sampling or recording constraints. In case of

bird point counts, it is common practice to divide the

count in time intervals, and recording species detections in

each interval rather than at specific points in time (e.g.,

Alldredge et al. 2007). Likewise, in surveys of aquatic

organisms using for instance nets, electrofishing or traps,

species detections can often be recorded only within time

intervals, and so the exact time to first detection is not

known precisely (e.g., Beja and Alcazar 2003). In conven-

tional survival analysis, this problem has been described as

interval-censoring, commonly resulting when periodic

assessments (e.g., clinical or laboratory examinations) are

used to assess if an event of interest has occurred (Radke

2003; Chen et al. 2012; Kleinbaum and Klein 2012). In

these circumstances, the event is known only to have

occurred before a given assessment (right-censoring) and

after the previous assessment (left-censoring), correspond-

ing to the upper and lower bounds of a time interval. Com-

mon approximations for dealing with interval-censored

data assume exact times (e.g., events occurring at the

lower-bound, midpoint or upper bound of the interval);

these approaches are arbitrary and can result in biased esti-

mates of the survival curve and the effects of covariates

(Radke 2003; Chen et al. 2012). We therefore avoid such

approximations in applying interval-censored survival anal-

ysis to occupancy-detection modeling.

In this study, we developed a time-to-first-detection

framework in the context of SDMs, using a modified for-

mulation of interval-censored survival analysis to deal with

detections recorded in time intervals (Kleinbaum and Klein

2012). This provides a natural and coherent parameteriza-

tion of detection probabilities for the removal design

(MacKenzie et al. 2006) as a function of site-covariates and

arbitrary time intervals. This parameterization is achieved

by way of a detection rate that may be constant (exponen-

tial survival model) or vary with elapsed time (e.g., the 2-

parameter Weibull survival model), and can be modeled as

a function of site-covariates using a log-linear model.

The approach is illustrated using stream fish distributions,

for which detection may greatly vary across sampling sites,

and times to detection are difficult to estimate precisely due

to sampling constraints (Zalewsky and Cowx 1990; Reynolds

1996; Penczak and Głowacki 2008). In detail, we examined

if the interval-censored time-to-detection approach allows

building reliable models when imperfect detection is a

potential drawback. We then used these models to extrapo-

late distributions of fish throughout the catchment streams.

Finally, we discuss potential applications of the interval-cen-

sored time-to-detection model to different datasets that may

often be collected by field ecologists.

Methods

Fish and environmental data

Descriptions of the study area, and of methodological

details for species surveys and, the collection of environ-

mental data are provided in Appendix S1. We studied
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time-to-detection data for freshwater fish species sampled

using electrofishing (Reynolds 1996), in 50-m reaches

(hereafter sites) distributed across the river Sabor catch-

ment (NE Portugal). Sampling was conducted in the

summer of 2012 at 89 sites, while no conditions for fish

occurrence due to lack of surface water were recorded at

another 95 sites. The study focused on the six most

prevalent species (>20 sampling sites), including four

natives (Luciobarbus bocagei, Pseudochodrostoma duriense,

Squalius alburnoides, and Squalius carolitertti) and two

exotics (Gobio lozanoi and Lepomis gibbosus). At each site,

we carried out an electrofishing session lasting for 15–
25 min, with longer surveys used in wider streams to

cover adequately the entire sector. The first detection of

each species was recorded in 5-min intervals due to prac-

tical constraints associated with electrofishing sampling.

Detection probabilities were modeled in relation to

stream width and depth, because these variables strongly

affect detectability by inducing variations in electrofishing

efficiency (Reynolds 1996) and in fish abundances

(MacKenzie et al. 2006; McCarthy et al. 2013). Occu-

pancy probabilities were modeled in relation to annual

precipitation, elevation, and Strahler’s stream order,

because these variables are known to strongly influence

the distribution of stream fish in Mediterranean regions

(Magalh~aes et al. 2002; Filipe et al. 2004; Ferreira et al.

2007), and they could be readily used to project the dis-

tribution models for the entire watershed.

Neighborhood effects

Modeling included neighborhood effects to account for

potential biases resulting from spatial autocorrelation of

the data, that is, lack of independence between the values

of variables sampled at nearby locations (Legendre 1993).

We employed autologistic models (Besag 1974; Augustin

et al. 1996; Gumpertz et al. 1997; Hoeting et al. 2000;

Bardos et al. 2015) for species occurrence and surface

water presence; Wi = 1 denotes water presence at site i,

while Zi = 1 indicates true species presence. These models

include an autocovariate that models the distance-

weighted influence on response variables of surrounding

response values, and a corresponding parameter allowing

estimation of the strength of neighborhood effects. The

autocovariate was constructed as a weighted sum over

neighborhood responses, not as a weighted mean, follow-

ing the work of Bardos et al. (2015). We used an inverse-

distance weighting, based on hydrological distance

(stream length) in km, with a long-distance cut off of

30 km (above which the weighting is zero) and a short-

distance cut off of 5 km, below which the weighting

remains at 1/5, encoding the idea that the influence of

particularly close sites does not increase without limit.

The auto covariates at site i are therefore:

Wspi ¼
X
k 6¼ i

k�Ns

dik � 30

min
1

dik
;
1

5

� �
Wk

Zspi ¼
X
k 6¼ i

k�Ns

dik � 30

min
1

dik
;
1

5

� �
Zk

(1)

where Ns ¼ 184 is the total number of sampling sites

(including ‘dry’ sites) and dik is the hydrological dis-

tance in km between sites i and k: Different long-dis-

tance cut offs were tested but the 30-km limit was

retained because each site had at least two other sam-

pling sites in its 30-km neighborhood, and because it

efficiently removed autocorrelation in model residuals

as judged through Moran’s I correlograms (Legendre

and Legendre 2012).

Species distribution models

We use WinBUGS to estimate the autologistic models for

water availability and true species presence–absence;
vi ¼ Pr Wi ¼ 1jW�ið Þ denotes the conditional probability

of water presence at site i, given water presence–absence
at all other sites (denoted W�i) and similarly

wi ¼ Pr Zi ¼ 1jZ�ið Þ is the conditional probability of true

occurrence at site i. Zi depends on Wi and each depends

on a common set Xji j = 1,2,. . ., n of covariates, via autol-

ogistic models

logit við Þ ¼ a0 þ a1X1i þ � � � þ anXni þ aautoWspi

logit wið Þ ¼ b0 þ b1X1i þ � � � þ bnXni þ B Wi � 1ð Þ
þbautoZspi

(2)

where aauto; a0; a1; . . . and bauto; b0; b1; . . . are regression

coefficients and B is a large positive constant (e.g., 109)

that ensures the probability of presence wi is effectively

zero when water is absent (Wi = 0).

We related true occupation to observed species pres-

ence and detection times via a model based on inter-

val-censored exponential survival models (Chen et al.

2012; Kleinbaum and Klein 2012). Under interval-cen-

soring (see Appendix S2), the likelihood of detecting a

species at each sampling site, in the time interval

ðt1;i; t2;i�, during a survey of duration Ti, is given

in terms of parametric detection-time distributions

S(t) = S(t, h):
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lðdi ¼ 1; t1;i; t2;ijhi;wiÞ ¼ wiðSðt1;i; hiÞ � Sðt2;i; hiÞÞ
lðdi ¼ 0jTi; hi;wiÞ ¼ wiSðTi; hiÞ þ ð1� wiÞ

(3)

for i 2 f1; 2; . . .Nsg, where di is an indicator variable

specifying whether the species was detected (1) or not (0)

at site i, hi is a vector of detection-time distribution

parameters at site i, t1,i and t2,i are the lower and upper

bounds of the time interval in which the species was

detected at site i, Ti is the total survey time.

For the analysis here, we use the exponential detection-

time distribution SðtÞ ¼ e�kt , where the detection rate k
is the sole parameter, so that the likelihood is then

lðdi ¼ 1; t1;t ; t2;t jki;wiÞ ¼ wiðe�ki t1;i � e�kit2;iÞ
lðdi ¼ 0jki;wi;TiÞ ¼ wiðe�kiTiÞ þ ð1� wiÞ

(4)

and we use a log-linear model for the detection rate ki at
site i

logðkiÞ ¼ c0 þ c1Y1i þ � � � þ cmYmi (5)

where Yji, j = 1,2,. . ., m, comprise linear and quadratic

terms for environmental covariates and c0; c1, . . . are

regression coefficients.

Simulations for the detectability model

We conducted simulations to evaluate the performance of

the interval-censored exponential model for detection

data resulting from a study design comparable to ours,

using an approach similar to Garrard (2009). For a set of

K = 150 sampling sites, we used a Bernoulli trial with a

probability w to generate the “known” occupancy status

at each site. Detection times given occupancy were gener-

ated using a random generator of exponential distribution

times, with detection rate k. We set a maximum time for

sampling at each site of Tmax = 15 min, with nondetec-

tions occurring when sites were vacant or when time to

detection exceeded Tmax. Simulations were performed

considering nine combinations of parameters, with occu-

pancy set to w = 0.25, 0.5 and 0.75, and the detection

rate set to k = 0.20, 0.10 and 0.07. These detections rates

correspond to mean detection times of 5, 10, and 15 min,

respectively. For each combination of parameters, we ran

1000 times.

Model building and evaluation

To avoid model instability and allow comparisons

between parameters, all environmental covariates were

standardized to zero mean and unit standard deviation.

The detection component was fit to the full model,

including second order polynomials of both depth and

width, thereby allowing for nonlinear changes in detection

in relation to covariates. The occupancy and water pres-

ence components were also fit to the full model, including

the three large-scale environmental variables and the

neighborhood effects. We fitted full models instead of

seeking more parsimonious models because there is at

present considerable uncertainty on the most reliable

methods to undertake selection in Bayesian models (e.g.

K�ery 2010), the number of variables was low relative to

sample sizes, and modeling was based on a small set of

variables described in the literature to affect stream fish

detection and occupancy. The effects of variables were

judged from the 95% credible intervals, assuming that

evidence for an effect is ambiguous when the credible

interval of a parameter estimate includes zero (K�ery

2010).

Overall model fit was assessed using posterior predic-

tive checks based on standard Bayesian P-values (Gelman

et al. 1996), measuring the discrepancy between observed

and predicted detections at sampling sites. Extreme P-val-

ues (e.g., >0.95 or <0.05) are indicative of poor fit,

whereas values near 0.5 indicate well-fitting models.

Model discrimination ability was evaluated using an elab-

oration of the area under the receiver operating character-

istic curve (AUC) in which posterior AUC distributions

are calculated (Zipkin et al. 2012). Predicted probabilities

of species presence cannot be directly compared to

observed presences/absences, because false absences may

occur (Garrard et al. 2013). In our study, AUC was based

on comparisons between predicted detection probabilities

and actual detections/nondetections at sites that were

sampled (i.e., sites that were not dry), thereby providing

an evaluation of the time-to-detection model fit. Proba-

bility of detecting a species at each site i, conditional on

the sampling duration, Ti, was based on the second part

of eq. 4, as follows:

Pr ti\Tijwi; kið Þ ¼ wi 1� e�kiTi
� �

(6)

This unconditional probability of detection integrates

both the probability of the species being present at the

site, and the conditional probability of detection given

presence. We performed a fivefold cross-validation, in

order to obtain a true predictive performance measure

(Broms et al. 2016): (1) we randomly divided the data

in five sets; (2) withholding one set, we fitted the model

to the remaining sets; (3) computed AUC for the with-

held set; and (4) we repeated the process for every

subset.

We used all draws of the estimates of eq. 5 to estimate

posterior distributions and credible intervals of AUC val-

ues (ranging 0–1, where values >0.5 indicate progressively

better discrimination ability) using the R package ROCR

(Sing et al. 2005).
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The posterior probabilities of species detection were

also used against actual detections/nondetections to esti-

mate spatial autocorrelation in model residuals. For each

model, we constructed a Moran’s I correlogram using the

mean values of the residuals posterior distributions and

evaluated the significance of Moran’s I coefficients with

Monte Carlo permutation tests using the R package APE

(Paradis et al. 2004). To build the correlogram, pair wise

distances were divided in classes such that a similar num-

ber of pairs was assigned to each class, thereby assuring

comparable power in tests of significance across all dis-

tance classes (Legendre and Legendre 2012).

Species distribution mapping

We developed occupancy probability maps comprising

(1) posterior autologistic occupancy probabilities �wi for

sampled sites i�Ns; and (2) extrapolated probabilities �wi

for a further 1861 unsampled sites (with labels i[Ns)

across the stream network of the Sabor catchment, for

which neighborhood effects are extrapolated by treating

sampled sites as though they are neighbors of each

unsampled site, that is by applying eq. 1 to sites i[Ns.

In case where eq. 1 reduces to a logistic model (i.e.,

aauto ¼ bauto ¼ 0), then for each extrapolation site i[Ns,
�wi reduces to a posterior logistic occupancy probability.

We used this extrapolation approach for neighborhood

effects because including the unsampled sites as missing

data in the autologistic model was computationally

impractical in WinBUGS.

For computational convenience, the stream network

was segmented according to the following criteria: (1)

each first order stream was one segment; (2) one segment

in higher order streams was the reach between two suc-

cessive tributaries; and (3) long reaches were divided so

that all segments were <1000 m. Each segment was then

assigned with the environmental characteristics of the cor-

responding centroid. At each segment, we thus assumed

that environmental conditions and neighborhood effects

were constant, and there was no variation in the probabil-

ities of water presence and species occupancy at 50-m

stream reaches. We used the mean estimated probabilities

of species occupancy, and the standard deviation of the

posterior distribution to produce the maps of predicted

species distribution, and the uncertainty of model predic-

tions. All spatial analysis and data manipulation were per-

formed in ArcMap 10.0 (ESRI 2011).

Model fit

Models were fit in WinBUGS (Lunn et al. 2000), by call-

ing WinBUGS through the package R2WinBUGS (Sturtz

et al. 2005) in R (R Core Team 2015), and handling the

results back in R. Following a sensitivity analysis (Cressie

et al. 2009), prior distributions of parameters were speci-

fied as normal distributions with zero mean and variance

10, truncated to the domain (-10,10). We ran five chains

of 100,000 iterations after a burn in of 50,000, and

thinned the chains by 20 resulting in 12,500 simulations

for each parameter. Convergence was assessed with the R-

hat statistic, which examines the variance ratio of the

MCMC algorithm within and between chains across itera-

tions. WinBUGS code is provided in Appendix S3.

Results

The simulation results (Table 1) showed that at sample

sizes similar to ours the interval-censored model per-

formed well. The simulated parameters were always well

within the estimated credible intervals, and they were

generally very close to the median parameter estimates.

However, the occupation probability tended to be overes-

timated for lower levels of occupancy especially for lower

detection rates.

The occupation-detection models for the six species

showed adequate convergence of parameter estimates as

judged from the R-hat statistics. Bayesian P-values were

far from zero and one, ranging from 0.43 (L. gibbosus) to

0.64 (S. alburnoides), and thus model fit was considered

adequate. Median AUCs estimated through cross-valida-

tion ranged between 0.67 and 0.93 indicating that the dis-

crimination ability between detection and nondetection

sites was particularly high (AUC > 0.80) for all species

but L. gibbosus (Table 2). Moran’s I correlograms indi-

cated that there was no significant autocorrelation in the

residuals of species occupancy-detection models.

Table 1. Performance of the interval-censored time-to-detection

model in retrieving parameter from simulated data. The simulated

data were generated using nine combinations of parameters, includ-

ing three levels each of occupancy probability (Ψ) and detection rate

(k). For each simulated condition, we present the median and credible

intervals (in brackets) of parameter estimates based on the medians

from 1000 simulations.

Simulated

parameters Estimated parameters

w k ŵ k̂

0.25 0.20 0.26 (0.15–0.36) 0.19 (0.09–0.33)

0.10 0.28 (0.17–0.60) 0.09 (0.02–0.20)

0.07 0.35 (0.16–0.63) 0.04 (0.01–0.14)

0.50 0.20 0.49 (0.39–0.60) 0.20 (0.15–0.27)

0.10 0.48 (0.34–0.77) 0.10 (0.05–0.19)

0.07 0.50 (0.32–0.73) 0.07 (0.03–0.15)

0.75 0.20 0.74 (0.65–0.83) 0.20 (0.16–0.26)

0.10 0.72 (0.60–0.86) 0.11 (0.07–0.15)

0.07 0.69 (0.52–0.86) 0.07 (0.05–0.13)
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There was evidence for depth influencing the detection

probabilities of L. bocagei, P. duriense, and S. carolitertii,

as the credible intervals of parameter estimates for the

linear (except S. carolitertii) and quadratic terms did not

overlap zero (Table 2). These results suggested a

U-shaped relationship with the median time to first

detection, with shorter detection times when the stream

was neither too shallow nor too deep (Fig. 1). In case of

width, the credible intervals did not overlap zero in the

model developed for S. alburnoides, suggesting also a

U-shaped relationship (Fig. 1). The probability of the

stream channel having surface water during the sampling

visit was positively related to stream order, elevation and

precipitation, but the latter two effects were ambiguous

because the credible intervals overlapped zero (Table 2,

Appendix S4). The probability of occupancy in sites with

surface water was positively related to stream order for

L. bocagei and S. carolitertii; elevation had a positive effect

on S. alburnoides, and a negative effect on G. lozanoi and

L. gibbosus; and precipitation had a negative effect on

L. bocagei, S. alburnoides, and S. carolitertii (Table 2,

Appendix S4). Evidence for positive neighborhood effects

was found for S. carolitertii (Table 2).

Maps of predicted distribution indicated that

L. bocagei, P. duriense, and S. carolitertti were widespread,

occupying most of the main river and its two largest

tributaries (Fig. 2). S. alburnoides was more restricted,

occurring primarily in the upper reach of the Sabor and

the two main tributaries. From the two exotic species,

G. lozanoi occurred primarily in the downstream reaches

of the main river and its largest tributary, whereas L. gib-

bosus was more widespread, although it was also absent

from upstream reaches and smallest tributaries (Fig. 2).

Uncertainty in model predictions was low to moderate,

and it was highest for P. duriense, L. gibbosus, and S. al-

burnoides (Appendix S5). In most cases, uncertainty in

species occupancy probability tended to be higher in the

tributaries and in upper river reaches, where it was

affected by uncertainties in whether the watercourses were

dry or not.

Discussion

Our work expanded the time-to-detection model (Gar-

rard et al. 2008, 2013) to deal with detections collected in

time intervals (interval-censoring) and illustrated its value

for modeling species distribution using stream fish as a

case study. The environmental correlates of occupancy

identified for each species were in line with previous

research on Mediterranean stream fish (e.g., Magalh~aes

et al. 2002; Filipe et al. 2004; Ferreira et al. 2007), sug-

gesting that models successfully incorporated key factors

influencing species distributions. For most species, we

found significant spatial variation in detectability, sup-

porting the importance to control for imperfect detection

in distribution modeling studies (Guillera-Arroita et al.

2014; Lahoz-Monfort et al. 2014). Overall, our approach

should provide a useful addition to the toolbox of field

ecologists modeling species distributions while controlling

for imperfect detection (Chen et al. 2013; Lahoz-Monfort

et al. 2014).

Our study was based on the exponential model, which

has been used in time-to-detection studies (Garrard et al.

2008, 2013), and it was considered a convenient choice

due to its simplicity and its wide applicability (Kleinbaum

and Klein 2012). The exponential is the simplest of the

parametric survival models (Kleinbaum and Klein 2012),

where times to detection are described by only one

parameter and detections are assumed to occur at a con-

stant rate (Garrard et al. 2008). Due to its memoryless

property (Murphy et al. 2002), time elapsed in previous

intervals does not alter detection probability for a
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Figure 1. Variation in median times to first detection of each species

with 0.9 success probability if species is present, as a function of

stream depth and width. Curves were derived from the detection

models in Table 2, by varying the values of one variable conditioning

on the mean values of other covariates in the model.
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Figure 2. Predicted occupancy probabilities of six fish species across the river Sabor catchment, combining the probabilities of surface water

being present in the watercourse, and the conditional probabilities of occupancy given water presence. Line width is proportional to stream order.
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subsequent sampling interval, and thus the exponential

distribution cannot model increases or decreases in

detectability during each survey. This limitation may be

overcome using other parametric survival models, but

exploring these possibilities were beyond the scope of our

study. In contrast to previous time-to-detection studies

(Garrard et al. 2008, 2013), our study was based on

detections recorded in 5-min time intervals rather than

continuously. This was unavoidable, because during elec-

trofishing, it is nearly impossible to keep a continuous

track of each species captured, due to logistic constraints

and difficulties in species identification. Therefore, we

have used a modification of the time-to-detection

approach based on interval-censored survival analysis

(Chen et al. 2012; Kleinbaum and Klein 2012), because

common approximations assuming for instance events

occurring at the lower-bound, midpoint or upper bound

of the interval may result in biased estimates of the sur-

vival curve and the effects of covariates (Radke 2003).

Simulations showed that our approach provides unbiased

estimates of detection rates and occupancy probabilities,

suggesting that the method performs well in retrieving

simulated values under conditions similar to our sam-

pling design. It should be noted, however, that the occu-

pancy probability tended to be overestimates for rare

species (values of 0.25 in prevalence).

In four of six species, we found that variation in

detectability across sites was influenced by stream depth,

stream width, or both, and that responses to these variables

varied across species. These effects may reflect variation in

electrofishing efficiency, which is generally expected to be

lower when water is too deep or too shallow, and when riv-

ers are very wide (e.g., Zalewsky and Cowx 1990; Penczak

and Głowacki 2008). Electrofishing efficiency is known to

be affected by factors such fish size, shape, and behavior

(e.g., benthic versus pelagic) (e.g., Zalewsky and Cowx

1990; Penczak and Głowacki 2008), which may explain to

at least some extent the differences observed across species.

It is also possible that effects of width and depth were

mediated by their strong influence on Mediterranean

stream fish abundances (e.g., Ferreira et al. 2007), which in

turn may have major effects on species detection probabili-

ties (MacKenzie et al. 2006; McCarthy et al. 2013). Differ-

ent species reach the highest abundances in stream sectors

of different width and depth (e.g., Ferreira et al. 2007),

which may also contribute to explain changes in detection

across species. Whatever the reasons, the results obtained

provide empirical support to the view that accounting for

imperfect detection is important when undertaking species

distribution modeling (Lahoz-Monfort et al. 2014). This

may be particularly relevant when focusing on aquatic spe-

cies such as fish and amphibians, because organisms living

underwater are notoriously difficult to sample and may be

highly affected by imperfect detection (Głowacki 2011),

thereby calling for the use of modeling techniques control-

ling for variation in detectability (Comte and Grenouillet

2013; Ferreira and Beja 2013).

Modeling results revealed relationships between occu-

pancy probabilities and environmental variables that are in

line with the results from other studies carried out in

Mediterranean streams, highlighting in particular the

strong effect of stream order on occupancy (Magalh~aes

et al. 2002; Filipe et al. 2004; Ferreira et al. 2007). For

instance, we found that occupancy by L. bocagei and

P. duriensis strongly increased with stream order, which is

in line with observations elsewhere showing that barbel and

straight-mouth nase to be more prevalent in higher order

streams. Overall, results suggest that time-to-detection

modeling was successful in identifying key factors affecting

fish distribution, while controlling for variation in

detectability. It is noteworthy, however, that this compo-

nent of the hierarchical model accounted only for the prob-

ability of occupancy when there is water in the watercourse,

because part of the streams were dry and thus unavailable

for occupation by the target species. This was dealt with by

modeling the probability of water presence in relation to

environmental variables as an additional component of the

hierarchical model, using binary draws from this probabil-

ity to simulate surface water availability, then predicting

the probability, given water availability, of fish occupancy

of any 50-m reach of the stream network. Results indicated

that the probability of water presence was mainly related to

stream order, with headwater streams of order one and two

tending to be dry and thus without conditions for fish,

while streams and rivers of order three and above had a

high probability of having water. This pattern is common

in Mediterranean streams and elsewhere, where headwaters

dry and as the stream channel increases in size downstream,

surface water remains in pools or in surface flowing (Lake

2003; Robson et al. 2013). We thus suggest that both the

presence of water and the detection of species given water

presence should be routinely considered when modeling

the distribution of aquatic organisms along stream net-

works and in other waterbodies (e.g., pond breeding

amphibians; Ferreira and Beja 2013), providing a more

realistic account of two potentially distinct processes affect-

ing occupancy.

Evaluation of model discrimination ability for occu-

pancy-detection models is difficult, because true absences

are unknown, and so predicted probabilities of species

occupancy cannot be directly compared with observed

presences/absences (Garrard et al. 2013). To circumvent

this problem, Garrard et al. (2013) evaluated occupancy-

detection models by comparing the observed and pre-

dicted proportion of sites where each species was

detected. Here, we expanded this approach, using a
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variant of the AUC method described by Zipkin et al.

(2012) to compare predicted detection probabilities with

observed detections/nondetections, which avoided any

assumptions about the characteristics of nondetections.

AUC is a standard method for evaluating species distribu-

tion models (e.g., Kharouba et al. 2013) that provides a

more complete characterization of model discrimination

ability than the simple comparison of the observed and

predicted proportion of species detections. In contrast to

Zipkin et al. (2012) we used AUC to estimate the dis-

crimination ability between detections and nondetections,

and not between presences and absences.

The approach described here may find wide applicabil-

ity where time-to-detection approaches are sought to con-

trol for imperfect detection in occupancy studies (e.g.,

Garrard et al. 2008, 2013), but where a species detection

can only be determined to lie in an interval obtained

from a sequence of sampling intervals. This may be gen-

erally the case in electrofishing studies such as ours, but

the problem may also occur over a wide range of circum-

stances. For instance, sampling of aquatic organisms in

shallow waters often involve dip-netting during fixed time

intervals (Beja and Alcazar 2003). Also, during bird

counts it is common to register detections in time inter-

vals (Alldredge et al. 2007), because it is impractical to

register the exact moment when each individual was seen

or heard. Finally, in studies involving periodic checking

of traps (e.g., drift nets, mist nets, live traps for small

mammals) it is possible to know that a capture event

occurred after the trap was set but before it was checked,

but the exact moment of capture it is often unknown. In

all these cases, time-to-detection modeling may benefit

from a wealth of methods developed to deal with inter-

val-censored data, which have been particularly well

explored in the medical and veterinary sciences (e.g.,

Radke 2003; Chen et al. 2012). These methods allow

extending the relatively simple case described in our

study, by accommodating for instance variation in the

duration of time intervals across sampling units, or by

replacing the exponential by a more flexible model (e.g.,

Weibull) that can account for changes in detectability

within each sampling occasion (e.g., Chen et al. 2012;

Kleinbaum and Klein 2012). Overall, the interval-censored

time-to-detection model framework revealed as a promis-

ing approach for developing SDMs that could accommo-

date variation in detection rates, and we expect this

approach to be tested in other case studies where time of

first detection is not known precisely.
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