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ABSTRACT

Recently, radiogenomics or imaging genomics has emerged as a novel high-throughput method of associating imaging

features with genomic data. Radiogenomics has the potential to provide comprehensive intratumour, intertumour and

peritumour information non-invasively. This review article summarizes the current state of radiogenomic research in

tumour characterization, discusses some of its limitations and promises and projects its future directions. Semi-

radiogenomic studies that relate specific gene expressions to imaging features will also be briefly reviewed.

INTRODUCTION
In recent years, a new direction in cancer research has
emerged to address high-throughput methods of associating
imaging features with genomic data.1–3 This approach is
referred to as radiogenomics or imaging genomics. The
imaging characteristics of a disease are also called its imaging
phenotype or radiophenotype, while the genomic in-
formation defines the molecular phenotype or genotype of
the disease. Research to uncover the underlying genetic
causes of individual variation in sensitivity to radiation using
high-throughput genomic methods has also been referred to
as “radiogenomics” and is not discussed in this review.4

Much of the discussion of personalized medicine has fo-
cused on molecular characterization using genomic and
proteomic technologies.5 However, a limitation of these
approaches is the need to acquire tissue samples through
invasive surgery or biopsy.6 Although some genetic analyses
have been incorporated into clinical practice in recent
years, large-scale genome-based cancer characterization is
not routinely performed owing to its cost, turnaround
time and technical complexity required for data analysis
and interpretation.7 In addition, samples are often
obtained from a small portion of a heterogeneous lesion
and may not accurately represent the lesion’s anatomic,
functional and physiologic properties.8 Even more

importantly, it is not feasible to obtain the tissue multiple
times during treatment in order to monitor response.
Consequently, it is still a challenge to incorporate genomics
or proteomics into routine clinical practice.

Imaging has great potential for in vivo tumour character-
ization because it can provide a more comprehensive view of
the entire tumour than biopsy samples alone.9 For example,
imaging can provide information on peritumoral regions,
which are typically not surgically removed and thus not
analysed in the laboratory.1 Human tissues often exhibit
a diversity of distinctive traits on radiographic images, many
of which currently have no known clinical significance.
Furthermore, routine clinical practice often includes follow-
up imaging to monitor treatment response and disease
progression.10 Advances in imaging technologies now pro-
vide better anatomic localization and allow for non-invasive
measurements of functional and physiologic tissue- and
lesion-specific properties.11 Potentially, one would benefit
tremendously from radiogenomic biomarkers that measure
gene expression at frequent intervals during therapy.

Oncologic diagnosis is quickly moving from the traditional
histology-based approaches to molecular stratification.12

Therefore, the traditional radiology–pathology paradigm
alone is no longer sufficient to radiologists. Radiogenomics
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represents the evolution of the radiology–pathology correlation
from the histology level to the subcellular level.2 This systematic
association between imaging traits and gene expression allows
useful inference in both directions: imaging traits can be used to
predict gene expressions in human cancers; conversely, image
features can be predicted from gene signatures.2,3 The predictive
capabilities of these signatures not only enable immediate
translational potential, but also suggest potential molecular
mechanisms that may give rise to imaging phenotypes.13

In order for personalized medicine to transpire, biomarkers
must accurately reflect the underlying molecular cancerous
machinery.14 Given the growing number of genomic, imaging
and clinical biomarkers that were identified in patients with
various types of cancers, there is a need to create integrative
biomarkers to link multiple types of data and measurements.14

The objective of this study was to provide a comprehensive re-
view of radiogenomic research in tumour characterization.

PUBLISHED STUDIES USING A RADIOGENOMIC
APPROACH IN CANCER RESEARCH
We searched multiple electronic databases for original research
studies that correlated imaging features by manual, semi-
automatic or automatic assessment with the whole genome
data. Our search terms included variations of1 different imaging
modalities including “MR”, “scintigraphy” and “nuclear medi-
cine”, “CT” or “PET”; and2 molecular signatures such as “ge-
nome”, “genomics”, “molecular profiling”, “mutation”,
“sequence”, “gene”, “genetic” and “signature”. Studies that con-
tained the word radiogenomic or imaging genomics were
identified separately. We excluded studies that associated imag-
ing features with patient response to radiation therapy, since this
refers to a different field of research called radiation genomics.
Radiomics involves extraction of many quantitative imaging
features with computer algorithms. The extracted features can
be related to genomics or proteomics. Only “radiomics approach
to radiogenomics” is included in this review. For studies that
associated imaging features with specific genes and expression of
specific gene subsets (e.g. tumour molecular subtype), we
grouped them under the category “semi-radiogenomic studies”.
Studies that correlated imaging with markers measured by im-
munohistochemistry or fluorescent in situ hybridization [e.g.
(R)-2hydroxyglutarate (2HG) metabolites from isocitrate de-
hydrogenase 1 mutation, p53 nuclear staining, anaplastic lym-
phoma kinase 1 status etc.] were not included under this
category. Furthermore, we did not include studies that corre-
lated BRCA1/2 gene mutations or other specific gene
expressions/mutations with breast density on mammography.

Overall, 27 studies were included in the final analyses
(Table 1).9,15–40 These studies were published between 2007
and 2015. 8 studies used data from The Cancer Genome
Atlas (TCGA) and/or The Cancer Imaging Archive
(TCIA);1,16,23,27,32,34,38,41 2 studies were multi-institutional;9, 19

and the remaining 17 studies used local institutional
data.15,17,18,20–22,24–26,28,30,31,33,35–37,39,40 26 out of 27 studies
were retrospective in design. The number of patients ranged
from 10 to 104 patients, with a median of 38 patients. 8 (30%)
studies used a validation data set to verify the associationT
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Table 2. Manually extracted imaging features from radiogenomic studies

Study Modality Cancer Significance definition Manually extracted feature

Jamshidi et al28 CT CCRCC Association with gene clusters
Pattern of tumour necrosis, tumour
transition zone, tumour–parenchyma
interaction, tumour–parenchyma interface

Kuo et al18 CT HCC Association with mRNA and gene clusters
Internal arteries, texture heterogeneity,
wash-in, washout, necrosis, tumour
margin score

Segal et al20 CT HCC Association with mRNA

Necrosis, internal septa, texture
heterogeneity (arterial and venous phase),
tumour margin score (minimum and
maximum), enhancement pattern, internal
arteries (density and necrosis edge),
hypodense halo, washout, internal arteries
(density), tumour–liver difference,
corrected imaging area, necrosis density,
capsule, wash-in, infiltration,
tumour–liver difference, attenuation/
heterogeneity score

Carlson et al24 CT HGG Association with mRNA Oedema

Gevaert et al15 CT NSCLC Association with mRNA

Internal air bronchogram, complex shape,
vascular convergence, lobulated margin,
oval shape, irregular margin, pleural
retraction, solid density, entering airway,
right upper lobe apical location

Aerts et al9 CT NSCLC Association with mRNA None

Jain et al32 CT GBM Association with mRNA None

Osborne et al36 PET Breast cancer Association with molecular subtypes None

Palaskas et al37 PET Breast cancer Association with Myc-overexpression None

Nair et al19 PET NSCLC Association with mRNA and gene clusters None

Yamamoto et al21 MRI Breast cancer Association with gene clusters

Enhancement pattern, size, shape, margin,
location, T2 tumour signal interface
between tissue and tumour, satellite lesions,
multifocal disease, lymph node
involvement, un-coordinated growth,
stromal alterations

Yamamoto et al22 MRI Breast cancer Association with IncRNA None

Zhu et al38 MRI Breast cancer Association with gene clusters None

Halle et al40 MRI
Cervical
cancer

Association with gene clusters None

Gevaert et al16 MRI GBM Association with molecular subtypes
VASARI (deep white matter location,
enhancement, enhancing margin
characteristics, diffusion characteristics)

Colen et al29 MRI GBM Association with mRNA

VASARI (enhancing tumour across
midline/corpus callosum, deep white
matter tract involvement, ependymal
involvement)

Nicolasjilwan et al34 MRI GBM Association with mRNA and CNV
VASARI (proportion of tumour contrast
enhancement)

Jamshidi et al17 MRI GBM Association with gene clusters

Contrast enhancement, necrosis,
contrast-to-necrosis ratio, infiltrative vs
oedematous T2 abnormality, mass effect,
subventricular zone involvement

(Continued)
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between imaging features and genomic data identified in the
initial data set.20,22,23,27,28,34,37,40 Six types of cancers were studied:
glioblastoma multiforme (GBM)/high-grade glioma (n5 14,
52%), non-small-cell lung cancer (NSCLC) (n5 3, 11%), hepa-
tocellular carcinoma (HCC) (n5 3, 11%), breast cancer (n5 5,
19%), clear-cell renal cell carcinoma (CCRCC) (n5 1, 4%) and
cervical cancer (n5 1, 4%). The imaging modalities used in-
cluded fluorine 18 fludeoxyglucose positron emission tomography
(PET) (n5 4, 15%), MRI [n5 18 (including two perfusion MR),
67%] and CT [n5 5 (including one perfusion CT), 19%].

Imaging features and extraction
The number of imaging features extracted range from 1 to 440
with a median of 6. 5 (19%) studies used automatic or semi-
automatic imaging feature extraction; 21 (78%) studies used
manual feature extraction; and 1 (4%) study used a combination
of automatic and manual imaging feature extractions. 19 (70%)
studies involved board-certified radiologists in the process of
imaging feature extraction. In one study, Aerts et al9 defined the
region of interest in one study. 7 studies did not provide any
information regarding reader qualification. 6 (22%) studies fo-
cused on building an association map between genomic data and
imaging features, while the other 21 (78%) studies identified
significant imaging features that correlated with genomic data.

We tabulated all the manually extracted and computation-
ally derived imaging features from all radiogenomic studies
(Table 2).9,15–40 There was a wide array of imaging features that
were extracted by radiologists, depending on the imaging mo-
dality used and the type of cancer studied. The most common CT
features that were extracted include tumour necrosis and tumour
margin. For HCC, enhancement properties on different phases of

CTwere the commonly studied imaging features.18,20 Internal air
bronchogram was a specific feature extracted for NSCLC.15 Most
MRI studies focused on GBM and breast cancer. For GBM, three
studies used Visually Accessible Rembrandt Images (VASARI),
a comprehensive feature set consisting of 24 observations familiar
to neuroradiologists to describe the morphology of brain tumours
on routine contrast-enhanced MRI.42 The imaging features in
VASARI that were most likely to have a significant relationship
with genomic data included enhancement characteristics of the
brain tumour and its extent of involvement.16,31,34 This re-
lationship held for other studies of GBM which did not utilize
VASARI. One study of breast cancer found the location, lymph
node and stromal patterns to be significant imaging features with
genomic data,21 while another study of HCC focused on the in-
tensity of the tumour in the hepatobiliary-phase MR.39

There was relative uniformity for the computationally derived
imaging features (Table 3).9,15–40 For CT, tumour intensity,
texture and shape were the most commonly extracted features,
especially for NSCLC. PET studies were most likely to focus on
the standardized uptake value, regardless of tumour type. Ce-
rebral blood volume is the most commonly derived feature on
either perfusion CT or MRI.24,32 For MRI studies on GBM, the
most common feature extracted to correlate with genomic data
was the volume of the tumour.1,16,23,27,33 Several studies divided
the tumour into regions with specific imaging characteristics
such as enhancing, necrotic, oedema etc. and correlated the
volume of each region with the patient’s genomic data.1,16,23,33

For MRI studies on breast cancer, tumour volume was still
a commonly extracted imaging feature. Otherwise, studies have
focused on signal strength on specific sequences at different time
points and contrast kinetic pattern.21,22,38

Table 2. (Continued)

Study Modality Cancer Significance definition Manually extracted feature

Barajas et al24 MRI GBM Association with mRNA and gene clusters
Lesion location, presence of contrast
enhancement, central necrosis, degree of T2
oedema, mass effect

Diehn et al25 MRI GBM Association with gene clusters

Contrast enhancement, necrosis, mass
effect, pattern of T2 oedema (infiltrative/
oedematous), cortical involvement, SVZ
involvement, C : N ratio, contrast/T2 ratio,
degree of T2 oedema, T2 heterogeneity

Pope et al26 MRI GBM Association with mRNA Enhancement extent

Zinn et al23 MRI GBM Association with mRNA and micro-RNA None

Zinn et al27 MRI GBM Association with mRNA and micro-RNA None

Colen et al31 MRI GBM Association with mRNA and micro-RNA None

Naeini et al33 MRI GBM Association with molecular subtypes None

Pope et al35 MRI GBM Association with mRNA None

Miura et al39 MRI HCC Association with mRNA Intensity on hepatobiliary phase

CCRCC, clear-cell renal cell carcinoma; C:N ratio, contrast:necrosis ratio; CNV, copy number variation; GBM, glioblastoma multiforme; HCC,
hepatocellular carcinoma; HGG, high-grade glioma; mRNA, messenger RNA; NSCLC, non-small-cell lung cancer; PET, positron emission tomography;
SVZ, subventricular zone; VASARI, Visually Accessible Rembrandt Images.
Bold type means significant relationship of imaging feature with genomic data.
Article by Colen et al31 published in BioMed Central Medical Genomics; article by Colen et al29 published in Radiology.
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Table 3. Computationally extracted imaging features from radiogenomics studies

Study Modality Cancer Computer-extracted features

Jain et al32 CT GBM CBV, PS

Aerts et al9 CT NSCLC Tumour intensity, shape, texture, wavelet features

Jamshidi et al28 CT CCRCC None

Kuo et al18 CT HCC None

Segal et al20 CT HCC None

Carlson et al30 CT HGG None

Osburne et al36 PET Breast cancer SUV

Palaskas et al37 PET Breast cancer SUV

Nair et al19 PET NSCLC
SUV intensity metrics, SUV distribution metrics, SUV
spatial metrics

Gevaert et al15 PET/CT NSCLC
Histogram, texture, edge sharpness, edge shape, ROI
size, SUV

Yamamoto et al21 MRI Breast cancer
T1 intrinsic signal,T2 intrinsic signal strength, contrast
kinetic pattern, median peak signal strength at
different times, nadir signal strength at different times

Yamamoto et al22 MRI Breast cancer

Largest tumour volume, tumour roundness, entropy,
skewness, kurtosis, GLCM contrast, GLCM
homogeneity, GLCM energy, Hu’s seven moment
invariants, average of wash-in slope, average of washout
slope, plateau fraction, persistent fraction, heterogeneity
of time intensity, ERF

Zhu et al38 MRI Breast cancer
Size phenotypes, shape phenotypes, morphological
phenotypes, enhancement texture phenotypes, kinetic
curve assessment, enhancement-variance kinetics

Barajas et al24 MRI GBM CBV, PH, PSR, ADC

Gevaert et al16 MRI GBM Necrotic, enhancing, oedema ROIs

Zinn et al23 MRI GBM FLAIR volume

Zinn et al27 MRI GBM Volume

Colen et al29 MRI GBM Necrosis volume

Naeini et al33 MRI GBM
Contrast-enhancing volume, necrotic volume, contrast
enhancement1necrotic volume, T2 hyperintense
volume, the ratio of oedema/(necrosis1contrast)

Pope et al35 MRI GBM ADC

Jamshidi et al17 MRI GBM None

Diehn et al25 MRI GBM None

Pope et al26 MRI GBM None

Colen et al31 MRI GBM None

Nicolasjilwan et al34 MRI GBM None

Halle et al40 MRI Cervical cancer Abrix (enhancement-variance kinetics)

Miura et al39 MRI HCC None

ADC, apparent diffusion coefficient; C :N ratio, contrast:necrosis ratio; CBV, cerebral blood volume; CCRCC, clear-cell renal cell carcinoma; CNV, copy
number variation; EFR, enhancing rim fraction; FLAIR, fluid-attenuated inversion recovery; GBM, glioblastoma multiforme; GLCM, gray-level
concurrence matrix; HCC, hepatocellular carcinoma; HGG, high-grade glioma; NSCLC, non-small-cell lung cancer; PET, positron emission tomography;
PH, peak height; PSR, percentage of signal intensity recovery; PS, permeability surface; ROI, region of interest; SUV, standardized uptake value; SVZ,
subventricular zone.
Bold type means significant relationship of imaging feature with genomic data.
Article by Colen et al31 published in BioMed Central Medical Genomics, article by Colen et al29 published in Radiology.
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Genomic data
26 (96%) studies used data from RNA or complementary DNA
microarray. Only one (4%) study used data from RNA se-
quencing.22 Among these 26 studies that used microarray data to
correlate with imaging, 4 studies included micro-RNA,1,23,27,38 5
studies copy number variation,16,17,34,37,38 1 DNA methylation16

and 1 somatic mutation.38 11 (41%) studies grouped gene
expression data into gene clusters or modules to associate
with imaging features;9,15–18,20,33,34,37,38,40 9 (33%) studies
directly associated individual elements with imaging
features;1,22,23,26,27,30,32,35,39 and 7 (26%) studies used both
approaches.19,21,24,25,28,31,36 23 (85%) studies performed
pathway analysis, either in the initial clustering of genes to
associate with imaging features (n5 10)9,15,20,21,24,33,34,37,38,40

or in the final analysis of significant genomic markers
(n5 12).1,16,17,19,22,23,27,31,32,35,36,39 One study performed
pathway analysis for both purposes.25

Outcome, histology and wet lab validation
18 (67%) studies included outcome
data.1,9,15,16,19,20,22,23,25–28,30,31,33,35,39,40 12 studies focused on
overall survival (OS);1,9,19,20,25–28,30,31,33,35 4 studies included
both OS and progression-free survival;15,16,23,39 1 study focused
on progression-free survival in cervical cancer;40 and 1 study
used metastatic-free survival in breast cancer.22 Three studies
stated overall follow-up time.22,26,30 12 (44%) studies correlated
with histological data.1,9,18,20,22,24,26,35–37,39,40 The histological
parameters that were evaluated ranged from tumour type and
tumour stage to specific immunological expression of tumour
markers such as oestrogen receptor (ER), progesterone receptor
(PR) and HER2 in breast cancer.

Five (19%) studies attempted to verify significant associations
that were identified through lab-based techniques.22,25,26,37,40

Two studies performed quantitative polymerase chain reaction
(PCR) to verify the significant difference in gene expression
among imaging phenotypes through association studies.22,26

Two studies performed gene expression analysis in corre-
sponding cancer cell lines.37,40 One study performed immuno-
logical staining of epidermal growth factor receptor (EGFR) and
found differentially expressed EGFR among different imaging
phenotypes.25

Semi-radiogenomic studies
38 semi-radiogenomic studies were identified (Table 4).28,43–79

Studies were published between 2005 and 2015. All studies were
retrospective in design. Five studies used data from TCGA/
TCIA;45,46,48,49,57 one study used multi-institutional data;50 and
one study combined both institutional data and data from
TCGA/TCIA.44 The number of patients ranged from 25 to 539
with a median of 75. Only two studies had a validation data set.
The type and distribution of cancers in these studies were
similar to those for radiogenomic studies, except for two studies
that focused on low-grade glioma47,58 and one study that fo-
cused on diffuse large B-cell lymphoma.59 The imaging mo-
dalities used included CT (n5 9), MRI (n5 21, including five
perfusion) and PET (n5 6). Two studies used both CT and
MR.46,53 The number of imaging features extracted ranged from
1 to 120 with a median of 5. 11 (29%) studies used semi-

automatic image feature extraction.45,49,55,58,61–63,72,73,75,79 All
studies (except eight studies which did not provide this in-
formation) had radiologist participation. 29 (76%) studies fo-
cused on individual genes;28,43,44,46, 47,48,50–53, 54,56,57,59,60,64,65,

66–71,74,76–78 7 (18%) studies used gene clusters or subsets de-
rived from primary genomic data;28,45,50,57,59,61,63 and 2 (5%)
studies used a combination of both.48,55 14 (37%) studies in-
cluded outcome data.28,47,48,50,51,55,57,59,61,63,69–71,79 Only four
studies correlated with histology.50,60,71,74 None of the study
verified their results via wet-lab techniques.

LIMITATIONS AND PROMISES
Radiogenomics is an emerging field that links tumour genotype
with imaging phenotypes. Since 2007, a number of studies have
been published on radiogenomic characterization of certain
cancers.9,15–40 These studies pioneered the feasibility of this
approach and paved the way for future developments in the
field. However, we noticed a number of issues from our analysis.

Study design
Only a handful of studies can be considered as “real” radio-
genomics studies in the sense that they used whole genome data.
The dimensionality of imaging, despite being rapidly increasing
over time, is still orders of magnitude lower than that of whole-
genome sequencing or molecular profiling.1 One of the limi-
tations of the current radiogenomic research is the need to
reduce the dimensionality of genomic data to match that of
imaging. A common approach in analysing these data is to
group individual genetic elements into gene modules before
performing association analysis with imaging features. Given the
tenuous imaging-to-genomics and genomics-to-outcome rela-
tionships, such an approach may further undermine the po-
tential of imaging to predict patient outcomes, one of the
primary goals of radiogenomic analyses.3

Standardization in imaging analysis
Traditionally, medical imaging has been a subjective or quali-
tative art. Recent advances in medical imaging acquisition and
analysis allow the high-throughput extraction of specific imag-
ing features to quantify the differences that oncologic tissues
exhibit in medical imaging.80 Aerts et al9 evaluated a total of 440
CT features of the lung and head and neck cancers on the basis
of four imaging characteristics:1 tumour intensity,2 shape,3

texture and4 wavelet features. These imaging features were
extracted by an automated algorithm written in MATLAB®
(MathWorks®, Natick, MA). Using a predefined vocabulary and
analytical algorithm, Gevaert et al15 extracted 153 computational
image features, 26 semantic image features and standardized
uptake value from PET to characterize NSCLC in 26 patients.
Grimm et al81 used computer vision algorithms to extract 56
imaging features from breast cancers including morphologic,
texture and dynamic features. However, automatic extraction of
quantitative imaging features, such as tumour morphology,
texture and contrast kinetics, is limited to homogeneous
tumours. For example, in the study of GBM, the most com-
monly computationally derived imaging feature was tumour
volume. Other features were not routinely evaluated, likely be-
cause GBM commonly demonstrated significant intratumour
heterogeneity.73,82 To overcome this limitation, Gevaert et al16
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segmented the tumour into enhancing, oedematous and ne-
crotic regions. Quantitative imaging features were then extracted
from each region and correlated with genomic data.

Unfortunately, automatic imaging feature extraction was
implemented in only a minority of studies. In the majority of
studies, imaging features were manually assessed by radiologists.
Manual analysis of images has certain disadvantages. In partic-
ular, manual extraction is subject to interobserver variability,
random errors during manual contour tracing for mass volume
etc. Furthermore, it is labour intensive. A future direction in the
field of radiogenomics is the implementation of quantitative
image analysis tools to allow comprehensive image feature ex-
traction in a fast and reproducible manner. In addition, creating
a lexicon and ontology of reproducible semantics and computed
image features will permit images to be mineable in a manner
similar to genomic data.

Segmentation conundrums
A variety of automated or semi-automated image segmentation
methods are available. Some are based on the analysis of (often
multiparametric) imaging signals in an unsupervised83,84 or
supervised way.85 Oftentimes, anatomical statistical priors en-
code normal anatomy and hence find tumours as deviations
from it.86 Segmentation methods that explicitly incorporate
biophysical models of tumour growth, in a way to facilitate
imaging-based segmentation, have also been proposed.87,88 Al-
though validation of these methods is a very challenging and
effort-demanding task, some international efforts for creating
validation platforms have started to emerge. A prime example is
the Brain Tumor Segmentation challenge organized annually,
which uses TCIA and other public data sets, along with ground
truth, to evaluate a variety of algorithms.41

Segmentation methods are usually a first step prior to extracting
imaging features, which are used in conjunction to build bio-
markers of gene expression. Commonly used features include
volumetrics of enhancing and non-enhancing parts, and of
surrounding oedema, textural properties of the tumour, which
reflect the spatial heterogeneity of tumours, shape properties of
tumour boundaries, which relate to infiltrative/aggressive tu-
mour phenotypes, multiparametric histograms of various im-
aging measures, which relate to cell density, perfusion dynamics,
gadolinium enhancement and water content, and various other
properties. Such features have been found to jointly form good
predictors of tumour molecular characteristics, especially when
integrated via machine learning and other multiparametric
analysis models.15,63,89

Functional imaging
Currently, automated extraction is limited to CT, which is the
most widely used imaging modality in oncology with the ability
to assess tissue density. Emerging functional and molecular
imaging methods, such as PET/CT and dynamic contrast-
enhanced (DCE) or diffusion-weighted MRI, have the potential
to assess the in situ tumour’s metabolic and proliferative activity
with higher accuracy than traditional imaging methods.1 In the
only prospective radiogenomic study published to date, Barajas
et al correlated physiologic MR parameters with RNA expression

patterns in enhancing vs peritumoral non-enhancing GBM bi-
opsy samples.24 The authors found that T2* dynamic
susceptibility-weighted contrast-enhanced perfusion-weighted
and diffusion-weighted imaging measurements were signifi-
cantly different between biopsy regions and correlated with
GBM histopathological features of aggressiveness. In addition,
the upregulated genes were associated with similar cellular ma-
lignant biologic processes that were observed to correlate with
physiologic-based MRI measurements. In another study of
18 patients with GBM, Jain et al32 correlated CT perfusion
parameters with genes that are related to angiogenesis regula-
tion. Of the 92 angiogenesis-associated genes, 19 genes had
significant correlation with the permeability surface area product
and 9 genes had significant correlation with the cerebral blood
volume. Unfortunately, both of these studies were hampered by
the extremely small sample sizes. In the future, studies with
a larger cohort size and variety of cancer types are needed to
uncover the potential correlation between functional and mo-
lecular imaging parameters and genomic data.

Sample size
Studies included in our review are limited by a small sample size.
In addition, these studies often lack complete characterization of
the patients and suffer from poor integration of individual data
sets. In fact, one of the greatest limitations that are often cited
for these studies is the difficulty in obtaining original cohorts of
patients with both appropriate imaging studies and adequate
tissue samples for genomic analysis.3 However, it is important to
keep in mind that routine imaging data are readily available in
large quantities, many of which have corresponding archival
tumour tissue available for various molecular analyses. These
cases can be collected retrospectively and studied by investigators
working at large clinical institutions. Furthermore, the cost of
next-generation sequencing and other high-throughput molec-
ular techniques has reduced to a fraction of what it was before.32

These assays can generate large amount of data that can po-
tentially be harvested.

Molecular genetic analysis
As demonstrated by our review, most studies performed to date
are limited to microarray data, since it is the earliest type of
genomic analysis available to allow assessment of the differential
changes in genome-wide gene expression levels. Three studies
used micro-RNAs.1,23,27 Micro-RNAs are non-protein-coding
small RNAs that serve as negative gene regulators by binding to
a specific sequence in the 39 UTR of a target gene.90 A single
micro-RNA can potentially target hundreds of genes.90 There-
fore, micro-RNAs were found to have important roles as tumour
suppressors and oncogenes, as well as regulators of various
cancer-specific cellular features, such as proliferation, invasion
and metastasis.91,92 In one of the studies on radiogenomics of
GBM, Zinn et al.23 incorporated micro-RNA data into the
analysis of microarray association with imaging features. By
correlating quantitative MRI data with microarray data, the
authors found periostin (POSTN) as the top upregulated gene.
Through additional micro-RNA analysis, they identified miR-
219 as the top downregulated micro-RNA. miR-219 is known to
have a potential binding site in the 39 untranslated region (UTR)
of the POSTN gene. This inverse correlation between POSTN
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and miR-219 suggests a potential role of miR-219 in down-
regulating POSTN in GBM mesenchymal transition and cellular
invasion. More importantly, this signature can be non-invasively
detected by routine MRI. In another study by Yamamoto et al,22

the authors used next-generation RNA sequencing to correlate the
expression of long non-coding RNA with MRI phenotypes and
the presence of early metastasis in breast cancer. Long non-coding
RNAs represent an important class of regulatory RNAs that are
longer than 200 nucleotides,93 exhibit exquisite cell and tissue
specificity and are critical in maintaining tissue structure and
organization.93,94 The above examples illustrate the importance
of including multiple genomic data sets to derive maximum
benefit from radiogenomic association maps. Using new ge-
nomic technologies such as next-generation DNA sequencing,
single nucleotide polymorphism genotyping, chromatin im-
munoprecipitation and RNA sequencing into the fold has the
potential to open up new frontiers for radiogenomic research.95

Moreover, understanding molecular pathways that result in these
radiogenomically identified imaging features should be one of the
primary goals of radiogenomic analyses, as it is a necessary path to
demonstrate radiogenomics’ clinical significance.

Study validation
Validation with prospectively collected independent cohorts is the
most robust approach and gold standard for verifying an identified
statistical association.96 However, in our revealed literature, vali-
dation data set was used in only eight studies (30%). The decision
to not proceed with validation data set in other studies may have
stemmed from the data availability issue, as previously discussed.
Genomic data are the hardest to obtain because they may require
fresh tissue specimens. Gevaert et al15 demonstrated a radio-
genomic strategy to rapidly identify prognostically significant im-
age biomarkers. By using specific genomic characteristics as
intermediate, they linked imaging data in the first data set to
survival in the second data set. Since long-term clinical follow-up
may not be feasible in patients with both genomic and imaging
data, the authors argued that their approach was able to leverage
imperfect data sets to draw new conclusions. However, this ap-
proach requires the existence of large gene expression data sets
where survival outcomes are available. TCGA is a publicly available
resource that contains multidimensional genomic and clinical data
set for multiple types of adult cancers.97 TCIA is another publicly
available resource that contains imaging corresponding to these
patients in TCGA.98 However, the usefulness of radiological data
that are contained in the TCIA is limited by the lack of image
sample registration (i.e. gene expression profiles cannot be matched
to a specific location on imaging). Successful attempts have been
made to account for these differences by rigid alignment and
registration with proper segmentation.23 As the imaging acquisition
protocols become increasingly standardized and outcome data
become more mature, public databases such as TCGA and TCIA
will not only serve as powerful validation tools, but more impor-
tantly, as the foundation for further radiogenomic discoveries.5

Histopathological correlation
Radiologic studies can be correlated with whole-genome map-
ping, histopathology and specific genes. Most of the studies in
our review (15/27, 56%) did not perform histopathology asso-
ciation with imaging data. In one of the studies, Pope et al26

found that incomplete enhancing imaging phenotype was as-
sociated with increased levels of oligodendroglioma marker ol-
igodendrocyte lineage transcription factor 2 and achaete-scute
complex-like 1 than completely enhancing the imaging pheno-
type. The authors confirmed this finding with histopathology,
which showed a higher percentage of substantial oligodenro-
glioma histologic component in the incomplete enhancing
group vs the complete enhancing group. In another study by
Colen et al,1 the authors found that patients with GBM with low
volumes of necrosis had a high prevalence of X-linked genes,
while those with high volumes of necrosis had a high prevalence
of Y-linked genes. Subsequently, the authors showed that in
contrast to male patients, female patients with low volumes of
necrosis on MRI had a significant survival advantage. This result
was confirmed by a separate validation data set of 368 patients,
where the authors were able to demonstrate that in female
patients, cell death on histology was associated with a survival
advantage. In another study by Pope et al, the authors correlated
differential gene expression in GBM with apparent diffusion
coefficient (ADC) histogram. They found that 6 of the 13 genes
with increased expression in ADC tumours were isoforms of
collagen-binding proteins.35 In order to confirm this result, the
authors performed immunohistochemistry in both high- and
low-ADC tumours to compare the expression of decorin and
collagen one, three and six isoforms. There was no significant
correlation between ADC values and collagen immunoreactivity
scores. However, multiple patterns of immunoreactivity, in-
cluding perivascular, interstitial and cytoplastmic patterns, were
associated with higher ADC.35

Result verification
A limited number of studies (5/27, 19%) used wet-lab techni-
ques to verify significant findings from their radiogenomic
analyses.22,25,26,37,40 For example, Diehn et al25 confirmed EGFR
overexpression among imaging phenotypes of GBM with im-
munohistochemistry. Halle et al40 found that in cervical cancer,
the most differentially expressed gene sets between tumours with
high and low ABrix (ABrix is the amplitude, Kep the transfer rate
from tissue to plasma) on DCE-MRI were hypoxia-related fea-
tures. To verify this result, the authors subjected three cervical
cancer cell lines to hypoxia and performed gene expression
profiling between the normoxia- and hypoxia-treated cell lines.
The authors found that HIF1a protein was upregulated in all
three hypoxia-treated cell lines. On the other hand, only minor
changes of HIF1a protein regulation were observed in the
control. The protein expression of HIF1a was further evaluated
by immunohistochemistry and correlated with DCE-MRI in
additional 32 patients. These results demonstrated that tumours
with low ABrix was significantly associated with higher HIF1a
expression than those with high ABrix. Verifying histopatholog-
ical and molecular correlations of radiogenomic data signifi-
cantly improves the quality of the radiogenomic study. Most
importantly, multidimensional evaluation of biologic data allows
one to gain causative insight into the underlying significance of
initially discovered imaging feature—genomic correlation.

Clinical translation
Given that radiogenomics is still at its infancy, the full potential
of clinical translation is yet to be realized. Nevertheless, several
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studies have demonstrated early promise. One example is in the
research of HCC. In HCC, microscopic venous invasion (MVI)
is a well-established sign of poor prognosis. However, it is ex-
tremely difficult to predict MVI using conventional imaging
methods such as MRI.99,100 Currently, MVI can only be reliably
diagnosed by the histology of the explanted tissue when its
clinical utility is marginal. In 2002, Chen et al101 identified a 91
gene expression signature via microarray analysis that had sig-
nificant correlation with the presence of vascular invasion. In
2007, Segal et al20 found that these 91 genes in the “venous
invasion signature” were associated with two predominant im-
aging traits on CT—the presence of “internal arteries” and ab-
sence of “hypodense halos”. In a study of 157 patients with HCC
who underwent surgical resection or liver transplant, Banerjee
et al again demonstrated that these two imaging biomarkers,
along with “tumour–liver difference”, were able to predict his-
tological MVI with high precision. In addition, this radio-
genomic biomarker consisting of these three features was
associated with early disease recurrence and poor OS.50 There-
fore, this marker can be extremely useful in identifying patients
who are less likely to benefit from surgical treatment or liver
transplant. The example above illustrates the significant impact
radiogenomic analysis can have on patient management.

Radiogenomics can have significant impact on routine radiology
practice. Similar to histopathology, the goal of radiogenomics is
to provide information on the tumour that can be used to guide
treatment and predict survival. Ideally, all of this can be achieved
non-invasively with routine imaging studies. For example, in
patients with CCRCC, a prognostic multigene signature, termed
radiogenomic risk score, was constructed and shown to predict
disease-specific survival, independent of disease stage, disease
grade and performance status.102 The radiogenomic risk score
consists of four CT imaging features: the pattern of tumour
necrosis, tumour transition zone, tumour–parenchyma in-
teraction and tumour–parenchyma interface. If further vali-
dated, such a radiogenomic signature can potentially be used in
a way that coronary calcium score is used to improve risk

stratification for future cardiovascular events.103 If the radio-
genomic risk score incorporates genomic data in addition to
radiologic data, the radiologist can issue an addendum to the
report once genomic data from pathology become available.
This enhances the radiologist’s role in patient care by providing
the ordering physician important information beyond what is
typically reported for CCRCC (e.g. lymph node involvement,
renal vein invasion etc.). Furthermore, radiologists are likely to
gain a crucial role in clinical trials that use such a radiogenomic
signature to divide patients into different risk groups.

FUTURE DIRECTIONS
The emerging field of radiogenomics has shown the potential to
provide additional insights into tumour biology based on im-
aging data. Current studies are limited to six types of common
cancers: glioma, NSCLC, HCC, breast cancer and cervical cancer.
Extension of existing research methods to other tumour types will
likely uncover additional associations between molecular proper-
ties and imaging characteristics. An ideal design for a radio-
genomic study is illustrated in Figure 1. Future studies should
strive to incorporate as many elements shown as possible. Once
a link between an imaging phenotype and a molecular signature is
uncovered, imaging studies of previously treated patients (such as
those on clinical trials) can be re-examined to assess the clinical
significance of this new link. In the future, gene expression pro-
filing by non-invasive imaging may supplement histologic exam-
ination for cancer diagnosis and prognosis (Figure 2).

Another opportunity in radiogenomics is in identifying im-
aging features that predict region-specific gene expression
signatures within the tumour in the proper anatomic context
of the patient. Intratumour heterogeneity, in addition to
intertumour heterogeneity, has been increasingly recognized as
the source of cancer’s development of resistance to chemo-
therapy after initial response.104 Several studies have shown the
existence of genomic differences between different regions of
the same tumours and correlated them with imaging
findings.24,105,106 Further development will require imaging

Figure 1. Literature search of published studies on radiogenomics.
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modalities with high resolution for proper spatial registra-
tion.107 Targeted tissue specimens from a radiographically di-
verse region can be studied on a per tumour basis, per patient
basis or on a population basis, to allow for additional levels of
multiple hypothesis testing. In the near future, it may be possible
to detect intertumoural differences in treatment response at the
imaging level, thereby guiding personalized and tumour-specific
treatment. While public repositories, such as those supported by
TCGA and TCIA, continue to grow, it is important to procure,

develop and evaluate additional data sets to ensure the depth and
breadth of the sample population in each study.5

Given the non-invasive nature of medical imaging and its wide
use in clinical practice, radiogenomics has the potential to im-
pact on the treatment and prognosis of a wide range of human
cancers. Identification of imaging phenotypes that are associated
with distinct molecular phenotypes will help advance in-
dividualized patient care.
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