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Abstract

Interleukin (IL)-33, a member of the IL-1 cytokine super-family, acts as both a traditional cytokine 

and an intracellular nuclear factor. It is generally released from damaged immune cells and signals 

through its receptor ST2 in an autocrine and paracrine fashion, plays important roles in type-2 

innate immunity, and functions as an “alarmin” or a danger signal for cellular damage or cellular 

stress. Here, we review recent advances of the role of IL-33 in lung injury and explore its potential 

significance as an attractive therapeutic target.
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Introduction

Interleukin (IL)-33, previously known as “DVS27” [1], is a cytokine protein and ligand of 

the receptor ST2, a member of the Toll-like receptor (TLR)/IL-1 receptor (IL-IR) super-

family[2]. Although ST2 was first reported in 1989 in both mice[3] and rats[4], IL-33 wasn't 

identified and named until 2005 based on a computer database search for genes homologous 

to IL-1 family members[2].
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IL-33 is an member of IL-1 cytokine family with ~32 kD and 18 kD molecules that in the 

past represented uncleaved and mature IL-33 proteins, respectively[2, 5], but now represent 

the bioactive and cleavage forms [6, 7], respectively. IL-33 appears to be a cytokine with 

dual functions: first, it acts as a conventional cytokine via activation of the ST2 receptor 

complex, and second, it performs as an intracellular nuclear factor with properties of 

transcriptional regulatory [8, 9]. IL-33 plays an important role in type-2 innate immunity and 

induces production of IL-5 and IL-13 by activating intracellular molecules via NF-κB and 

MAP kinase signaling pathways [10-12]. IL-33 is also considered an “alarmin” which is 

promptly discharging from its producing cells upon cellular damage or cellular stress [11].

The function of IL-33 in different immune diseases has been well examined and reviewed. 

The role of IL-33 in lung injury was first identified mainly in lung inflammation and allergic 

diseases such as viral infection and asthma [13, 14]. In recent years, IL-33 has also been 

found to take part in other types of lung diseases such as ventilator-induced lung injury[15], 

acute lung injury, chronic obstructive pulmonary disease [16], lung cancer[17], and other 

clinical conditions. The purpose of the current review is to highlight the crucial role of IL-33 

in lung injury and explore its potential as an attractive therapeutic target.

IL-33 receptor activation and its signaling pathway

IL-33 receptor is a complex that requires the expression of both ST2L, which is a member of 

the TLR/IL-1R superfamily, and also the IL-1 receptor accessory protein (IL-1RAP) [18, 

19]. There are at least two other forms of ST receptors in addition to ST2L, including 

secreted soluble ST2 (sST2) that can serve as an allurement receptor for IL-33[20] and a 

ST2V variant that is present primarily in the human gut [21]. Soluble ST2 is considered a 

biomarker of several diseases, including cardiac disease[22], ulcerative colitis[23], and 

others.

IL-33 signaling starts from activation of cytoplasmic Toll-interleukin receptor domain which 

attracts the adaptor molecule myeloid differentiation primary response gene 88 (MyD88)[10, 

24]. Then interleukin receptor-associated kinase 4 (IRAK4) is gathering to MyD88, followed 

by the interaction of myddosome which is composed of IRAK1, IRAK2, and/or IRAK3 [25, 

26]. This myddosome then combines with tumor necrosis factor receptor-associated factor 6 

(TRAF6), which is crucial for signal propagation [27] and further activates transcription 

factors NF-κB or mitogen-activated protein kinase (MAPK) [2, 9]. (Figure 1).

As a traditional cytokine, IL-33 stimulates Th2 cells, eosinophils, basophils and mast cells, 

to produce IL-4, IL-5, IL-13 and some other type 2 cytokines , which stimulate the 

proliferation of B cells, T cells and have other critical immune-modulatory functions[24, 28, 

29]. Function as a nuclear factor, IL-33 could also bind to NF-κB directly, sequestering it 

and diminishing its ability to turn on gene transcription [9].

Release and cellular sources of IL-33 in the lung

Even though it is well known that IL-33 expression is increased in inflamed tissue, 

controversy still exists regarding the active form of IL-33 and its releasing mechanism. 

Mature IL-33 (18kD) may be released during cellular necrosis, thereby acting as an 

“alarmin” [11, 30, 31], whereas other studies showed that unlike IL-1 super-family 

Chang et al. Page 2

Transl Perioper Pain Med. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



members, full-length IL-33 does not need proteolysis for activation [6]. IL-33 is not 

activated by caspase 1 cleavage, but is processed into a mature bioactive form in neutrophils 

by elastase and cathepsin G [7]. The bioactivity of IL-33 is diminished in apoptotic cells 

through caspase-dependent proteolysis [6, 32].

There are various cellular sources of IL-33 in the lung. IL-33 expression in different cell 

types has been confirmed in individual studies and has been well-reviewed by Mirchandani 

et al[10]. Recent studies by Pichery et al., who generated an Il-33 Gt/ Gt which means Il-33–

LacZ gene trap reporter strain, showed that using this innovative tool to examine expression 

of endogenous IL-33 in vivo revealed that an endogenous IL-33 protein was highly 

expressed in mouse lung cuboidal epithelium and other epithelial barrier tissues[33]. 

Importantly, they demonstrated that IL-33 protein was localized mainly in the cell nucleus, 

but not in the cytoplasm of producing cells [33]. Mirchandani et al. showed that IL-33 

protein increased in whole lung homogenates of BALB/c mice after 6-12 hours of chitin 

challenge[34] and further demonstrated that this expression of IL-33 was mainly from 

alveolar type II cells [35]. A recent study by Kaur D et al. showed that bronchial epithelium, 

airway smooth muscle (ASM), and mast cells expressed IL-33 correlating with airway 

hyper-responsiveness (AHR) in latter asthma. Thus, it seems that IL-33 acts via autocrine 

and paracrine pathways and may function as an important target to modulate the crosstalk 

between mast cells and ASM [36].

Role of IL-33 in lung injury

Inflammation and allergy in the lung

Lung inflammation and allergies activate the innate immune response. Immune cells, along 

with macrophages, monocytes, and neutrophils, migrate into the lungs and further activate 

the pro-inflammatory response by releasing cytokines and chemokines, leading to the 

immune response[37].

Considering IL-33 as an “alarmin” of Th2 immune responses, its role in lung inflammation 

and allergy has been well-studied. In virus-induced lung inflammation and the cysteine 

protease-induced lung inflammation model, there will always be an obvious increase in the 

production of IL-33 with an enhanced expression of ST2 Mrna [38-41]. These results show 

that IL-33/ST2 signaling participates in Th2-mediated airway inflammation. As a pro-

inflammation “alarmin”, IL-33 itself could also induce airway inflammation, followed by 

group 2 innate lymphoid cell activation, eosinophil infiltration[42], and IL-8 up-

regulation[43]. IL-33 can activate both ERK and p38 MAPK in primary endothelial cells, 

however it can only stimulate ERK in epithelial cells in vitro [43].

Asthma is considered as a common life-long chronic disease and is classically characterized 

by serum IgE levels elevation, airway hyper-responsiveness, allergic inflammation, and 

increased Th2 cytokine production[14]. The roles of IL-33 in asthma have been well studied 

[13, 14]. More recent research has implicated additional roles for IL-33 in asthma. It is 

plausible that IL-33 drives airway hyper-responsiveness (AHR) through directly stimulating 

mast cell activation and airway smooth muscle (ASM) wound repair and indirectly 

promoting ASM contraction via upregulation of mast cell-derived IL-13. The receptor for 
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advanced glycation end-products (RAGE) was found to drive asthma/allergic airway 

inflammation by stimulating IL-33 expression in response to allergen and by directing the 

inflammatory response downstream of IL-33[44]. To clarify distinctions between the 

functions of IL-25 and IL-33 in asthma, the IL-33-induced response was identified by more 

sustained laying down of extracellular matrix protein, neo-angiogenesis, and T helper type 2 

(Th2) cytokine expression and elevation of tissue damping compared with IL-25[45]. IL-33 

also plays a significant role in pediatric asthma. Severe asthma with fungal sensitization 

(SAFS) was associated with higher levels of airway IL-33, and alternate exposure induced 

increasing IL-3-mediated ILC2 numbers, steroid-resistant AHR and Th2 cell numbers. IL-33 

might be considered as a unique therapeutic target for SAFS [46]. Elevated innate cytokines 

interleukin IL-33 and IL-25 and peculiar molecular responses in the interferon pathway are 

associated with rhinoviral infections in children. IL-33 also increased in fungal allergen-

induced exacerbations, highlighting it as an attractive therapeutic target[47].

House dust mites (HDMs) are a leading source of allergens in patients with allergic 

disorders such as atopic dermatitis, asthma, and rhinitis [48], and administration of HDM 

extracts to mice induces allergic airway inflammation with similarities to asthma [49]. Full-

length and bioactive IL-33 expression increased in caspase-1-deficient mice exposed to 

HDM, followed by a marked eosinophil recruitment. Using soluble ST2 receptor to 

neutralize IL-33 inhibited the enhanced allergic inflammation, while administering 

recombinant IL-33 enhanced allergic inflammation in caspase-1-deficient mice[50]. IL-33 

was also needed to induce a humoral immune reaction to a single inhalational challenge to a 

HDM-pulsed dendritic cell-derived Th2 response [51-53]. Other research using chitin, a 

component of the exoskeleton of many organisms including HDM, indicates that uncleaved 

chitin promotes IL-33 release, whereas cleaved chitin could induce the activation of 

caspase-1 and caspase-7, which promotes IL-33 inactivation and further results in the 

resolution of type 2 immune responses[54].

Acute lung injury and ventilator-induced lung injury

Although mortality from acute lung injury (ALI) or its severe form, acute respiratory distress 

syndrome (ARDS) has decreased substantially over the past 30 years, it still remains a high 

rate of morbidity and mortality[55, 56]. Surviving patients in intensive care units have long 

term disability and high mortality rates years after discharge. Mechanical ventilation, acting 

as a most significant supportive measure in ALI[57], may produce an iatrogenic 

complication called ventilator-induced lung injury (VILI). Nonetheless, the etiology of VILI 

remains unclear. Very few studies have focused on this aspect of IL-33. One recent study[15] 

investigated IL-33/ST2 signaling in rat VILI model. Ventilation at 10 cmH2O of inspiratory 

pressure for four hours elicited a high expression of IL-33 expression in lung tissues with 

increased membrane ST2L but decreased cytosol ST2L, indicating translocation of ST2L 

from the cytosol to the cell membranes of lung tissue. Using a mechanical stretch model for 

lung epithelium, we found that lung epithelial cells were able to release IL-33 following 

mechanical stretch (unpublished data). These results indicated that IL-33/ST2 signaling 

might participate in the process of VILI. Further experiments should need to confirm the 

role and significance of IL-33 in VILI.
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Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is considered as one of the major concerns 

in public health and is estimated to rank as the third worldwide for mortality[58]. Cigarette 

smoke exposure is considered the leading causative agent of COPD. There is no effective 

treatment for COPD, and the mechanism by which the interaction between smoking and 

infection aggravate COPD remains poorly understood[16]. Kearley et al.[59] showed that 

cigarette smoke altered the lung microenvironment to facilitate an alternative IL-33-

dependent magnified pro-inflammatory response to infection, leading to exacerbated COPD. 

They first exposed ST2- or IL-33-deficient mice or wild-type control mice to cigarette 

smoke and subsequently infected them with influenza A virus. Significantly enhanced 

weight loss and exaggerated lung inflammation occurred compared to viral infection alone 

in ST2- or IL-33 deficient mice, indicating that administration of ST2 could protect mice 

from exacerbated inflammation. These results showed that IL-33 is an essential trigger of 

COPD aggravation in mice by augmenting the inflammatory response. Other studies also 

demonstrated that increasing IL-33 expression in COPD [60] and altered IL-33 expression 

and release in airway epithelial cells is induced by cigarette smoke [61].

Lung cancer and pulmonary sarcoidosis

Immunoregulatory cytokines may play an important role in the metastases and growth of 

tumor. Sarcoidosis is also characterized as a multisystem immunologic disorder. As an 

“alarmin” in type-2 innate immunity and innate lymphoid cells (ILC2), IL-33 plays a 

significant role in lung cancer and pulmonary sarcoidosis. Kim et al.[17] evaluated the role 

of plasma IL-33 levels in the development of lung cancer and showed that cancer patients 

have lower levels of IL-33 than normal control subjects and that IL-33 decreased in a stage-

dependent manner. Moreover, plasma IL-33 levels gradually reduced after surgical resection 

of malignant lesions, but were unchanged after chemotherapy. Together with cytokines IL-4 

and IL-10, IL-33 may also be considered a potential immunotherapy biomarker in cancer 

research [62]. Moreover, because strongly correlation with systemic disease has been shown 

only between IL-33 expression and sarcoidosis but not other granulomatous diseases, IL-33 

appears to be a new marker of pulmonary sarcoidosis[63, 64] and might serve as an adjunct 

diagnostic marker [64,65].

Other kinds of lung injury

IL-33 also plays an essential role in other types of lung injuries such as interstitial lung 

disease, idiopathic pulmonary fibrosis, and malaria-associated lung injury. Luzina et al.[65] 

demonstrated that bleomycin injury combined with full-length IL-33 expression exerted a 

synergistic pulmonary lymphocyte effect and collagen accumulation. In addition, the 

expressions of several heat shock proteins were increased with full-length IL-33 treatment. 

Li et al.[66] showed that IL-33 was mainly expressed in lung epithelial cells, but was 

induced in macrophages by bleomycin. Deficiency of ST2, treatment with anti-IL-33 

antibody, or attenuated alveolar macrophage depletion, as well as exogenous IL-33 enhanced 

bleomycin-inducing lung inflammation and fibrosis. Ampawong et al.[67] compared the 

histopathological specialties of lung injury in Southeast Asian patients who died from severe 

malaria and investigated whether a correlation to pulmonary edema was present. They 
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showed that IL-33 expression in bronchial cells was dramatically increased in severe malaria 

patients who also suffered from pulmonary edema. These results suggest that IL-33 may 

take part in the pathogenic process of lung injury during severe malaria.

Summary

As stated above, IL-33 seems to function as a potent activator in various types of lung injury 

(Figure 2). IL-33/ST2 signal transduction could be considered as a molecular target to treat 

human diseases such as asthma [45, 47], ALI/ARDS [68], and so forth. Considering IL-33 

as an “alarmin” cytokine, studies have tried to modulate the IL-33/ST2 signal, including 

both IL-33/ ST2L (membrane receptor and IL-33 complex) and IL-33/sST2 (soluble form 

and IL-33 complex). For example, vitamin D upregulated the sST2 production in a dose-

dependent fashion, leading to inhibit the IL-33 cytokine response [69]. Endogenous IL-33 

can be released from the respiratory epithelium upon stimulation to elicit an immune 

response. However, secreted, biologically-active IL-33 can be inactivated rapidly via the 

formation of a disulphide bonded form of IL-33. Such a mechanism limits the duration, rang 

of immunological responses to airway stimuli which dependent on ST2 [70]. RAGE 

recognizes ligands such as high-mobility group box 1, and its pathway has been reported to 

play an important role in ALI. RAGE-deficient mice demonstrated increased IL-33 levels in 

the lung, leading to enhanced innate AHR, whereas blockade of IL-33 receptor ST2 

suppressed innate AHR [71]. Vaccination against IL-33 has already been used in research to 

inhibit hyper-responsiveness and inflammation [72, 73]. Rebamipide, a widely-used 

medication for mucosal protection, showed an inhibitory effect on IL-33 production and an 

improving mite-induced asthma conditions[74], as did dietary galacto-oligosaccharides on 

IL-33[75].

In conclusion, IL-33 appears to be a crucial cytokine in modulating immune responses in 

several lung diseases, particularly in hyper-responsiveness and inflammation. Further 

research on its role in VILI is worth further pursuing. IL-33 has shown potential as an 

attractive therapeutic target.
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Figure 1. 
IL-33 signaling pathway. IL-33 first binds to a receptor complex, which is composed of 

ST2L and IL-1RAP. Signaling is induced through the cytoplasmic Toll-inter-leukin receptor 

domain and leads to the recruitment of MyD88; IRAK4 is then recruited to MyD88, 

followed by interaction between IRAK1, IRAK2, and/or IRAK3 to form a complex known 

as the myddosome. This myddosome then interacts with TRAF6 and further activates the 

transcription factors NF-κB or MAPK.
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Figure 2. IL-33/ST2 signaling participates in various types of lung injury
IL-33 /ST2 signaling activation followed by type-2 innate immunity activation, Th2-

associated airway inflammation, group 2 innate lymphoid cell (ILC2) activation, eosinophil 

infiltration, IL-8 up-regulation, mast cell activation and pro-inflammation response, further 

participates in lung inflammation and allergy, acute lung injury (ALI) and ventilator-induced 

lung injury (VILI), chronic obstructive pulmonary disease (COPD), lung cancer and 

pulmonary sarcoidosis and other kinds of lung injury.

Chang et al. Page 12

Transl Perioper Pain Med. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	IL-33 receptor activation and its signaling pathway
	Release and cellular sources of IL-33 in the lung

	Role of IL-33 in lung injury
	Inflammation and allergy in the lung
	Acute lung injury and ventilator-induced lung injury
	Chronic obstructive pulmonary disease
	Lung cancer and pulmonary sarcoidosis
	Other kinds of lung injury

	Summary
	References
	Figure 1
	Figure 2

