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Achieving optimal SERS through enhanced
experimental design
Heidi Fisk,† Chloe Westley,† Nicholas J. Turner and Royston Goodacre*
One of the current limitations surrounding surface-enhancedRaman scattering (SERS) is the perceived lack of reproducibility. SERS
is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is
analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation
for optimumSERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before
going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the
use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and
evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result
of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.
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Introduction

Surface-enhanced Raman scattering (SERS) is a vibrational spectro-
scopic technique that employs the use of roughened metal sub-
strates, giving rise to large enhancements of the Raman signal
and overcoming the inherent weakness of the traditional tech-
nique. Typically, enhancements in the range of 104–106 can be
observed as well as reports of single molecule detection.[1–3]

Additional enhancement may be observed when the SERS tech-
nique is coupled with resonance Raman, a technique referred
to as surface-enhanced resonance Raman scattering. The SERS
phenomenon was first observed by Fleischmann et al. in 1974,
and these authors observed interactions of pyridine at the
surface of a roughened silver electrode, which led to a sub-
stantial increase in Raman intensity, which at that time could
not be explained.[4]

Despite SERS being discovered over 40years ago, themechanism of
enhancement is still under debate within the SERS community. It is
thought that there are two principal mechanisms that give rise to the
dramatic enhancement: the electromagnetic (EM) and chemical trans-
fer mechanisms. The first theory, thought to be the more dominant,[5]

occurs because of an interaction between the analyte and the plasmon
excitation on the roughened metal surface. The incident laser light
excites coherent wave oscillations of the surface electrons in themetal,
called a localised surface plasmon. These oscillations at the nanostruc-
tured surface result in amplification of EM fields, which can reach out to
the analyte located in close proximity.[6,7] The second theory proposes
that the analyte forms a chemical bond to the metal surface and exci-
tation occurs via the transfer of electrons from themetal to the analyte
and vice versa, generating a charge-transfer complex thus increasing
the molecular polarisability.[8]

The SERS technique has become increasingly popular in a wide
variety of research fields because of its rapid, non-destructive and
label-free nature, whilst generating highly specific structural infor-
mation. Examples of these broad applications include biosensors,[9]

detection of illicit drugs,[10] identification of DNA bases[11] and the
discrimination of bacteria.[12]
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Despite the increasing number of SERS applications, a common
limitation, and real bottleneck within the community, is the difficulty
in generating reproducible spectra and consistent enhancements
within and between different experiments.[13–16] Moreover, the liter-
ature can be confusing because of themany different substrates and
conditions used: although this can be advantageous (due to themyr-
iad of different SERS-active substrates and their varying properties),
there tends to be an over-reliance on specific conditions meaning
suboptimal enhancements are frequent. Consequently, the need to
optimise the system to obtain optimum SERS responses (for each
specific analyte) is an essential step in SERS experiments.
Parameters to consider in optimisation

Central to SERS is the production of a surface that is nanoscale in
roughness, produced in a reproducible way, and thus, it is important
that several batches of the same substrate are produced during the
optimisation process. There are several parameters that need to be
carefully considered, as well as various characterisation techniques
that can be used to assess the suitability of these conditions (Fig. 1).
To note, although the optimisation parameters we discuss in this
review are more applicable for colloidal solutions, the same theory
applies for thin films (with a different parameter set employed).

The selection of laser excitationwavelength has a significant impact
on experimental capabilities, and whilst typically visible excitation is
uthors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.
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Figure 1. Schematic depicting which variables should be considered when optimising a system for achieving the best surface-enhanced Raman scattering
response in terms of the signal enhancement being strong, robust and reproducible. This schematic highlights the individual parameters, various
characterisation techniques as well as the data analysis approach that need to be considered during the design of experiments phase. FWHM, full width
half maximum; PCA, principal component analysis; SD, standard deviation.
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used (e.g. 488, 514.5, 532 and 633nm),[17,18] SERS has been reported
from the near UV (325nm),[19] the near IR (785 and 830nm) as well
as recently at even longer wavelengths such as 1064, 1280 and
1550nm.[20–23] This selection process is often determined by a need
to compromise between minimising sample fluorescence and
maximising scattering efficiencies (especially if resonance is also used).
Most biological samples are fluorescent in nature; therefore, choosing
high frequency lasers (high power) would be deemed appropriate, al-
though there is evidence that the metal particles can reduce the level
of fluorescence.[24,25]

A requirement for SERS is a metal surface with nanoscale roughness
(normally in the range 5–100nm), and typically, SERS substrates are in
two forms: either solid state or in a colloidal suspension.[26] Solid state
SERS involves a flat surface with a roughened metal layer on top. They
are usually quite expensive andmore difficult to produce, as well as be-
ing site specific, and consequently, there is less control in terms of opti-
misation. On the other hand, colloids involve metal nanoparticles
suspended in solution and are generally the more favoured substrate
due to their low cost and ease of preparation. Various reducing agents
are available (such as sodiumcitrate and hydrochloride hydroxylamine),
which reduce the metal and control the nanoparticle size.[27,28]

Most SERS substrates consist of the coinage metals, predomi-
nantly gold and silver, as their surface plasmons lie in the visible
region of the EM spectrum and thus coincide with common Raman
excitation wavelengths.[18] Generally, analytes that contain thiol
groups will exhibit much stronger binding to gold surfaces,
whereas analytes that contain amine groups tend to have a higher
affinity for silver.[29] Manipulation of the analyte/surface binding
can be achieved through varying the pH either of the analyte itself
or the surface charge (through choice of reducing agent as well as
charge neutralising chemicals such as poly-Lysine or spermine).
wileyonlinelibrary.com/journal/jrs © 2015 The Authors. Journal of
by John Wile
Evidently, small changes in themetal particles surface charge can
have serious implications in terms of stability, sensitivity to the en-
vironment as well as electro-kinetic properties. The nanoparticles
surface charge is of the utmost importance as interaction between
analyte molecules and colloidal particles is a primary requisite for
obtaining strong surface enhancement. When the analyte and
surface have the same charge, the adsorption process can be
strongly hindered, and if the colloidal particles fail to exceed a min-
imum repulsion with one another, they will aggregate and precipi-
tate out of solution.[30] In order to make the system more acidic
(i.e. protonation of analyte) HCl or citric acid is typically added.
In contrast, to deprotonate an analyte and make a more basic
environment, NaOH is commonly used. Michota et al. (2003)
and Alharbi et al. (2014) have demonstrated how the different bind-
ing modes are dependent on pH in relation to 4-mercaptobenzoic
acid and nicotine, respectively.[31,32]

Employing an aggregating agent (common examples include
NaCl and KNO3) can also have a major influence on the SERS
response and so careful consideration and screening is often re-
quired. Aggregating agents are commonly employed to aggregate
the different, irregular nanoparticles together. This leads to in-
creased interactions between the colloid particles, affording larger
surface plasmon resonances and greater surface enhancement.
However, if too much aggregating agent is added, the colloid par-
ticles will quickly precipitate out of solution and the SERS signal will
be lost.[16,33]

Lastly, perhaps key to improving the reproducibility and often
overlooked in experiments is the time allowed for optimal aggrega-
tion to occur; i.e. when do you get the most stable SERS responses
and this is often analyte/system dependent. Therefore, time studies
should be performed for each SERS experiment.
Raman Spectroscopy published
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Achieving SERS by enhanced experimental design
Characterisation techniques for nanoparticle
synthesis

In order to establish the optimum conditions, especially when initial
decisions regarding substrate andmetal are key, various techniques
are typically employed by researchers.

After synthesising the various colloids available, the first initial
step is to measure its UV–Vis absorption (Fig. 1). The λmax of silver
colloids is around 400 and 520nm for gold colloids (with specific
surface plasmon bands available for differently reduced colloids),
and comparisons with the literature are oftenmade, rather than fur-
ther characterisation (e.g. electron microscopy; EM).[27,28] The λmax

full width half maximum (FWHM) of the prepared colloid allows
for assessment of the nanoparticle size distribution: a narrower
peak is indicative of amoremonodisperse and reproducible colloid.
A combination of both values should be used to establish which
batch of colloid is selected for further experimental studies, al-
though we note that this alone does not guarantee SERS for the an-
alyte of interest.

In addition, further characterisation techniques can be employed
such as EM and zeta potential analysis. EM is used to determine the
size, morphology and distribution of the nanoparticles – and com-
monly, formation of agglomerated nanoparticles occurs more readily
with silver substrates than gold. The zeta potential provides useful in-
formation regarding the charge carried by the nanoparticles and
therefore the stability and ability to interact with analyte molecules.
Larmour et al. (2012) explains that a colloid is considered stable if
the zeta potential value is less than �30mV or greater than +30mV
–with citrate-reduced, hydroxylamine-reduced and ethylenediamine-
tetraacetic acid-reduced metal ions considered the most stable.
Borohydrydride-reduced silver colloids are notoriously unstable with
a very high zeta potential of around �7.8mV.[34]
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Data analysis methods and characterisation
techniques

There are various data analysis methods that can be employed in or-
der to establish the suitability and reproducibility of a set of
conditions. The most simple techniques involve univariate analysis –
whereby the peak area of a characteristic vibration is plotted against
a certain parameter, e.g. concentration and time point. Normally,
other statistical assessments are calculated such as the mean and
standard deviation, with the latter describing the associated errors.
The FWHM can also be used to evaluate how suitable conditions
are, with sharper peaks (reflected by a reduced FWHM) more
favourable. In addition, it is believed that the stronger, characteristic
and narrow peaks readily allowmultiplexingwhereby several analytes
are detected simultaneously.[32,35,36]

Although currently less common, multivariate analysis can be
employed whereby the whole SERS spectrum is considered in the
assessment process. One approach is to consider how well corre-
lated repeat experiments of the same conditions are. Here, correla-
tion coefficients are used and R2 values closer to 1 indicate a good
fit. As well as this, various chemometric approaches can be applied
to simplify complex multivariate SERS data for interpretation and
analysis, such as the use of principal component analysis (PCA).
PCA is a widely used, unsupervised method, i.e. it does not require
a priori information, representing the natural variance within a data
set. Tight clustering of replicate measurements in PCA scores space
(Fig. 1) indicates that the spectra are more similar and thus the
J. Raman Spectrosc. 2016, 47, 59–66 © 2015 The Authors. Journal of Ra
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conditions are more reproducible. Feng, Webster and Mabbott
present good examples of how PCA has been used on Raman
data.[37–39]

Combining all these characterisation techniques illustrated in
Fig. 1, with the various data analysis methods available, should help
determine which colloid is most suitable to use, especially in terms
of batch-to-batch variation. Moreover, we advocate that multiple
batches of the same metal substrate are always produced so that
adequate statistics can be generated; far too often, a single experi-
ment is reported, which may be atypical.
Design of experiment

Most researchers require suitably characterised and optimised pro-
tocols and instruments for their research purposes with a particular
focus on increased sensitivity, resolution, reproducibility and lower
limits of detection and quantification. Optimisation usually involves
conducting appropriate experiments that will provide data on one
or more performance criteria under a variety of conditions. Com-
monly, researchers employ the one factor at a time principle, where
a single parameter is optimised first before going onto optimise the
next, and so on and so forth.[40] However, whilst relying on the
knowledge and skill of the researcher, a major flaw in this approach
is that this assumes a lack of statistical interaction of the parame-
ters. For many cases, parameters within an experiment are interde-
pendent thus contributing to a joint effect, meaning this approach
rarely provides a definitive solution.

A similar problem, and mentioned earlier, is the dependence on
certain conditions when conducting different experiments. It is
common for researchers to focus on using a set of conditions that
are familiar or those that they have had success with, rather than
exploring other alternatives. A common starting point that seems
to be adopted is to replicate ‘optimal’ conditions presented by
others and switch to a one factor at a time/‘trial and error’ approach
if and when problems arise. By contrast, we believe that a more
elegant approach, perhaps most effective of all, and often
overlooked, is to perform a systematic design of experiment (DoE)
prior to research.

Design of experiment is a well-established proven statistical
method first pioneered in the 1920s by R.A. Fisher.[41] This statistical
design of experiments uses replication, blocking, randomisation
and orthogonality to recognise the statistical interaction of vari-
ables and employs statistics as an objective means of drawing con-
clusions. These general principles of experimental design are
described in detail by Morgan, Underwood, Quinn and Keough
and indeed any standard statistical textbook.[42–44]

There are different levels of design that can be applied depend-
ing on the nature of the experiment. In its simplest form, a fractional
factorial design can be employed – whereby experiments are per-
formed in order to identify which factors are the most critical. This
approach is often used at the beginning of an optimisation project
where many factors are likely to have little or no effect on the re-
sponse (SERS enhancement). Conversely, a full factorial design
combines all possible combinations of factors, affording the identi-
fication of significant interactions between them, but can be more
time consuming.[45] For example, if one wanted to optimise a mod-
est eight parameters (e.g. type of metal, reducing agent, aggregat-
ing agent, volumes, concentrations and time of acquisition), and
each of these could take one of just ten values, then the number
of possible experiments is 810 or just over 109! Clearly, an exhaustive
search of all possible experiments is not plausible.
man Spectroscopy published
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The common phases identified in any DoE approach include[46]

• First, the identification of factors that may affect the outcome
of the experiment and a response that can give an objective
measure of this outcome. For example, this could be any op-
timisation parameter discussed in Fig. 1 and the effect this has
on the intensity of the SERS signal (response).

• Next, is the choice of an appropriate experimental design –

for example, either a full factorial design or a fractional facto-
rial design – this will result in the generation of the design
matrix, which aims to carefully select which experimental con-
ditions need to be conducted. This small fraction of selected
experiments is expected to be sufficient to reveal the most
important features of the problem studied.

• These conditions are then performed in the lab and assessed
by various data analysis methods, i.e. peak area(s), standard
deviation, mean and PCA, as described earlier. Ultimately,
whichever data analysis method is selected, the plots should
describe the same trends in the results, enabling one to draw
conclusions and plan the next step(s) to be taken.

A generic example of this process is illustrated in Fig. 2. A frac-
tional factorial design has been generated to find the best solu-
tion(s) in the optimisation of a specific analyte for optimal SERS
enhancement. The design is for a set of experiments in which three
factors are thought to be important (these could for example be
pH, concentration and aggregating agent) and is modelled on a
cube to represent the experimental region being explored. The
blue circles represent the initial experiments to be conducted and
analysed using SERS, and these have been chosen to span the ex-
perimental search space adequately. After SERS assessment (and
Figure 2. A 3D representation of a typical design of experiment that incorpora
most optimal surface-enhanced Raman scattering (SERS) response. Sequential ro
concept of Pareto optimality is demonstrated: when optimising parameters with
signal enhancement are also optimal to reproducibility and so a trade-off betwe
be optimised concurrently include parameter 1 = pH, parameter 2 = concentrat

wileyonlinelibrary.com/journal/jrs © 2015 The Authors. Journal of
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data analysis), certain sets of conditions are identified as the best
solutions (denoted by the red spheres) and so more experiments
based on these conditions are tested (denoted by the green
spheres) and analysed to find the most optimum solution(s). This
iterative process should determine which sets of factors are impor-
tant with the number of experiments conducted significantly
reduced.

It should be noted that when optimising parameters within a
SERS experiment, it is not necessarily true that the conditions opti-
mal to signal enhancement are also optimal to reproducibility and
so a trade-off between the two objectives must be established. This
behaviour is an example of the Pareto principal. If one set of condi-
tions leads to greater enhancement but lower reproducibility (or
vice versa) than another set, one cannot assume that either set is
superior. The sets of solutions within the entire search space
(i.e. all combinations of parameters) that are not dominated by
other solutions are termed the Pareto optimal front (denoted
by the dashed arc in Fig. 2).[47]

There are few SERS examples that have utilised the idea of DoE,
with Mabbott and colleagues (2013) providing a key example in
the optimisation of mephedrone detection. In this optimisation,
the number of statistically significant experiments was greatly re-
duced from 1722 to 288 by adopting the fractional factorial ap-
proach and allowing excellent quantification of this illicit drug.[39]

Whilst there are currently few examples in the SERS area, DoE is
extensively utilised in other disciplines including: engineering, agri-
culture, social sciences as well as other analytical techniques. For ex-
ample, in mass spectrometry based investigations for quantitative
proteomics. Morris et al. (2010) used DoE for monitoring patterns of
protein abundance in biological samples under various conditions
tes different parameters that needs to be optimised in order to achieve the
unds of assessment are performed until a realistic solution(s) is obtained. The
in a SERS experiment, it is not necessarily true that the conditions optimal to
en the two objectives must be established. As an example, the parameters to
ion of colloid and parameter 3 = aggregating agent.

Raman Spectroscopy published
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and states. This enabled further understanding of the functioning of
living organisms in search for early detection, diagnosis and prognosis
of disease.[48] Ultimately, the employment of DoE afforded the gener-
ation of reproducible and accurate results.

One of the more current areas where DoE is heavily exploited is
in drug discovery of pharmaceuticals. Time and money are the ma-
jor limitations holding back big drug discovery breakthroughs. DoE
has widely been used in the optimisation and screening of experi-
mental parameters. This allows key decisions to be made in the de-
velopment of robust and reliable protocols in chemical synthesis,
leading to optimal reaction conditions being identified in shorter
periods of time.[49] Moreover, inmany lead discovery operations, as-
say development has been a major obstacle, consuming vast
amounts of time and does not necessarily meet the desired assay
quality parameters/signal window. DoE, in combination with high-
throughput technologies for drug efficacy, has emerged as a lead-
ing approach in overcoming this problem by effectively reducing
the time taken without compromising on quality.[50,51]
Evolutionary computational approaches

One of the challenges in DoE is to navigate the experimental search
space sufficiently, which is problematic as one cannot perform all
possible experiments. Indeed, as the number of parameters that
one wants to optimise increases linearly, the number of possible so-
lutions increases exponentially. This is a so-called NP hard (non-de-
terministic polynomial-time hard) problem and alternative search
algorithms are needed.

Genetic algorithms (GAs) are heuristic search algorithms inspired
by the Darwinian principle of evolution through natural
selection.[52] First proposed by Holland (1992), these computing
techniques exploit a highly abstract version of evolutionary pro-
cesses in order to solve problems efficiently for which there may
be more than one potential solution; that is to say the central
theme is that a good solution is appropriate rather than trying to
find the best overall experimental conditions, as this is impossible
(there simply is not enough time) to establish without conducting
every single possible solution.[53]

One can consider a mountain range as an analogy for the exper-
imental search space, where the height of the mountain (z-axis)
represents the assessment of the analytical result, and the x-axis
Figure 3. An illustration of the genetic algorithm (GA) approach to surface-enh
reduces the number of steps taken in order to reach the highest fitness value thro
fitness landscape (e.g. Mount Fuji), where this may mean that only a single varia
and simple hill climbing algorithms would suffice. Whereas (B) highlights amore
the fitness landscape, i.e. multiple variables need to be optimised simultaneously
application of GA may simplify the number of solutions to reach the optimum
agreement. For more details, see Mount Fuji image on Flickr https://www.flic
image on Deviant art http://citizenfresh.deviantart.com/art/Himalaya-Mountains

J. Raman Spectrosc. 2016, 47, 59–66 © 2015 The Authors. Journal of Ra
by John Wiley &
and y-axis represent the parameters to be considered for optimisa-
tion. Here the higher the peak the better the experiment and the
idea is to negotiate this landscape to reach the summit of the
mountain range.

For relatively well-behaved (some may say easy) optimisation
search spaces, there may be a simple, obvious route for a given
problem. This is illustrated by Mount Fuji in Fig. 3A, where the path
to the summit is clear, and such a searchmay be possible using sim-
ple univariate statistics. By contrast, Fig. 3B depicts a more complex
mountainous landscape, where the route taken to reach the sum-
mit is unclear whereby several paths could be taken. In such
instances, the search is highly dimensional in nature and multivari-
ate approaches are necessary. Implementation of a GA to this
‘Himalayan’ landscape could simplify and uncover the optimal
route for reaching Everest.

Following on from the evolutionary analogy, GAs can be consid-
ered as a biological representation of DNA that is changed over a
series of evolutions: each GA operates on a population of chromo-
somes (i.e. solutions to be tested), consisting of a number of genes
(i.e. variables; one per parameter to be optimised). Each gene is bi-
nary encoded (0, 1), which can be thought of as an allele, where
0=do not use this trait (e.g. a particular aggregating agent) and
1=use this trait in the experiment. We note that there are richer
encodings but these will not be discussed here.[53] Implementation
of this binary encoding allows a series of traits to be selected. In
Fig. 4B, one can translate ‘Child 2’ (1, 0, 1, 0, 1, 0, 0) to represent a
GA for use in SERS optimisation whereby the variables represent
an experiment that uses Au citrate-reduced colloid with NaCl as
the reducing agent.

The overall GA process is depicted in Fig. 4A. The initial popula-
tion is randomly generated and does not use any prior information
that the analyst may have in terms of which parts of the search
space may be better; this often requires some persuasion of the
non-cognoscenti. Next, these experiments are conducted in the
laboratory. The SERS enhancement for each set of conditions is
assessed and this allows one to rank these experiments according
to their effectiveness at solving the problem (i.e. their fitness is cal-
culated, with higher fitness being assigned to better experimental
outcomes). A subset of this population is generated by means of
‘survival of the fittest’.

New experimental conditions now need to be generated (vide in-
fra) to replenish the population and this process is analogous to
anced Raman scattering (SERS) optimisation using a mountain analogy. A GA
ugh the evolution of solutions to find the highest peak. (A) Denotes a simple
ble needs optimising. In this case, a GA approach is not necessarily required,
complex solution wheremultiple routes can be taken to reach the summit of
, until the highest point is reached (here depicted by the Himalayas), and the
fitness value. The figures are available from the Creative Commons license
kr.com/photos/9177053@N05/4469232631/in/photostream/ and Himalayas
-1-Nepal-72353246

man Spectroscopy published
Sons, Ltd.

wileyonlinelibrary.com/journal/jrs

6
3

http://citizenfresh.deviantart.com/art/Himalaya-Mountains-1-Nepal-72353246


Figure 4. A schematic of the overall evolutionary approach that is used in experimental design. (A) Outlines a workflow of the genetic algorithm (GA)
approach. The procedure continues to evolve until the population converges or when a maximum number of iterations is reached. (B) Denotes the
methods used to generate a new population. These include offspring (in this example tigons and ligers) from the parents (a lion and a tiger). Mutations
can also be generated and introduced from parents; e.g. mutant 1 is generated from a single-point mutation to parent 2. This GA process needs
translation in terms of surface-enhanced Raman scattering optimisation: in the example provided, child 2 is translated as a solution where a Au citrate-
reduced colloid with NaCl as the reducing agent is used for surface-enhanced Raman scattering.
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biological reproduction (Fig. 4B). Chromosomes with the highest fit-
ness values are selected as parents to recombine through crossover
(mate) and produce the next population of children; alternatively,
mutation may be used to modify the chromosome. In general the
total population size remains constant throughout the evolutionary
process.
The fitness of this new population is assessed. If the optimum so-

lution is reached, the GA will stop, otherwise the evolutionary pro-
cess will continue. The stop criterion is specific to the GA: common
examples include a fixed number of generations, an observed con-
vergence to a predetermined target (that is to say a solution has
been generated that has a fitness greater than a particular value),
or that after numerous generations the individual with the highest
fitness value remains constant for several iterations.
Central to the GA is theway inwhich the population evolves over

time. As well as asexual reproduction in which the children are
merely clones of the parents, resulting in no diversification of the
successive population, there are two main methods of producing
new individuals from the previous population:

• Sexual reproduction, or crossover, occurs when two parents
with high fitness values mate and swap alleles, generating
two children chromosomes. Figure 4B illustrates this process
where a ‘Tiger’ and ‘Lion’ are the parent chromosomes. A dou-
ble crossover is shown, which generates two genetically differ-
ent children – a ‘Tigon’ and a ‘Liger’ – in the hope of producing
individuals with higher fitness values to that of its parents.

• Mutation can also occur whereby a single allele is randomly
altered on a parent with a high fitness value, allowing for
random divergence of the population. Figure 4B also shows
a single mutation for Parent 2 (Lion), altering a random allele
to the opposite gene (1 to 0).
wileyonlinelibrary.com/journal/jrs © 2015 The Authors. Journal of
by John Wile
There are many different factors to be considered when designing
a GA. Examples include the following:

• Type of fitness function: This could be univariate versusmulti-
variate assessment; SERS enhancement versus reproducibility
or both combined in Pareto optimality.

• Population size.
• Rates of crossover andmutation operators – in general, muta-

tion rates have a low probability of occurring, but their main
purpose is to retain variation so that premature convergence
does not occur.

• Evolutionary scheme that will be applied – someGAs usemul-
tiple populations that evolve independently that then cross
fertilise.

• Finally the stop criterion (as discussed in the preceding
section).

In summary, GAs are evolutionary computational-based algo-
rithms that are considered as powerful explanatory techniques.
Whilst the primary aim here is to search the experimental landscape
efficiently to generate a good SERS substrate and set of protocols
for analyte detection/quantification, in other areas, GAs have been
combined with chemometric approaches to effect variable selec-
tion and the interested reader is directed to.[54,55]

Application of evolutionary computational
approaches to experimental optimisation

Genetic algorithms have proven to be highly efficient search
models within a wide range of computer based science fields. He
and Mort and Watanabe have successfully demonstrated GAs
employment within communication network design and routing,
Raman Spectroscopy published
y & Sons, Ltd.
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ultimately minimising the path and increasing the reliability between
routers.[56,57] Yao et al. optimised setup parameters for the simulation
of a F1 race car, leading to enhanced performance and faster lap
times.[58] In addition, it would be remiss not to mention the numerous
examples of the use of GAs in logistics and ‘the travelling salesman
problem’. This scenario relates to the optimisation process involved in
identifying the shortest route required to pass through each node (city)
of a tour only once. An approach that has applications in the schedul-
ing of shipping and routing of ships, as described by Al-Hamad.[59]

More relevant examples have been described within the analytical
chemistry field, demonstrating GAs effectiveness at deconvolving
complex spectral datasets into simpler solutions. Tapp successfully
established that different olive oils could be distinguished as a result
of geographical origin by means of GA–LDA (linear discriminant
analysis) approach using Fourier transform infrared spectroscopy
data.[60] Moreover, metabolomics has employed GAs because of
the high dimensional multivariate data acquired. The field focuses
on characterising small molecular metabolites involved in biological
processes, using combinatorial techniques such as liquid
chromatography–mass spectrometry or gas chromatography–mass
spectrometry.[61] Correa and Goodacre demonstrated that Bacillus
species could be correctly identified and classified as a result of bio-
marker features that were selected by the GA from complex mass
spectrometry data.[62]

To date, there are limited examples in the literature that ex-
ploit evolutionary computational approaches for the analysis
of Raman and SERS data. Lavine and co-workers successfully
implemented a Raman spectroscopy-GA approach in order to
perform pattern recognition on several wood types, ultimately
leading to their classification based on specific features, such
as intensity at characteristic wavelengths.[63]

With respect to experimental optimisation, Jarvis et al. identi-
fied a key example in which SERS conditions for the detection of
L-cysteine were optimised by comparing the application of a
multi-objective evolutionary algorithm (MOEA) versus a full fac-
torial design. The overall aim was to increase enhancement, as
well as the reproducibility of SERS spectra. Two hundred and
sixteen initial conditions were assessed using the later approach
[(3 × colloidal substrate) × (6 × aggregating agent) × (3 × v/v col-
loid ratio) × (4 × aggregating agent concentration)], whereas
the MOEA consisted of four generations, 20 experiments in
each, composing of the variables previously stated. The evolu-
tionary algorithm approach was shown to be superior, showcas-
ing a 32% improvement in reproducibility and enhancement,
using far less evaluations and thus being more cost effective.[47]

Finally, Levene and colleagues was able to decrease the limits of
detection of propranolol (a β-adrenergic blocker drug) 25-fold
lower than what was previously published. This substantial in-
crease in sensitivity was achieved by developing a SERS–MOEA,
based on Pareto optimality. The various experimental variables
(metal type, aggregating agent, laser wavelength, etc.) investi-
gated would have resulted in a full search consisting of 7785 ex-
periments; however, enhanced experimental conditions were
determined using only 4% of all the possible combinations.[64]
6
5

Conclusion

From the literature, it is clear that there are many different ap-
proaches towards the optimisation of SERS experiments. However,
as the SERS process is analyte dependent, with different chemical
species having differing hydrophobicities, charges, sizes, as well
J. Raman Spectrosc. 2016, 47, 59–66 © 2015 The Authors. Journal of Ra
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as functional groups, there is no uniform optimisation protocol for
one to follow. Notably, there is a compromise between intensity
of SERS signals and reproducibility, and this is often determined
by the researchers’ experimental aim. For example, multiplexing ex-
periments are not necessarily concerned with high levels of repro-
ducibility, if the aim is just to detect more than one analyte at a
time correctly. This optimisation approach would require intensity
to be the most important factor, as similar levels of response for
each analyte is required. However, if the aim was to quantify each
of the analytes within the mixture, then reproducibility would be-
come an increased concern. Evidently, identifying the ultimate goal
prior to optimisation is key, as unavoidably there will be a trade-off
between the two objectives.

Throughout this review, we have highlighted examples of the
different approaches that can be applied to enhance experimental
results, such as DoE and GA. It is apparent that these models have
been extensively used in active research fields yet seem to be cur-
rently limited within the optimisation of SERS systems. Perhaps a
contributing factor in the opposition of DoE and GAs is the fear of
statistics, with many researchers considering them to be a compli-
cation. In order to implement them successfully, there is a need
for the researcher to have some understanding and appreciation
of the statistical tests that underpin DoE and GAs before these ap-
proaches can become standard practice. We hope that the reader
has found this review useful in this regard.
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