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ABSTRACT
In nature, stress is typically chronic or recurring and stress exposure can prime modified responses
to recurring stress. Such stress priming may occur at the level of transcription. Here, we discuss the
connection between plant stress memory, transcription, and chromatin modifications using the
example of recurring heat stress. KEYWORDS
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As sessile organisms plants need to cope with various
stresses “on the spot” and hence need to adapt to these
in order to ensure survival and reproductive success.
Plants face a number of different stresses, ranging from
biotic stress such as herbivory to abiotic stress such as
extreme temperatures or drought. Most of these stresses
are not singular events, but are recurring more or less
regularly. This suggests that it may be beneficial for a
plant to store information about a past stress event as
this may predict a series of similar stress events in the
future. Indeed, plants can be primed by a stress expo-
sure to respond more efficiently to a recurring stress
event.1,2 This is, however, a classical trade-off situation
as the maintenance of constitutively high levels of
molecular defenses consumes energy and interferes
with growth and thus is beneficial when stress is consti-
tutive, but disadvantageous if not.3 Hence, plants may
benefit from storing information about previous stress
exposure in a way that requires little resources, but that
allows the plant to respond more efficiently to a second
stress exposure. It has been hypothesized that chroma-
tin modifications may provide such a lasting memory
mark that can be maintained with relatively few resour-
ces. In this commentary, we discuss recent findings and
mechanistic insights into transcriptional regulation
during adaptation to recurring heat stress (HS).

Whereas the immediate responses to a single HS
were analyzed in great detail (reviewed in4-6), much

less is known about how plants cope with recurring
HS and how they store and use the information con-
veyed by the first HS to modulate the response to
recurring stress. Plants can acquire thermotolerance
by exposure to a moderate HS; this acquired thermo-
tolerance allows plants to then withstand a HS that is
lethal to a naive plant.7 Interestingly, plants actively
maintain this HS memory for several days and it was
demonstrated that this memory is genetically separa-
ble from the mere acquisition.8,9 HS memory specifi-
cally requires HEAT SHOCK TRANSCRIPTION
FACTOR A2 (HSFA2).8 HSFA2 is one of 21 HSF
genes identified in Arabidopsis thaliana;5 HSFA2 is
strongly heat inducible and its expression depends on
the four constitutively expressed HSFA1 isoforms.10,11

In vitro, HSFA2 was shown to interact with the pro-
moters of different HS-dependent genes such as
HEAT SHOCK PROTEIN 22.0 (HSP22.0)12 but no in
vivo data on binding kinetics to potential target loci
were available until very recently, thus precluding
inferences about the molecular role of this transcrip-
tion factor during HS memory.

One component of HS memory is the sustained
induction of a subset of HS-responsive genes
(memory-associated genes); this is in contrast to other
HS-induced genes that are activated quickly but whose
expression strongly drops within hours after the end of
heat exposure.13 Interestingly, the initial induction of
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both classes of genes after HS is not compromised in
hsfa2 mutants; however, the sustained expression of
memory genes is strongly decreased.8,14 This indicates
that HSFA2 is required specifically for the memory
phase and that initial transcriptional activation is
separable from sustained expression later on.

The most parsimonious explanation for sustained
induction of HS memory genes is the persistent bind-
ing of a transcription factor to these loci. Chromatin
immunoprecipitation analysis of HSFA2 binding to its
target genes after HS, however, indicates that it binds
only transiently after HS and has mostly dissociated
during the memory phase.14 This is remarkable as
only during the memory phase the mutant shows the
most pronounced defects both at the organismal and
the molecular level.8,14 To investigate possible addi-
tional regulators, the authors focused their analysis on
histone modifications, more specifically on histone
H3K4 methylation. H3K4 trimethylation (H3K4me3)
was strongly induced at memory-associated loci,
where it was maintained at high levels for at least
2 days after HS. High H3K4me3 levels depended on
functional HSFA2. Memory-associated loci were also
enriched for H3K4 dimethylation (H3K4me2) after
HS, and this enrichment became apparent only 1 day
after HS. Thus, H3K4me2 levels did not correlate with
transcriptional activity per se. As for H3K4me3,
HSFA2 was required for peak levels of this mark.

The sustained induction of gene expression after a
stress exposure of limited duration reflects a type of
transcriptional memory. In the literature, transcrip-
tional memory also describes a modified transcrip-
tional response following a second stress that depends
on the first stress exposure after an intervening period
of inactivity.15 In plants, such transcriptional memory
had been described in response to recurring drought
stress.15,16 L€amke et al. now reported a similar phe-
nomenon in HS memory; a subset of memory genes
showed a stronger re-activation upon a recurring HS
2 days after the primary HS.14 Interestingly, genes that
showed this behavior were highly enriched in
H3K4me2 and H3K4me3. Both, the transcriptional
memory and the H3K4 me enrichment depended on
functional HSFA2. Taken together, the data suggest
that H3K4me2 and/or H3K4me3 act as a chromatin
modifications that mark a locus for recent transcrip-
tional activation and that persist after active transcrip-
tion has subsided. The transiently binding HSFA2
transcription factor orchestrates this memory.

Although evidence so far remains correlative, it is
tempting to speculate that H3K4me2 and H3K4me3
are involved in relaying transcriptional memory
during HS memory. A prerequisite for efficient tran-
scription is the transition of RNA Polymerase II
from the initiating into the elongating phase of tran-
scription. It was suggested that H3K4me3 is specifi-
cally required to enable this process.17 Furthermore,
H3K4me3 is thought to anchor the basic transcrip-
tion machinery to specific loci.18 This was suggested
to be mediated through the interaction with the
general transcription factor TFIID, a transcriptional
activator that can specifically recognize this modifi-
cation in mammalian systems. Of note, this interac-
tion was enhanced in the presence of H3K9ac,18

potentially explaining the modulation of transcript
levels of the memory-associated genes over time.
Another potential role of H3K4me3 could be its
effect on transcript stability and efficient splicing.
The maturation of mRNA molecules involves the
addition of a 50-cap (7-methylguanosine).19 This cap
is recognized and protected by the cap-binding-
complex (CBC), which promotes splicing.20

Recently, it was shown that there is an intricate con-
nection between H3K4me3 and the recruitment of
the CBC as the COMPASS-like complex (which is
required for trimethlyation of H3K4) and subunits
of the CBC interact physically. Loss of either
H3K4me3 or the CBC lead to a higher proportion
of un-capped and aberrantly spliced transcripts.21

H3K4me3 also offers a potential explanation for the
altered re-induction of some memory-associated
genes after recurring HS. In vitro competition assays
with a histone acetyl transferase showed a prefer-
ence of H3 acetylation for histone tails already car-
rying H3K4me3.22 Mechanistically, this suggests
that H3K4me3 predisposes tails carrying this modi-
fication for acetylation of H3. This would be an
attractive explanation for the observed super-induc-
tion of selected memory-associated genes as H3
acetylation has been suggested to increase the tran-
scriptional rate.23 Taken together, it is tempting to
speculate that H3K4me3 is used to store informa-
tion of past stress exposure and to modulate the
responses to recurring stress.

The role of H3K4me2 is less well understood.
H3K4me2 was suggested to play a role in differenti-
ated cells in mammalian systems, as expressed cell
type-specific genes of CD4+ cells were enriched in
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H3K4me2.24 Similar observations were made for neu-
ronal tissue.25

The findings reported in L€amke et al. provide new
insights to better understand information storage and
retrieval in plants. It will be interesting to determine if
other histone modifications play a role in information
storage after HS. Although H3K4me3 was suggested
to have a similar role in drought stress memory,15 we
do not know to what extend the findings discussed
can be generalized to other stress systems in plants
and other organisms. A major open question is what
enzymes set and regulate H3K4me3 and H3K4me2 in
response to HS. In particular, it is unknown whether
H3K4me2 is generated by degeneration of H3K4me3
or set independently, as suggested by others.26 In sum-
mary, the recent findings shed light on the fundamen-
tal question of how plants can store information on
recent stress exposure and how this might modify the
response to further stress. At the same time, it opens
up exciting avenues for future research.
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