Skip to main content
. Author manuscript; available in PMC: 2017 Jun 20.
Published in final edited form as: Angew Chem Int Ed Engl. 2016 May 9;55(26):7437–7440. doi: 10.1002/anie.201601991

Table 1.

Optimization of Reaction Parameters[a]

graphic file with name nihms805961u4.jpg
entry substrate conc(M) Ni mol % base additive yield (%)[b]
1[c] 4a 0.02 50 Et3N (10 equiv) 53
2[c] 4b 0.02 50 Et3N (10 equiv) 42
3[c] 4a 0.02 35 Et3N (10 equiv) 42[d]
4[c] 4a 0.02 35 Cs2CO3 (3.0 equiv) 30[d]
5[c] 4a 0.02 35 K3PO4 (3.0 equiv) 34[d]
6 4b 0.10 20 Et3N (1.0 equiv) DABCO (1.0 equiv) 69
7 4b 0.10 20 Et3N (1.0 equiv) CsF (1.0 equiv) 51
8 4a 0.04 20 DABCO (1.0 equiv) 24
9 4a 0.04 20 DABCO (2.0 equiv) 50[d]
10 4b 0.15 5 Et3N (1.1 equiv) Zn (2.0 equiv) 84
[a]

Reactions were performed in a N2-filled glove box.

[b]

Yield of isolated product.

[c]

DMF (0.04 M) was used as a co-solvent.

[d]

The reaction proceeded with incomplete conversion of starting material.