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Abstract

An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming 

reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. 

Zinc powder was found to be an essential additive for obtaining high catalyst turnover and yields. 

This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a 

single step.

Nickel-O–C-eon: It’s child’s play

An unprecedented nickel-catalyzed intramolecular C–O bond forming reaction between aliphatic 

hydroxyl nucleophiles and tethered vinyl halides is disclosed. The reaction conditions are 

exceptionally mild, operationally simple, and provide access to various cyclic vinyl ethers in a 

single step. We believe that exploration of this new reactivity of nickel catalysts can provide 

further insight into the unique properties and opportunities afforded by nickel catalysts.
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Transition metal-catalyzed cross-coupling reactions have served a powerful tool for efficient 

carbon–carbon and carbon–heteroatom bond formations over the past several decades.[1] 

Recently, nickel catalysis has emerged in the synthetic community as an exceptionally useful 

strategy for cross-coupling.[2] Although tremendous advances in nickel-catalyzed carbon–

carbon bond formation have been achieved (e.g., Negishi, Suzuki, Stille, Kumada, Hiyama 

couplings),[3] nickel-catalyzed carbon–oxygen bond forming processes have proven 

significantly more challenging. The rationale behind this is that reductive elimination of 

Ni(II) alkoxide complexes is often cited as being significantly challenging even at elevated 

temperatures.[4] To circumvent this challenge, stoichiometric oxidation of Ni(II) to the less 

stable Ni(III) analogs has been required. Additionally, reductive elimination of Ni(II) 

alkoxides is reported to be endothermic via computational analysis. This is in contrast to that 

of Pd(II) alkoxides, which are exothermic.[5] In 1997, Hartwig and co-workers developed the 

first nickel-catalyzed cross-coupling between electron-deficient aryl halides and pre-formed 

sodium alkoxides or sodium siloxides.[6] In 2014, the Ranu group reported a copper-assisted 

nickel-catalyzed coupling of phenol derivatives and vinyl halides.[7] However, both of these 

reactions require high temperatures, and the scope of the nucleophiles is limited to pre-

formed alkoxides or phenols. Most recently, MacMillan and co-workers developed the 

nickel-catalyzed intermolecular cross-coupling of aryl bromides and aliphatic alcohols in the 

presence of light and a photoredox catalyst.[8] Importantly, MacMillan and co-workers could 

did observe their desired C–O coupling products in the absence of either the photocatalyst or 

light. Although Pd- or Cu-catalyzed C–O bond forming reactions have been significantly 

developed, most of these reactions require high temperature that can limit their utility in the 

synthesis of multifunctional complex molecules. Moreover, the vast majority of these 

examples are for aryl ether synthesis, not enol ether synthesis.[9, 10, 11] To our knowledge, a 

mild and efficient nickel-catalyzed intramolecular cross-coupling cyclization between 

aliphatic hydroxyl nucleophiles and tethered vinyl halides is unprecedented.

In the course of an alkaloid synthesis effort, we attempted a nickel-catalyzed reductive Heck 

reaction of vinyl iodide 1 with the aim of producing tricycle 2 (Scheme 1, red arrows).[12] 

Surprisingly, instead of the desired intramolecular C–C bond-forming reaction, a C–O bond-

forming cyclization between the vinyl iodide and the free hydroxyl group furnished 

morpholine derivative 3 (Scheme 1, blue arrows). Given the lack of precedent in the 

literature for such a transformation with nickel catalysis, we set out to explore the generality 

of this reaction. Herein, we describe the first nickel-catalyzed cycloetherification of aliphatic 

alcohols with pendant vinyl halides.

Given this interesting preliminary data, we chose aminocyclohexanols 4a and 4b as 

simplified substrates for reaction optimization studies (Table 1). Our initial reaction 

conditions afforded the corresponding morpholines 5a and 5b in 53% and 42% yield, 

respectively (entries 1 and 2). A wide variety of bases and additives were investigated to 

improve the yield and catalytic efficiency (entries 3–10). We found triethylamine to be 

superior to others examined (entries 3–5). The use of a 1:1 mixture of triethylamine and 

DABCO allowed etherification in 69% yield with reduced catalyst loading (i.e., 20 mol % 

Ni(COD)2, entry 6). Gratifyingly, the use of 2 equiv of zinc powder as an additive resulted in 
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a significant improvement in yield (84%) with only 5 mol % of Ni(COD)2 (entry 

10).[12, 14, 15, 16, 17]

With optimized conditions in hand, we investigated the substrate scope of the transformation 

(Table 2). In addition to simple vinyl iodides (e.g., 4b, R1 = Me, R2 = H, R3 = H),[18] a (Z)-

styrenyl iodide (i.e., 4c, R1 = Me, R2 = H, R3 = Ph)[19] furnished vinyl ether 5c in high yield 

and without loss of olefin stereochemical fidelity. Aminocyclohexanols bearing isopropyl 

and allyl substituents on nitrogen afforded the corresponding products in reduced yields (5d 
and 5e). Electronically variable benzyl groups were compatible under the reaction 

conditions, and even an aryl bromide was well tolerated (5f–5h). Additionally, a silyl ether 

group remained intact, generating substituted morpholine 5i in good yield. Moreover, we 

discovered that a cis-aminocyclohexanol derived substrate was competant in the reaction, 

providing the cis-fused bicyclic product 5j.

To our delight, we found that the nickel-catalyzed intramolecular etherification reactions 

also proceeded with linear aminoalcohol substrates to generate monocyclic morpholine 

derivatives in moderate to high yields (Table 3). The steric environment of the alcohol 

fragment did not hinder the performance, as substrates containing primary, secondary, or 

highly congested tertiary hydroxyl nucleophiles furnished the corresponding cyclic vinyl 

ethers in excellent yields (7a–7c). Finally, a benzyl-substituted linear aminoalcohol substrate 

was transformed to the desired vinyl ether in modest yield (7d).

We were pleased to discover that additional acyclic substrates undergo the nickel-catalyzed 

carbon–oxygen cross-coupling to furnish alkylidene tetrahydrofurans and dihydropyrans 

(Table 4). Intramolecular etherification of vinyl iodide 8a furnished the cyclic ether 9a in 

good yield in only 1 h (entry 1). Although less reactive, a vinyl bromide also fared well in 

the reaction, affording the corresponding product in 52% yield after 12 h (entry 2). 

Unfortunately, attempts to employ a vinyl chloride as the coupling partner led predominantly 

to recovery of starting material (entry 3). Mono-methyl and mono-phenyl substituted vinyl 

iodides (8d and 8e)[20] afforded the desired ethers (9d and 9e) in good yields with retention 

of olefin stereochemistry (entries 4 and 5). Gratifyingly, tetrasubstituted vinyl bromide 8f[21] 

furnished the corresponding tetrahydrofuran product 9f in excellent yield (entry 6). Di-tert-
butyl and dibenzyl malonates (8g and 8h) were tolerated under the standard reaction 

conditions to afford the desired ethers (9g and 9h) in good yields (entries 7 and 8). 

Additionally, carbon–oxygen bond formations were achieved with nitrile- and amide-

containing substituents in 61% and 70% yield, respectively (entries 9 and 10). Formation of 

a six-membered cyclic vinyl ether (9k) from substrate 8k was found to be challenging with 

only low levels of conversion (entry 11). Interestingly, cycloetherification of 8l did indeed 

produce a pyran derivative in good yield, but only isomerized product 9l was isolated (entry 

12).[22]

In conclusion, a highly efficient, mild, and operationally simple nickel-catalyzed 

intramolecular carbon–oxygen bond-forming reaction between vinyl halides and aliphatic 

alcohols has been developed. We discovered that zinc powder plays an important role in 

improving catalyst turnover and isolated yields. The reaction is tolerant of many functional 

groups, affording various cyclic vinyl ethers in good to excellent yields. This work further 
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expands the capability of nickel catalysis in the context of small molecule chemical 

synthesis. Additional studies are ongoing to expand the scope of the reaction, to understand 

the mechanism, and to deploy the cyclization in the context of a complex molecular 

target.[23] These efforts will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Ni-Catalyzed C–O Bond Formation
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Table 2

Intramolecular Cross-Coupling of Amino-cyclohexanols[a],[b]

[a]
Reactions were performed in a N2-filled glove box.

[b]
Yield of isolated product.

[c]
96 h.
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Table 3

Intramolecular Cross-Coupling of Linear Aminoalcohols[a],[b]

[a]
Reactions were performed in a N2-filled glove box.

[b]
Yield of isolated product.
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Table 4

Synthesis of Substituted Tetrahydrofuran and Dihydropyran Rings[a]

entry substrate product time (h) yield (%)[b]

1

8a 9a

1 87

2

8b 9b

12 52

3

8c 9c

60 –[c]

4

8d 9d

2 87

5

8e 9e

12 91

6

8f
9f

48 98
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entry substrate product time (h) yield (%)[b]

7

8g 9g

1 87

8

8h 9h

1 66

9

8i 9i

12 61

10

8j 9j

1 70

11

8k
9k

72 –[c]

12

8l 9l

12 76

[a]
Reactions were performed in a N2-filled glove box.

[b]
Yield of isolated product.

[c]
Low conversion.
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