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Quantitative Bias Analysis in Regulatory Settings

Nonrandomized studies are es-
sential in the postmarket ac-
tivities of the US Food and Drug
Administration, which, however,
must often act on the basis of
imperfect data.

Systematic errors can lead
to inaccurate inferences, so it
is critical to develop analytic
methods that quantify uncer-
tainty and bias and ensure that
these methods are implemented
when needed. “Quantitative bias
analysis” is an overarching term
for methods that estimate quan-
titatively the direction, magni-
tude, and uncertainty associated
with systematic errors influenc-
ing measures of associations.

The Food and Drug Admin-
istration sponsored a collabo-
rative project to develop tools
to better quantify the uncer-
tainties associated with post-
market surveillance studies used
in regulatory decision making.
We have described the rationale,
progress, and future directions
of this project. (Am J Public
Health. 2016;106:1227-1230.
doi:10.2105/AJPH.2016.303199)
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N onrandomized study de-

signs play an essential role

in the activities of the US Food
and Drug Administration (FDA).
Beginning with the FDA
Amendments Act of 2007,
Congress mandated that the FDA
use observational health care data
to conduct active surveillance
of risks associated with medical
products. In response, the FDA
launched the Sentinel Initiative'
in May 2008. Mini-Sentinel is
a pilot program for the Sentinel
Initiative and includes about
178 million individuals as of July
2014.% Sentinel data partners
maintain patient data, and re-
quests to analyze the data are
processed through a clearing-
house to protect patient privacy.
Regulatory agencies other than
the FDA also use nonrandomized
data. For example, in response
to the Patient Protection and
Affordable Care Act of 2010,
Congress authorized the estab-
lishment of the Patient-Centered
Outcomes Research Institute® to
fund comparative clinical effec-
tiveness research. Some of this
research uses large-scale obser-
vational studies that include data
from the Centers for Medicare
and Medicaid Services.

Nonrandomized designs are
used in three stages of medical
product postmarket surveillance:
in signal generation, such as data
mining in the FDA Adverse
Event Reporting System and
Vaccine Adverse Event Report-
ing System; in signal refinement,
such as active surveillance in FDA
Mini-Sentinel and Centers for
Disease Control and Prevention
Vaccine Safety Datalink; and in

signal evaluation, such as
hypothesis-driven epidemiolog-
ical studies involving individual-
level data.”> Nonrandomized
studies are also used in benefit—
risk assessment of medical prod-
ucts (less so with regard to
benefits), which is “the basis of
FDA'’s regulatory decisions in the
premarket and postmarket re-
view process.”®®! Large-scale
observational data are especially
useful for studies of low-
probability adverse events that
cannot be detected with sufti-
cient precision during premarket
randomized clinical trials. One
can reasonably expect that these
activities will substantially in-
crease the use of nonrandomized
epidemiological study designs
in regulatory activities.
Although nonrandomized
studies can provide critical in-
sights into causal relations and
inform regulatory decisions,
“in many cases, FDA must draw
conclusions from imperfect
data.”0®?7

therefore, to identify and evalu-

It 1is important,

ate the sources of uncertainty,
such as the “absence of in-
formation, conflicting findings,
[and] marginal results.”*®%"7

Both random error and

systematic error contribute to the
uncertainty of a study’s results,
but systematic error is often the
main concern in nonrandomized
studies. Bias arising from sys-
tematic errors in epidemiological
research can lead to inaccurate
inferences, so it is critical to de-
velop or adapt analytic methods
that accurately and transparently
quantify uncertainty and bias in
these findings and to ensure that
these methods are implemented
routinely. Efforts to do so are
already under way. For example,
the Prescription Drug User Fee
Act V implementation plan for
benefit-risk analysis includes
plans to develop methods that
characterize uncertainty,® and in
2014 the Institute of Medicine
held a two-part workshop spe-
cifically focused on this issue.”

Quantitative bias analysis is
an overarching term applied to
methods that estimate quantita-
tively the direction, magnitude,
and uncertainty associated with
systematic errors that influ-
ence measures of associations.
Methods for implementing
quantitative bias analysis have
been well described,®” and good
practices for quantitative bias
analysis, including the
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acknowledgment of its un-
derlying assumptions and limi-
tations, have been outlined.'’
Some have previously noted that
quantitative bias analysis in the
regulatory arena would be use-
ful.'"" To our knowledge,
however, no regulatory authority
has systematically incorporated
quantitative bias analysis into
its consideration of epidemio-
logical research as part of the
evidence base supporting health
policymaking.

We describe an FDA-
sponsored initiative to customize
quantitative bias analysis tools for
use with epidemiological studies
of vaccine safety and to in-
corporate the results of these
bias analyses into the FDA’s ef-
forts to achieve the regulatory
mission of protecting and ad-
vancing public health. Although
our initial focus is on vaccine
safety, the methods and tools
are flexible and can be adapted
to other safety and effectiveness
studies and to benefit—risk studies.

INTRODUCTION TO
BIAS ANALYSIS AND
ITS UTILITIES

Random error is the error in
a study’s findings resulting from
sampling variability. Assessments
of random error are ubiquitous
in epidemiological research and
are typically quantified using
frequentist P values or 95%
confidence intervals (Cls). An
important hallmark of random
error is that as the study size in-
creases, random error decreases.
Therefore, as the study size be-
comes large, random error ap-
proaches zero. “Systematic
error,” also referred to as “bias,” is
the error in a study that results
from errors in its design and
conduct or in data analysis. Un-
like random error, as study size
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increases, the systematic error
does not decrease. Although
random error is nearly always
quantified in presentations of
epidemiological research, the
impact of systematic error on
study findings is rarely quanti-
fied,"” even though quantitative
methods have been long
available.

Quantitative bias analysis
methods date to the 1950s, when
Bross described methods to assess
the impact of misclassification'?
and Cornfield described methods
to assess the impact of un-
controlled confounding.'? These
simple approaches used only the
two-by-two contingency tables
summarizing the study data and
plausible assumptions about
sources of bias, yet they provided
powerful insight into the impact
that systematic error could have
had on study findings. More re-
cently, methods have been de-
veloped to account for the
uncertainty in the evaluation
of bias using Monte Carlo
simulation methods,>!?

Bayesian methods,”'* empirical
methods,'® and missing data
methods.'* The basic approach
for all methods of quantitative
bias analysis is to assess the likely
sources of systematic error in

a study (typically uncontrolled
confounding, selection bias, and
information bias); relate the biases
to the observed data through bias
models; quantify the direction,
magnitude, and uncertainty as-
sociated with the biases by
assigning plausible values to the
parameters of the bias models;
and interpret the results of the
study in light of this assessment of
bias."’

Quantitative bias analysis can
have different objectives, and the
goal of the analysis guides the
details of the methodology. One
of the most common uses is to
estimate the direction, magni-
tude, and uncertainty resulting
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from one or more sources of
systematic error in a study.g’10
A second common rationale for
quantitative bias analysis arises
when the analyst has little in-
formation to guide the choice
of values for a bias analysis but
believes sources of systematic
error likely affected the study

8,10
results.”

In this case, the analyst
may feel uncomfortable making
strong assumptions about the
values to assign to bias parameters
but may still want to explore how
sensitive the study findings are to
plausible ranges for the values
assigned to the bias parameters.
In such cases, rather than
specifying the bias parameters
a priori, one instead estimates the
amount of bias that would be
required to change an estimate of
association to a target value. This
target value could be the null
value, but any value that would
lead to a substantively different
inference is possible for the target.
Judgments can then be made as to
whether the values that must be
assigned to the bias parameters
to reach the target are plausible.
A third, less well-recognized
motivation for quantitative bias
analysis is the desire to counter
the human tendency to reason
poorly in the face of un-
certainty.>'” A large body of
research has documented how
humans are prone to error when
making judgments when given

16,17
> and

imperfect information,
judgments about biases affecting
epidemiological research are
likely no exception.”®

It may seem adequate to dis-
cuss sources of systematic error
qualitatively in the limitations
section of an article and to allow
the reader to estimate how much
to shift the point estimate to ac-
count for the bias and how much
to widen the CI. Numerous
examples demonstrate, however,
that such attempts are prone to
predictable errors and are

typically no better among experts
than among those without spe-
cialized training.'” A final moti-
vation of quantitative bias analysis
is to identify important, and
often critical, differences be-
tween stakeholder assumptions
about sources of bias in the lit-
erature on a topic. Groups of’
stakeholders may have different
assumptions about the proper
bias model or the values to
assign to the bias model’s pa-
rameters. If the results of their
bias analyses differ sufficiently to
yield different inferences, results
of the bias analysis provide

a guide for efficient allocation
of resources for further

18,19
research. =

THE FDA BIAS
ANALYSIS PROJECT

Because of this rationale and
background, the FDA sponsored
a collaborative project to en-
hance the validity of postmarket
surveillance studies for safety
signals. Postlicensure safety sur-
veillance of biologic products
relies mostly on observational
studies, in which bias can make
appropriate inference difficult.
Adverse events of interest are
often rare, so postlicensure safety
studies tend to involve large study
populations. In some cases,
events are so rare that the pre-
cision of estimates of association
are poor because cases are so

20,21
sparse.

When outcomes are
less rare, the large sample size may
provide relatively precise esti-
mates of the risk if one considers
only the random error. How-
ever, these large observational
studies are often susceptible to
systematic errors in data capture.
Our specific aim, therefore, was
to create a user-friendly com-
puting tool with broad utility that
can adjust for the impact of dif-
ferent bias types in different study
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designs using quantitative bias
analysis.

The tool’s user interface first
gathers critical information, such
as study design type, bias types
and parameters, data type (e.g.,
record or summary level), and
analysis method. It then provides
users with a screen that prompts
them to input the appropriate
data and bias parameters for their
analysis. Finally, the tool esti-
mates the bias in the data con-
sidering the parameters, provides
adjusted point estimates and
simulation intervals that account
for both random and systematic
error, and reports the output back
to the analyst.

To allow testing of the
quantitative bias analysis tool and
new adjustment methods, we
created an additional program to
simulate realistic claims data for
a source population exposed to
different vaccines and monitored
for adverse effects related to those

exposures. Individual analytic
data sets can then be extracted
from the source population fol-
lowing a desired study design.
Users are able to input various
parameter values to create the
source population, including
confounders, measures of true
association, and types of bias to
inject into the data. These sim-
ulated data sets allow users to
examine the impact of bias on
conventional estimates because
the true measure of association is
a known value. The develop-
ment of this simulated source
population cannot mimic real
data completely, but it has the
advantage that we know the true
underlying effects and can accu-
rately test our methods.

To illustrate the utility of the
quantitative bias analysis tool and
the underlying methods, we
developed a hypothetical exam-
ple on the basis of a study of the
association between vaccination

and the incidence of Guillain—
Barre Syndrome (GBS).*’
Imagine a group of persons ex-
posed to a hypothetical vaccine in
which 3 cases of GBS appeared in
70 000 person-years following
vaccination (incidence rate =43
per million person-years). For
comparison, imagine a second
group in which 60 cases of GBS
appear in 7 000 000 person-years
among those who were not
vaccinated (incidence rate of 8.6
per million person-years). The
rate ratio (RR) associating receipt
of the hypothetical vaccination
with GBS equals 5.0 with a 95%
CI from 1.6 to 16.

We used bias analysis methods
to investigate the potential in-
fluences of misclassification of
vaccination status and un-
controlled confounding by in-
fluenza vaccination. Estimates
of the sensitivity and specificity
of vaccination classification in
administrative records equal
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60.0% and 99.5%, respectively.”'
Using these point estimates of
classification, and assuming
nondifferential misclassification,
we estimated a revised point es-
timate of the RR associating the
hypothetical vaccine and GBS
occurrence of 9.3 (Figure 1),
indicating that the original esti-
mate of an RR equal to 5.0 may
have been biased to the null by
nondifferential misclassification.
A second potential source of
bias may have been confounding
by receiving the influenza vac-
cination. Although the topic re-
mains controversial, there is some
evidence that the receipt of at
least one dose of HIN1 pan-
demic influenza vaccination ap-
proximately doubles the risk of
GBS.*? It is also plausible that
persons who receive the in-
fluenza vaccine would be more
likely to receive our hypothetical
vaccine than would those who do
not receive the influenza vaccine.
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FIGURE 1—Example Application of the Quantitative Bias Analysis Tool
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We will assume it is four times
more likely. With these estimates
to inform the bias model, we
estimated a revised point estimate
of the RR associating the hy-
pothetical vaccine and GBS oc-
currence of 4.4, indicating that
the original estimate of an RR of
5.0 may have been biased away
from the null by uncontrolled
confounding by receiving the
influenza vaccination.

One would ordinarily have
poor intuition of how the
misclassification bias and un-
controlled confounding biases
may work together. Fortunately,
quantitative bias analysis methods
can be applied in sequence. Ap-
plying this sequential strategy, we
estimated a revised point estimate
of the RR associating the hy-
pothetical vaccine and GBS oc-
currence of 8.1, suggesting that
the bias toward the null owing to
misclassification may be more
important than is the bias away
from the null owing to the un-
measured confounder. A rea-
sonable future direction, under
this hypothetical scenario, would
be to collect data to validate re-
ceipt versus no receipt of the
hypothetical vaccine in a subset
of the original study population.
This validation substudy would
improve the accuracy of the
values assigned to the mis-
classification bias parameters,
thereby improving the confi-
dence one might have about the
accuracy of the original RR point
estimate.

The project to date has
adapted existing methods of
quantitative bias analysis to
a user-friendly quantitative bias
analysis tool that implements bias
analysis directed at unmeasured
confounders, information bias
(misclassification), and selection
bias using summary-level or
record-level data. The tool can
conduct analyses on summary-
level or record-level data and can
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work with cohort and case—
control designs. Existing methods
have been extended to self-

232
24 and

controlled case series
vaccinee-only risk interval® de-
signs, which are used frequently to
evaluate vaccine safety. Future
work includes further training,
implementation to resolve cur-
rent problems, and further ex-
tensions to specialized designs.
The first application to a current
postmarket safety topic is
underway.

CONCLUSIONS

Regulatory agencies must
weigh the risks and benefits of an
authorized product and strive to
communicate clearly and trans-
parently the scientific basis of
their decisions. Those decisions
must sometimes be made even
when the available data are im-
perfect. Methods and tools to
rigorously and transparently ex-
plore the potential impact of
known or suspected sources of
systematic bias in observational
data will support decision making
and improve communication
with all stakeholders. The
methods and tools we have
proposed have been shown to be
simple to use and of benefit for
quantifying the impact of po-
tential biases. Nonetheless, they
must be rigorously evaluated in
real-life conditions before gen-
eralizing their use in the regula-
tory setting. AJPH
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