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Abstract

Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that 

rescue the mitochondria for cellular resuscitation. Exploration into the protective role of 

mitochondrial Transcription factor A (TFAM) and its mitochondrial functions respective to 

cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to 

mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA 

(mtDNA) complexes. TFAM’s regulatory functions over serca2a, NFAT and Lon protease 

contribute to cardiomyocyte stability. Calcium and ROS dependent proteases, calpains and matrix 

metallo-proteinases (MMP’s) are abundantly found upregulated in the failing heart. TFAM’s 

regulatory role over ROS production and calcium mishandling leads to further investigation into 

the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and 

contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes 

(TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the 

first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the 

role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
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Mitochondrial Transcription Factor A (TFAM)

TFAM Roles and Regulation

Mitochondrial dysfunction is correlated with disease states at the core of oxidative 

phosphorylation and energy efficiency, essentially focused on mitochondrial DNA (mtDNA). 

MtDNA is a 16.5 Kb double stranded circular molecule encoding thirteen essential 

components of oxidative phosphorylation. Therefore, mtDNA is vital to the restoration of 

physiological conditions since efficient energy production is necessary for all basic human 

processes. As noted unanimously in the literature, the major regulator of mtDNA copy 

number in mammalian models is TFAM [1]. The mtDNA copy number is reflective of 

mtDNA transcription and ATP production. TFAM is a promoter specific enhancer of 

mtDNA and a member of the high mobility protein group [2]. This transcription factor is 
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essential for mitochondrial DNA maintenance and coats mitochondrial DNA, playing a 

factor in mtDNA stability [3]. TFAM is a major, mitochondrial gene-regulator and as a 

transcription factor it modifies gene expression. TFAM is produced in the nucleus and is 

transported to the mitochondria (Fig 1). Nuclear regulatory factors including nuclear 

respiratory factors 1 and 2 (NRF 1, 2) seem to regulate TFAM; this is claimed to be a link 

between nuclear activity and energy production [4]. A finding through super-resolution 

microscopy reveals that mitochondrial nucleoids (mtDNA-protein complexes), contain a 

uniform size and TFAM is a main component [5]. TFAM acts as a packaging molecule by 

storing a single copy of mtDNA in a functional mitochondrial nucleoid [6]. Mitochondrial 

nucleoids contain essential enzymes of an integral antioxidant system including manganese 

superoxide dismutase (SOD2) and mitochondrial glutathione peroxidase (GPx1) [7]. These 

antioxidant enzymes mitigate oxidative damage and protect mtDNA. Components of the 

nucleoid create a safe environment for functional mtDNA processes such as transcription, 

transduction and repair [8]. The functionalities of TFAM act as a benefactor to 

cardiomyocyte cellular functions.

TFAM transcriptional machinery is composed of two high mobility groups noted as HSP 

(heavy strand promoter) and LSP (light strand promoter). TFAM is necessary for 

mitochondrial-directed RNA-polymerase (POLRMT) to interact with the DNA promoter to 

initiate transcription producing the primary transcripts of mRNA, rRNA and tRNA [9]. As a 

major regulator of mtDNA transcriptional machinery TFAM has direct regulation over minor 

transcription factors, TFB1M and TFB2M. These transcription factors directly promote 

transcription, utilizing POLRMT [10]. TFBM1 is a dual function protein acting as a 

transcription factor and an RNA methyl-transferase enzyme [11]. Aside from indirect gene 

regulation through TFBM 1&2, TFAM also directly regulates promoter regions of DNA by 

binding to the promoter specific region, causing an unwinding reaction, initiating 

transcription [12]. It is thought that additional functions of the TFBM 1&2 include binding 

single stranded DNA to stabilize unwound promoter regions. A strong correlation between 

TFAM and TFBM 1&2 expression and initiation of mtDNA replication has been found. 

Additionally, overexpression of TFAM was clinically beneficial [13]. A significant 

component of mitochondrial transcription, the mitochondrial RNA polymerase, requires 

TFAM and TFBM2 for efficient initiation [14]. Mapping the binding sites of TFAM and 

TFBM2 resulted in novel functional aspects of TFBM2 binding. TFAM binding to an 

upstream promoter region initiates the preinitiation complex, which requires the binding of 

TFB2M for specific contact with promoter DNA. Loss of TFBM2 leads to nonspecific 

contact with DNA. Functionally, TFB2M separates the DNA strands and plays a role in 

initiating transcription. TFBM2 can reposition the specificity loop of mtRNAP to recognize 

specific promoters [14,15]. Mitochondrial protein formation is regulated by mitochondrial 

ribosomes, consisting of two subunits, the small (28S) mitochondrial ribosome subunit and 

the (55S) subunit. Post the regulatory functions of forming the initiation complex; TFB1M 

regulates the assembly of the 28S subunit by acting as a 12S ribosomal RNA 

methyltransferase. Observations have concluded that POLRMT’s activities to catalyze 

TFB1M’s methyltransferase function, results in protein formation [16]. POLRMT is 

essential for mitochondrial protein formation and gene regulation.

Kunkel et al. Page 2

Heart Fail Rev. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is noted that both of these factors [TFB1M & TFB2M] are cooperative downstream 

effectors for mitochondrial biogenesis. More specifically, TFB2M functions to maintain 

mtDNA transcription. TFB1M’s 12S rRNA methyltransferase activity is essential for 

mitochondrial translation and metabolism. Hypermethylation caused by overexpression of 

TFB1M methyltransferase activity results in cell death and abnormal biogenesis [17]. To 

emphasize the importance of the methylation activity of TFB1M, studies show the effects of 

disrupting cardiac TFB1M. Complete loss of adenine di-methylation of rRNA decreased 

mitochondrial translation and reduced ribosomal function [18]. As noted above TFAM has 

direct regulation over TFB1M & TFB2M. Ablation of TFAM in neonatal mice led to 

sufficient decreases in the cardiac respiratory chain affecting mitochondrial biogenesis 

[19,2]. TFAM’s major regulatory activities of mtDNA led to direct regulation over 

mitochondrial gene expression affecting the 13 essential genes required for oxidative 

phosphorylation, effecting mitochondrial biogenesis and ATP production. Understanding the 

essence of mitochondrial biogenesis and oxidative phosphorylation is the key to 

cardiovascular pathologies. Mitochondrial dysfunction within cardiomyocytes leads to HF, 

but the core of mitochondrial defects is found within the stability of mtDNA. As stated 

previously, TFAM is a DNA-binding protein directly related to mitochondrial stability. 

Mutant uracil-DNA glycosylase 1 (mutUNG1) was found upregulated in transgenic mouse 

(Tet-on) models, which hampered mtDNA function and stability. Impairment of mtDNA via 

mutUNG1 upregulation resulted in rapid hypertrophic cardiomyopathy leading to HF and 

death. This culminated into pathological effects such as; reduced mtDNA replication & 

transcription, diminished mt respiration, impaired fission/fusion dynamics and majorly 

decreased cardiomyocyte contractility [20]. The impairment seen in mt dynamics raises the 

question of whether imbalance of mfn-2/Drp-1 leads to mtDNA decline or whether 

disturbance in the ratio is a compensatory factor. It would be interesting to observe the 

effects of exogenous TFAM administration into this mutant model.

TFAM Transport

TFAM is synthesized in the nucleus and transported to mitochondria. TFAM translocation to 

the mitochondria for initiation of transcription and translation requires the binding of 

chaperones creating a heat shock protein (HSP) complex. Deocaris and colleagues describe 

the intimate interaction between HSP60 and HSP70 [21]. Lon protease is an ATP dependent 

protease with chaperone properties and is shown to promote the association of heat shock 

protein complex (HSP60-HSP70). Kao and colleagues observed an increase in the stability 

of the HSP60-70 complex upon Lon binding the HSP60 subunit. Loss of Lon leads to 

HSP60 dislocation, increased protein degradation and apoptotic signaling activation upon 

HSP60 binding to P53 [22]. The HSP60-70 complex is Lon dependent and importantly 

TFAM binds to the HSP70 component. The interaction of TFAM bound to HSP-70 at the 

nucleus allows for transportation of TFAM into the mitochondria [23] (Fig 1). Lon can be 

observed as TFAM’s personal trainer keeping TFAM fit for mitochondrial biogenesis. 

Within this complex the literature states that Lon protease binds to the HSP-60 component 

while TFAM is bound to the HSP-70 portion of the complex. We speculate that it may be 

necessary for Lon to bind HSP60 resulting in a conformational change to HSP70 causing the 

release of TFAM within the mitochondria, acting to increase transcriptional activity and 

mitochondrial biogenesis. Lon protease has been observed as a cardioprotective molecule 
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and this may be a route of its protective activity. Additionally, Ciesielski found that Mdj1 an 

HSP40 co-chaperone of HSP70 is necessary to maintain functional mtDNA. Overexpression 

of the J-domain reestablished mtDNA activity but a lack of Mdj1 leads to loss of functional 

mtDNA [24]. It is unexplored as to whether Mdj1 assists in the binding of TFAM to HSP70. 

The binding of Lon to HSP60 may cause a conformational change to the J subunit allowing 

for the release of TFAM, leading to increased mitochondrial stability.

An article by Naka and colleagues suggests that HSP70 transgenic mice are cardioprotective 

in a doxorubicin heart failure model, expressing that the transgenic model inhibited 

apoptotic signaling by mediating P53, Bax, caspase-3&9 and PARP-1 [25]. Upregulation of 

HSP-70 will increase mitochondrial biogenesis through increased TFAM transport. This acts 

to regulate calcium leading to decreased protease activity and apoptotic signaling. The 

presence of complex formation of HSP60-70 would down regulate the apoptotic (P53) 

pathway through increased complex reactivity. Santos and colleagues investigated the 

mechanisms of TFAM loss in diabetic models and TFAM’s association with HSP-70. This 

group discusses the posttranslational modification of TFAM by ubiquitination leading to 

decreased protein levels and activity, as found in high glucose conditions. Ubiquitination of 

TFAM prevents its transport into the mitochondria and ubiquitination inhibitor PYR-41 led 

to increased TFAM-transcriptional activity. Comparison of the overexpression of HSP-70 to 

the overexpression of TFAM resulted in HSP-70 failing to inhibit glucose actions to 

decrease TFAM transcriptional activity, while TFAM overexpression ameliorated decreased 

mitochondrial transcriptional activity and proteins [23]. Therefore we can conclude that 

exogenous TFAM may be beneficial to diabetic related pathologies. Santos describes TFAM 

binding to HSP60 but at a lower affinity when compared to HSP70 [23]. Lon’s proteolytic 

ability to cleave phosphorylated TFAM may be inhibiting complex formation in high ROS 

conditions thus preventing mitochondrial productivity.

HSP-70 regulation is important for proper functioning and Ko et al demonstrated the activity 

of the molecule Apoptzole (Az), an inhibitor of the HSP-70 ATPase activity. This group 

found that Az induced cancer cell death by inhibiting HSP-70 and activating caspase 

dependent apoptosis [26]. Functionally, HSP-70 transports TFAM a major stimulator of 

mitochondrial activity and is found upregulated in cancer cells. This is due to the cancer cell 

proliferation rate and need for increased mitochondrial function and production. Blocking 

the activity of HSP-70 would inhibit TFAM transport and result in cancer cell death. 

Interestingly, the cellular death is calcium dependent-calpain and apoptotic caspase activity. 

HSF-1 activates HSP70 and this activation is directly dependent on a sulfhydryl inducer, 

homocysteine could be a poential activator. Increased levels of HSF-1 inhibit the expression 

of NF-kB p65 resulting in decreased rates of cardiac hypertrophy [27]. Increased complex 

formation would inhibit HSP60 activation of the p65 subunit. Liu and colleagues found a 

novel regulatory mechanism involving NF-kB. They state that upregulation of NF-kB results 

in increased transcriptional regulation over hypertrophic and apoptotic signaling. The p65 

subunit of NF-kB binds and synergistically promotes/upregulates NFAT’s transcriptional 

activity [28]. The malignant upregulation of NFAT and NF-kB are blocked/inhibited by 

activation of TFAM, this will be thoroughly discussed.
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Overall, the up-regulated cytoplasmic calcium and ROS production observed in HF models 

would drive Lon to bind HSP-60. Our thoughts on this subject conclude that TFAM may be 

locked in the complex during increased ROS & calcium conditions. TFAM is 

phosphorylated and then broken down by the excess unbound Lon protease found within the 

cytoplasm. Loss of TFAM transport results in loss of mitochondrial efficiency and eventual 

apoptosis (Fig 1). This statement is made in regards to TFAM’s loss of activity in HF 

models.

Mitochondrial Dynamics (MFN-2: The Gate Keeper?)

Mitochondrial stability is pertinent to cardiomyocyte survival. Regulating heart failure is 

dependent upon the mitochondrial equilibrium of two proteins Mitofusin-2 (Mfn-2) and 

dynamin-related protein (Drp-1). Mfn-2 is noted for its role in mitochondrial fusion and 

Drp-1 for mitochondrial fission. Imbalance of these two proteins has been observed in 

cardiomyopathies. We have assessed the activity of MMP-9 an extracellular matrix protease 

in cardiac hypertrophy through treatment with mitochondrial division inhibitor, resulting in 

inhibition of abnormal cardiac mitophagy [29]. Analysis of the mitochondrial role of 

cardiomyocyte contractility via SiRNA silencing of mitochondrial fission revealed an 

increase in myocyte contractility. Inhibition of Mfn-2 decreased contractility and changed 

calcium and potassium ion concentrations. Interestingly, we observed that increasing fission 

caused a decrease in Serca-2a (sarco-endoplasmic reticulum calcium transporter) and an 

increase in cytochrome c leakage causing mitophagy [30]. In another study the cardiac tissue 

of Mfn-2 deficient mice resulted in cardiomyopathy. RNA analysis revealed a decrease in 

mtDNA content and observations of insertion-deletion mutations in Mfn-2 deficient 

cardiomyocytes [31]. Clustering of the mitochondrial nucleoid occurred in upregulated 

mitochondrial fission experiments utilizing a GTpase DRP-1 knockout vector during 

neonatal cardiomyocyte development [32]. This result suggests a regulatory role of Drp-1 

over mitochondrial nucleoid development. Interesting observations that Mfn-2 deficient 

cardiomyocytes are protected from apoptotic pathways suggests that Mfn-2 has a signaling 

mechanism that triggers cell death in cardiomyocytes [33].

Mitofusin-2 mediates mitochondrial outer membrane fusion. Quite interestingly 

mitochondria are physically tethered to the SR by MFN-2 (Fig 3) resulting in direct 

regulation of calcium signaling [34,35]. Coupling/tethering of the mitochondria to the SR is 

crucial for calcium handling. MFN-2 may act as a gate-keeper for calcium transfer from the 

SR to the mitochondria. Therefore, loss of Mfn-2 would lead to loss of calcium signaling/

storage in the SR, the mitochondria would store the calcium in the SR, at a decreased rate. 

Increased calcium concentration triggers depolarization of the mitochondrial membrane 

potential (MTPT) [36], leading to mitochondrial apoptosis and eventual cell death due to 

protease activity. Chen analyzed Mfn-2 activity in fruit flies, finding that Mfn-2 deficiency 

led to increased contraction. Mfn-2 deficiency was found to decrease contact length between 

the mitochondria and SR by 30% also reducing the presence of SR related proteins in the 

extra-mitochondrial matrix linking the two organelles [34]. Association of mitochondria and 

SR is a key component of cardiac calcium handling and contractility. Mitochondria are 

major regulators of cytoplasmic calcium, a transport system mediated by Mfn-2 to enhance 

the storage of calcium into the SR. Luongo expressed that the MCU calcium transporter is 
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required in acute stress conditions [37]. In high stress conditions when cytoplasmic calcium 

levels are higher, the MCU will increase calcium transport into the mitochondria, perhaps 

activating the calcium storage pathways via Mfn-2. Decreased mitochondrial calcium levels 

inhibited the depolarization of the mitochondrial membrane and led to cardioprotection. 

Davidson and colleagues focused on calcium handling and secondary messenger NAADP, 

testing the hypothesis of cardioprotection using an NAADP antagonist Ned-K. Post 

ischemia-reperfusion they observed a cardiomyocyte protective mechanism by preventing 

the opening of the mitochondrial permeability transition pore [38].

Transcriptional regulation of Mfn-2 to maintain mt dynamic balance and calcium transport is 

dependent on PGC-1alpha signaling mechanisms. Chitra and Boopathy explain the 

importance of the PGC-1α/ERRα/Mfn2 axes, stating a positive correlation between the 

three variables. PGC-1α binds to ERRα and increases Mfn-2 expression [39]. Loss of 

ERRα leads to down-regulation of Mfn-2 expression [40]. TFAM is downstream of 

PGC-1alpha activation. The PGC-1alpha pathway encompasses another important 

mitochondrial biogenesis factor sirtiun-3 (SIRT-3). SIRT-3 is a mitochondrial deacetylase 

that acts to increase mitochondrial efficiency by enhancing ATP production and 

mitochondrial biogenesis (Fig 2). Mitochondrial DNA depletion and reduced replication 

were observed in heart failure, and found independent of PGC-1alpha [41]. This finding 

suggests other mechanisms act as secondary activators to increase mitochondrial biogenesis. 

Recent literature contains findings that transgenic TFAM mouse models with induced 

Volume-overload (VO) heart failure had cardio-protective effects when compared to wild 

type (WT). TFAM overexpression reduced MMP activity and mtROS production [42]. 

TFAM transgenic mouse (TG) model contains a higher survival rate post induced 

myocardial infarction (MI). Observations comparing MI induced WT and TFAM-TG 

resulted in decreased myocyte hypertrophy, oxidative stress, apoptosis and interstitial 

fibrosis in the TFAM-TG model. Many regulatory aspects of TFAM are essential for 

mitochondrial function.

Epigenetics & miRNA

Epigenetic regulation of TFAM is a major subject for mitochondrial biogenesis. TFAM can 

be regulated by microRNAs and observations of post-transcriptional modifications of TFAM 

expression are performed by miRNA 155-5p. A significant negative correlation between 

miR-155-5p and TFAM expression was found in patient cardiac samples [43]. Yamamoto et 

al had an interesting finding regarding skeletal muscle and mitochondrial biogenesis. Their 

findings include that miRNA 494 has a negative regulation over mtDNA and TFAM [44]. 

Additionally, miRNA-214 is noted as a potential therapeutic target for cancer cell 

proliferation due to its regulation over TFAM. Regulatory miRNA’s are responsible for 

balancing TFAM expression in the control subject. TFAM can also be regulated 

epigenetically by methylation of the promoter region. Methylation of TFAM specific 

promoter regions would decrease expression of TFAM protein and would result in loss of 

mitochondrial function. Hydrogen sulfide was shown to regulate mt biogenesis via 

demethylation of TFAM. More specifically, exogenous H2S improved mtDNA copy number 

and increased TFAM expression. H2S functions to diminish DNA methlytransferase 3a 

(DNMT3a) resulting in TFAM demethylation, it also sulfhydrates interferon regulatory 
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factor 1 (IRF-1) which increases the binding of IRF-1 to the DNMT3a promoter [45]. These 

treatment methods target TFAM’s regulation over mtDNA copy number [1]. An interesting 

side note is a cAMP regulatory pathway involving TFAM. Zhang observed cyclic nucleotide 

phosphodiesterase known as Prune, has stabilizing effects on mtDNA replication and TFAM 

by decreasing mitochondrial cAMP signaling [46]. TFAM’s role in mitochondrial stability is 

crucial to ATP and ROS production, therefore maintaining TFAM in various disease states 

may be essential to patients’ longevity and recovery. We have expressed that high levels of 

homocysteine activate N-methyl-D-aspartate receptor 1 (NMDAR) leading to abnormal 

DNA methylation. High homocysteine levels induce cardiac remodeling through epigenetic 

mechanisms such as methyltransferase activity via DNMT1 [47]. MiRNA and methylation 

are essential components of balancing TFAM expression.

Stated as the mitochondrial guardian, SIRT-3 acts to mediate ROS production via inducing 

ROS-detoxifying enzymes Glutathione Peroxidase 1 (GP1), Superoxide Dismutase 2 

(SOD2), ATP synthase5c and cytochrome c. PGC-1alpha is a main regulator of SIRT-3 and 

is found upstream of the transcriptional activation of the SIRT-3 promoter region [48]. 

Stimulation occurs when PGC-1alpha-ERRalpha binds to the SIRT-3 promoter region, up-

regulating SIRT-3 activity [49]. Although, the primary activation of SIRT-3 is PGC-1alpha/

ERRalpha driven, it is unexplored whether TFAM could secondarily activate the SIRT-3 

promoter region. Experimental observations of reduced mitochondrial DNA replication and 

mtDNA depletion in the failing heart are independent of reduced PGC-1alpha expression 

[41]. Synergistic actions may occur between TFAM and SIRT-3, due to their correlative 

functions in the mitochondria. Upon removal of ERR-alpha, SIRT-3 deacetylase activity is 

still present just at a decreased rate [48], supporting the claim that a secondary activator is 

present. In PGC-1alpha depletion, transcription factors NRF-1/2 and ERRalpha remain 

stagnant but interestingly increased TFAM levels were found [50]. Secondary activation of 

ERRalpha would increase activity of Mfn-2 and SIRT-3 (Fig 2). Hydrogen peroxide 

decreases SIRT-1 allowing for increased acetylation of p65 (NF-kB) subunit. Acetylation 

serves as the regulatory mechanism for the p65 subunit release from NF-kB, which is 

modulated by Sirtuin-1 deacetylase activity. Free P65 binds to the MMP-9 promoter 

increasing its transcription and driving apoptotic signaling [51]. The overview of epigenetic 

factors that regulate TFAM are provided in Fig 6.

Role of TFAM in ischemic and non-ischemic cardiac dysfunction

The myocardial tissue death occurs from various forms of oxidative and nitrosative stress 

due to sepsis-induced myocardial dysfunction, ischemia/reperfusion after myocardial 

infarction, demand ischemia and ischemia [52–56]. Mitochondria, which occupy nearly 30% 

of the cardiomyocyte cytoplasmic volume, are the major site of damage during ischemic and 

non-ischemic cardiac dysfunction [57–59]. This damage disrupts the mitochondrial protein, 

DNA and lipid modifications leading to inhibition of energy production, contractile 

dysfunction, cell necrosis or apoptosis. To combat mitochondrial dysfunction, 

cardiomyocytes have evolved elegant systems of mitochondrial repair and anti-oxidant 

defense, which involves transcription of genes that regulate energy homeostasis and 

mitochondrial DNA repair. Mitochondrial resuscitation requires the coordination of both 

nuclear and mitochondrial genomes which involves synthesis of transcription factors in the 
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nucleus and their transport to mitochondria e.g. NRF-1, NRF-2 and PGC-1α [60–63]. 

NRF-1 and its co-activator PGC-1α indirectly regulate TFAM (both mitochondrial 

transcription factor A and B), which enables transcription from the mitochondrial genome 

[64]. Oxidative stress resulting from ischemia/reperfusion injury or other cytotoxic insults in 

the myocardium leads to nuclear translocation of NRF-1 and upregulation of PGC-1α 
[65,66]. These two co-activators regulate the transcription of TFAM and contribute to 

mitochondrial biogenesis and repair mechanisms. These events suggest that during ischemia/

reperfusion injury the transcription of TFAM is regulated which acts as a compensatory 

mechanism for mitochondrial biogenesis and repair. In an interesting study by Yue et al there 

is depletion of TFAM after ischemia/reperfusion injury, which is improved by lycopene. The 

authors describe that lycopene is cardioprotective by stabilizing TFAM [67]. This study 

suggests that presence of TFAM is required for mitochondrial repair and combating stress 

damage.

In failing hearts, initially TFAM levels go up as a compensatory mechanism but it 

progressively goes down as calcium mishandling and ROS production increase, as observed 

in later stages of heart failure. Restoring TFAM levels in HF models will increase mt 

biogenesis and stabilize cardiomyocyte function through increasing mitochondrial activity. 

In the presence of mitochondrial oxidative stress, TFAM is synthesized in the nucleus and 

transported to mitochondria however, when mitochondria become dysfunctional, there is 

loss of TFAM. Hence, it can be concluded that compensatory mechanisms that are 

cardioprotective during ischemia/reperfusion injury involve the presence of TFAM which 

otherwise get depleted in myocardial tissue death.

TFAM effects: matrix turnover

There is enhanced oxidative stress in myocardial tissue damage, which leads to remodeling 

of the extracellular matrix. Increase in ROS induces apoptosis, myocyte hypertrophy and 

interstitial fibrosis by activating matrix metalloproteases (MMPs) [68,69]. MMPs degrade a 

wide spectrum of extracellular proteins that lead to remodeling of the matrix [70]. The 

degradation of extracellular proteins provides an abnormal microenvironment of matrix in 

which the myocytes interact. The MMPs degrade collagen and elastin in the matrix. 

Collagen is replaced faster than elastin due to which there is change in the collagen/elastin 

ratio leading to interstitial fibrosis [71–73]. Collagen deposition decreases the tensile 

strength of walls leading to dilated cardiomyopathy. This compensatory mechanism 

accounts for cellular defense against these events implying an increase in anti-oxidant 

enzymes that involve increases mitochondrial transcription factor or TFAM. The lack of 

TFAM has been reported to cause dilated cardiomyopathy with reduced mtDNA [19]. In 

addition, the reduction of TFAM has been reported in many forms of heart failure [74–77]. 

The mice in which TFAM is overexpressed exhibit protection from LV remodeling, 

decreased oxidative stress, have preserved mtDNA copy number and mitochondrial function 

[78]. Moreover, TFAM overexpression attenuated histopathological changes such as 

interstitial fibrosis, apoptosis, myocyte hypertrophy and cardiac chamber dilation. In another 

study on TFAM transgenic mice, TFAM overexpression has been reported to increase 

modestly the mitochondrial number and reverse cardiomyopathy [79]. Hence TFAM plays 
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an important role in myocardial protection against adverse cardiac remodeling and heart 

failure.

Protease Regulation

Calpains, MMP’s & Lon Protease

As we have reported earlier that mitochondrial dysfunction leads to protease activity and 

cardiomyocyte decline [80]. Proteases such as MMP’s, Calpains and Lon protease perform 

degradative roles in myocytes. MMPs are zinc dependent endopeptidases, capable of 

degrading the extracellular matrix (ECM) of cardiomyocytes causing cardiac remodeling. 

Our laboratory has assessed the activity of MMP-9 in cardiac hypertrophy through treatment 

with mitochondrial division inhibitor, resulting in inhibition of abnormal cardiac mitophagy 

[29]. Lon protease is a mitochondrial specific protease functioning to degrade oxidatively 

modified proteins. The literature states that a negative correlation exists between TFAM and 

Lon representing a reaction that affects mitochondrial bioenergetics. Phosphorylation of 

TFAM impairs TFAM binding to DNA, therefore decreasing transcription and protein 

production within the mitochondria. Lon protease degrades unbound TFAM, noting Lon as a 

regulator of TFAM and mtDNA abundance [81]. Increased Lon expression reduced TFAM 

levels and mtDNA copy number, Lon regulates mitochondrial transcription by degrading 

misfolded TFAM allowing for a proper balance of mtDNA and functional TFAM [82]. An 

additional function of the Lon protease is its ability to bind mtDNA at single stranded G rich 

regions [83]. Lu presents evidence of Lon protease having decreased binding to mtDNA 

under oxidative stress [84]. Lon protease upregulation at the (-623, +1) promoter region 

leads to its actions as a stress response protein [85]. Use of SiRNA confirms Lon proteases 

actions as a stress response protein, such as removal of oxidized proteins and diminished 

mitochondrial function [86].

TFAM activation decreases ROS production in two ways; via Lon protease and down 

regulation of nuclear factor of activated T-cells (NFAT). ROS driven apoptosis is managed 

by the mitochondrial Lon protease. ROS production has been reported as the major factor in 

hypoxia induced cardiomyocyte apoptosis. Under hypoxic conditions, hypoxia inducibility 

factor 1 alpha activates Lon protease binding to the promoter region [87]. Interestingly, c-

myc interacts with HIF-1 alpha decreasing TFAM expression. C-myc binds TFAM gene and 

assists in mitochondrial biogenesis [88]. Down regulated TFAM causes mitochondrial 

oxidative phosphorylation dysfunction, resulting in increased ROS production [89]. This 

may be the merging interaction between Lon regulation of TFAM protein expression. Under 

hypoxic conditions the nuclear transcription factor HIF-1alpha regulates the transcription of 

cytochrome c oxidase cardiac isoform 7a1 (COX7a1) [90]. COX7a1 knockout mice have 

reduced cox activity leading to dilated cardiomyopathy [91]. HIF-1alpha initiates 

transcription of COX4-2 and Lon protease, Lon is responsible for the degradation of 

COX4-1 subunit in yeast [92]. Hypoxic conditions such as post MI, induce stress factors 

such as HIF1alpha and Lon to manage cardiomyocyte stability. Overall, up regulating TFAM 

reduces the negative effects of ROS driven apoptosis (Fig 3).
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Nuclear Factor of Activated T-cells and ROS

Nuclear factor of activated T-cells (NFAT) is a nuclear transcription factor and activator of 

innate immunity. This calcium/calmodulin/calcineurin activated pathway plays an essential 

role in the activation of T cells and related cytokines [93]. Our immune system recognizes 

different pattern recognition receptors on immune cells like T cells, macrophages, and 

neutrophils. This activation initiates NF-kB and mitogen-associated protein kinases 

(MAPK). Toll-like receptors are essential for the activation of T cells. They are found 

spanning the membrane of immune cells and play a major role in inflammatory activation. A 

necessary component of Toll-like receptor (TLR) functional activity includes its regulation 

by NFAT [94]. Interestingly, prolonged stimulation of TLR-4 leads to translocation of NFAT 

into the mitochondria, which is noted to reduce ATP production [95]. Calcineurin a 

mechanistic component of NFAT upregulation is a calcium, calmodulin dependent serine/

threonine phosphatase with a catalytic subunit calcineurin A (CnA) and a calcium binding 

subunit CnB. Calmodulin dephosphorylates NFAT at the N terminus causing the 

translocation of NFAT to the nucleus [93]. Studies regarding the role of TFAM in cardio-

protection include the Fujino study stating that TFAM provides cardio-protection via 

inhibiting nuclear factor of activated T cells (NFAT). Interestingly, they observed that 

overexpression of TFAM in cultured cardiomyocytes increased mtDNA and blocked NFAT. 

[96] Based on the literature NFAT stimulates pathological hypertrophy. Coincidentally, the 

role of free HSP-60 affects NFAT activation of T cells at the binding domain of TLR-4. 

Exogenous HSP-60 acts to bind to TLR-4 and induce apoptotic signaling [97]. Kim et al 

state that this may be a mechanism of myocyte loss in HF. Li states that myocardial ischemia 

induces an apoptotic signaling cascade showing that HSP-60 increases the expression of 

caspases 3 & 8. In TLR-4 deficient mice I/R injury had reduced myocardial apoptosis and 

cytokine expression [98]. The interplay between HSP-60 and TLR-4 is essential in 

mediating apoptotic signaling within cardiovascular diseases. Contrastingly, the HSP60-70 

complex plays a positive regulatory function within cardiomyocytes. Diabetic pathologies 

induce the over production of ROS and increases TLR-4 expression [99]. Interestingly this is 

NF-kB dependent, which is most likely due to NF-kB regulation over NFAT upregulation 

[100].

NFAT regulates the expression of mitochondrial ROS generating enzymes; NADPH 

Oxidases (NOX), specifically NOX 2&4. [101] Mitochondria and NOX enzymes are the 

leading source of ROS involved in cardiac pathology [102] TFAM up regulation and 

inhibition of NFAT activation would decrease ROS production by NOX 2&4 reducing 

MMP-2 & 9 proteolytic activities (Fig 3). Speculation regarding the activity of NOX 

enzymes led to the Sciaretta groups discovery that cardiac specific NOX4 is important in 

activation of cardiomyocyte autophagy [103]. Analysis of cardiomyocyte autophagy leads to 

the up regulation of the proteolytic factor calpain. Up regulation of ROS in cardiomyocytes 

induced the nuclear translocation of calpain2 and inhibition of NOX function resisted 

calpain 2 translocation [104]. Myocardial infarction models show that overexpression of 

human TFAM in mice mitigates cardiac dysfunction and increases mtDNA copy number 

[105]. TFAM up regulation is evident for cardiomyocyte stability, even more so in a diseased 

model. Intriguingly, NOX 5 is a calcium activated ROS generator and acts in pulsatile 

fashion. Banfi et al found that upon calcium activation increases NOX 5 activity, which 
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highly induces large amounts of ROS production, it also acts as a proton channel [106]. 

NOX 5 activity is entirely dependent upon intracellular calcium levels and phosphorylation 

of NOX 5 sites Thr 494 and Ser 498 led to increased calcium sensitivity [107]. Calmodulin 

kinase could sensitize NOX 5 in the presence of calcium mishandling. Calpain 10 a calcium 

induced mitochondrial protease is necessary for functional mitochondrial activity. Smith 

observed that overexpression and loss of calpain 10 led to mitochondrial decline and 

degradation of mitochondrial calpain 10 is regulated by Lon protease. Lon protease cleaved 

calpain 10 at an increased rate during mitochondrial oxidation [108].

Mice with a triple KO of NOX 1, 2 and 4 had no effect on NADPH chemo-luminescent 

signaling in cardiac, renal and aortic tissue samples. They showed that overexpression of 

NOX 4 & 5 greatly increased ROS production [109]. TFAM is produced at the nucleus, 

therefore the decrease that we see in TFAM may be protease cutting TFAM or inhibiting the 

HSP-60/HSP-70 complex (Fig 1).

Serca2a & Calcium Mishandling

Calpains are cytosolic cysteine proteases activated by increased cytosolic calcium levels. 

Calpains are responsible for the proteolytic degradation of both contractile and cytosolic 

proteins. Mitigation of cardiomyocyte deterioration depends upon the regulation of calcium 

also known as calcium handling. A major factor in calcium handling within the 

cardiomyocyte is the sarco(endo)plasmic reticulum Ca2+ ATPase 2a (Serca2a) which is an 

ATP dependent calcium transporter. It is responsible for transporting calcium into the SR, 

while decreasing free calcium in the cytoplasm. When down regulated, excess calcium is 

found within the cytoplasm and activates calpains. The proteolytic activity of calpains leads 

to intracellular degradation of proteins such as Titin, an essential contractile protein [110]. 

Serca2a regulation of calcium is crucial to cardiomyocyte stability. Multiple laboratories 

have explored the therapeutic use of up regulating Serca2a in cardiomyopathies as discussed 

in a review by Sikkel et al. Serca2a is a key protein involved in the sequestration of Ca2+ 

into the SR and is reduced in the heart failure model. Within cardiomyocytes, G protein 

coupled stimulation of p21-activated kinase-1 (Pak-1) has been shown to transcriptionally 

regulate Serca2a [111]. Interestingly, sinoatrial node pacemaker cells utilize Pak-1 as a 

regulator of L-type calcium channels and delays potassium channels through direct 

activation of protein phosphatase 2a [112]. Regulatory activity of calcium channels within 

pacemaker cells allows for myocardial syncytium activity. According to Huang et al ERK 1, 

2 suppress Serca2a transcription via NFkB related mechanism [113]. This activity was 

observed in a cardiac hypertrophic state. Regulation of Serca2a is essential to a functional 

myocardium. Increased cytosolic calcium activates the calcineurin/NFAT pathway, which 

acts to inhibit Serca2a gene transcription, resulting in Serca2a downregulation [114]. It is 

found in the literature that activation of the NFAT pathway directly stimulates hypertrophic 

genes.

Analysis of the critical function of Serca2a was observed in knockout (KO) models allowing 

for insight into the significance of its activity, heart failure induced death occurred after 7–10 

weeks [115]. Li analyzed the calcium dynamics in these KO mice, stating that calcium 

maintenance is best regulated by increased activity of the sodium-calcium exchanger and L-
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type calcium currents [116]. Patch-clamp analysis in Serca2 KO mice revealed a decrease in 

the percent of calcium induced transient amplitudes [117]. This finding shows a variation of 

electrical activity found within KO mice. Serca2a activity has been noted to suppress cellular 

alternans found in ventricular arrhythmias [118]. A mouse study analyzing the effects of 

levosimendan (a calcium sensitizer) on KO models with HF, showed improved contractility, 

relaxation and reduced calcium transients [119]. Swift et al reveals the electrophysiological 

and compensatory remodeling of the myocardium post KO of serca2a. Observations 

included a great increase in T-Tubule density and the newly grown longitudinal T-tubules 

had Na+/Ca2+ exchanger proximal to SR ryanodine receptors, showing a major switch in 

calcium driven transients, now coming from cytoplasmic calcium as opposed to normal SR 

driven release [120]. Speaking of the importance of the Na+/Ca2+ exchanger (NCX) in 

calcium regulation in the absence of serca2a, brings us to the Lu study on HF showing an 

imbalance in these two major regulatory proteins. CaMKIIδB regulates NCX, it is stated that 

pharmacological inhibition of CaMKIIδB improved cardiac function [121]. Electrical 

activation of the calcium wave seems to be Serca2a dependent, it was observed that 

CAMKII inhibition decreased the Ca2+ spark, CAMKII shift of SR calcium potentiates the 

calcium wave [122].

Gene therapy involving Serca2a up regulation is a major topic of discussion in translational 

research/clinical medicine [123–125]. Serca2a gene therapy for HF models including acute 

ischemia/reperfusion, chronic pressure overload and chronic myocardial infarction resulted 

in a reduction in ventricular arrhythmias. Studies show that Serca2a gene delivery enhanced 

contractile function and restores electrical stability in the heart failure model both caused by 

SR Ca2+ leak [126]. Serca2a gene transfer reduced Ca2+ leak and ameliorated ventricular 

arrhythmias in HF models [127]. Use of adenoviral Serca2a vectors overexpress the Serca2a 

protein causing ameliorating affects in the HF model [127,128]. Phase 1 human clinical gene 

therapy trials support the in vitro and in vivo findings of other investigators resulting in 

positive cardiovascular events post intracoronary injection of Serca2a adenovirus vector 

[129]. In general, scientific literature supports the beneficial aspects of Serca2a gene therapy, 

as is readily reported [130].

Mitochondrial dysfunction affects both nuclear and mt expression of TFAM. Clinical HF 

trials utilize Serca2a gene therapy as a method of therapeutic repair. HF models have 

reduced mitochondrial function leading to reduced Serca2a expression due to loss of nuclear 

TFAM. Reduced mitochondrial biogenesis due to lack of TFAM expression reduces nuclear 

expression of Serca2a. Serca2a up regulation as discussed above is highly beneficial to the 

HF model. The regulation of Serca2a gene transcription by nuclear TFAM allows for gene 

and protein up regulation of Serca2a [131]. Watanabe et al observed a correlation between 

Serca2a mRNA levels and nuclear TFAM. TFAM’s regulation of the Serca2a promoter in 

cardiomyocytes leads to a potential therapeutic function. Therefore, up regulation of TFAM 

will result in up regulation of Serca2a, increased calcium handling into the SR and reduced 

protease activity. Due to calcium up regulation in the HF model, calpain activation is 

persistent. The literature suggests that continuous calpain up regulation is a major factor in 

the development of HF [132]. The use of calpain inhibitors improve cardiomyocyte 

electrical activity [133]. TFAM up regulation of Serca2a will decrease calcium and calpain 

activity in the cytoplasm ameliorating cardiomyopathies.
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Cytoplasmic calcium regulation is the key to degradative activity within the myocardium. 

Calpains have been found within the mitochondrial matrix and contribute to mitochondrial 

apoptosis. The addition of calcium to isolated mitochondria inactivates the activity of the 

electron transport chain at Complex I by cleaving the ND6 subunit. It is shown that calpains 

I, II & X are expressed within the mitochondria. Post I/R injury Calpain I is upregulated and 

contributes to the opening of the mitochondrial permeability transition pore (mPTP) [134]. 

Recent reviews covering the importance of calcium regulation and apoptosis unveil the 

mechanistic application of proteolytic activity found within cell death [135–137]. To 

calibrate the importance of protease activity within the mitochondria, observations of 

mitochondrial calpain I activity were assessed. Calpain I is responsible for cleaving 

apoptosis inducibility factor (AIF) which is then translocated to the nucleus [138]. TFAM 

regulation over Serca2a would decrease cytoplasmic calcium levels and alleviate calpain 

activity within the cytoplasm. We have expressed that homocysteine induces the 

intramitochondrial translocation of calpain 1 resulting in an intramitochondrial oxidative 

burst propagating MMP9 activity [139]. Apoptotic inducing factor (AIF) is a pro-apoptotic 

factor located on the inner mitochondrial membrane and is activated by calpain cleavage; 

mitochondrial ROS increases the susceptibility of cleavage [135]. Additionally, pro-

apoptotic factor Bid is cleaved by calpain and results in the release of cytochrome c as found 

in a myocardial ischemia/reperfusion model [140]. Overall, we can conclude that increased 

calcium leads to upregulated calpain protease activity, which results in activation of a pro-

apoptotic pathway. As for mitochondrial calpain activity, SR regulation and proximity via 

fusion protein Mfn-2 (SR-‘mitochondrial coupling) shows significant importance for the 

physiological myocardium (Fig 3).

TFAM Directed Therapeutics

Cardioprotection & Diabetes

Multiple vehicle methods exist for the transportation of regulatory elements; such transport 

mechanisms include viruses, bacterial and viral vectors. The literature thoroughly describes 

the drawbacks of the various delivery methods with a particular focus on stimulation of 

immunogenic factors. Thomas and colleagues studied the effects of (recombinant) Rh-

TFAM on aged mice. Findings in cardiac tissue of aged mice include loss of mtDNA gene 

copy numbers and reduced mitochondrial gene transcription. Intravenous injections of Rh-

TFAM led to increased mt respiration in heart and muscle tissue. Age-related studies showed 

a 66% decrease in cardiac mtDNA gene levels. Post treatment, PGC-1 alpha was increased 

by 102% and NRF-2 increased by 30% within cardiac tissue. Additionally, SIRT3 (a major 

mitochondrial deacetylase) was increased post treatment. Increases in levels of 

mitochondrial electron transport chain subunits including complexes I & IV, ATP activity 

and reduced oxidative stress were found post treatment [141]. Increased delivery systems 

using TFAM may lead to enhanced functional components within mitochondria.

Exosomes range from 30–100nm in size and have the potential to be “therapeutic game 

changers” in the future of biomedical technologies. Infused within their membranous vessels 

are mRNA, miRNA, siRNA, proteins and nucleic acids that factor into changes in gene 

expression. Evidence of therapeutic advances utilizing an exosomal delivery system is found 
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ubiquitously within the literature. We explored the outcomes of exercise on exosome content 

and found a positive correlation between highly up regulated mir29b & mir455 and exercise, 

resulting in decreased MMP-9 expression [142]. Our group has characterized the favorable 

results of decreasing MMP9 on increased differentiation of stem cells into cardiomyocytes 

[143].

In vitro cardiomyocyte contractility analysis via transfection of TIMP-4 (an MMP-9 

inhibitor) led to an up regulation of serca2a and its regulator mir122a [144]. Up regulation of 

TFAM via an exosomal vehicle will not only regulate MMP activity but also calpain 

proteases (Fig 3). Wang introduces the cardioprotective functionality of pluripotent stem cell 

exosomes in their ability to deliver miRNA’s essential for inhibiting cardiomyocyte 

apoptosis post myocardial ischemia [145]. Our laboratory observed that Cur-Exosc reduced 

the effects of in vivo oxidative stress [146]. Cardiac progenitor derived exosomes are 

cardioprotective post myocardial ischemia/reperfusion [147]. Plasma exosomes also show 

cardioprotective aspects [148]. These cardioprotective observations are profoundly based on 

the content found within the exosomes leading to mitochondrial and nuclear DNA 

regulation. Many reviews have focused on the potential for exosomal microRNA content and 

its effects on cardiomyopathies [149]. Gray found that cardiac progenitor cell exosomes 

contained 11 miRNA’s that were upregulated in hypoxic conditions. Interestingly, hypoxic 

exosomes enhanced cardiac function and reduced fibrosis [150]. Recently we reported 

exercise effects on the miRNA content of cardiosomes. We speculate that specific miRNA’s 

such as mir455, mir29b, mir323-5p & mir466 are increased after exercise therefore being 

cardioprotective. These miRNA function by binding the 3′ end of the MMP9 promoter 

region inhibiting its degradative activity [151]. Exosomal delivery overexpressing HIF-1 

alpha (known to induce HSP70) also showed miRNA-126 and 210 upregulation, which was 

found to improve cardiac progenitor cell survival rates [152].

TFAM expression by drugs or natural compounds

Exogenous routes of increasing TFAM levels will induce cytoprotective effects. 

Interestingly, natural components increase mitochondrial function and prevent disease. 

Compounds such as grape seed procyanidin B2 (GSPB2), daidzein, humanin and honokoil 

all increase mitochondrial copy number and biogenic function. GSPB2 inhibited glucose 

induced apoptosis and suppressed ROS production. Additionally, mRNA expressions of 

NRF-1, TFAM and mtDNA copy number were vastly increased. This group also showed 

activation of the PGC-1alpha pathway leading to SIRT-1 activation [153]. Yoshino et al 

describe observations of the dietary substance soy isoflavone daidzein on muscle 

mitochondria. This soy extract directly promotes TFAM expression increasing mitochondrial 

biogenesis through activation of PGC-1 alpha [154]. Interestingly, Qin et al investigated the 

effects of sulfur dioxide leading to cardiac dysfunction via mitochondrial impairment, 

overexpression of TFAM ameliorated mt decline [155]. Humanin is a natural mitochondrial 

peptide that greatly increased mtDNA copy number, upregulated TFAM, activated STAT3 

and decreased caspase-3 activation [156]. Honokoil is a lignan isolated from magnolia tree 

bark and seed cones. In studying hypertrophy, honokoil a known anti-cancer, anti-oxidative 

and anti-inflammatory substance acts to reduce mitochondrial stress through activation of 

SIRT-3. Sirtuin-3 protects from cardiac hypertrophy via inhibition of NFAT and reduces 
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ROS production. The PGC-1alpha Sirtuin & TFAM axis plays a major role in 

cardiomyocyte stability [157] Increasing the PGC-1alpha pathway via honokoil will increase 

TFAM levels leading to greater mitochondrial stability and reduced hypertrophy as 

observed. Therefore the cardioprotective nature of TFAM-packed exosomes is a novel and 

unexplored idea. Mei et al observed that cancer cell lines increased mtDNA copy number in 

the presence of chemotherapeutic treatments Cisplatin and Doxorubicin. This tumorigenic 

protective mechanism was diminished by transfection of shRNA-TFAM plasmids, which 

reduced mtDNA copy number and increased ROS production [158]. It is interesting that cell 

stability is dependent on mtDNA copy number.

Diabetic Mitochondrial Stability

Diabetic TFAM-transgenic mice showed significant prevention of downstream damage 

compared to mitochondrial DNA damage of WT mice [159]. Findings include that 

overexpression of TFAM inhibited rotenone-induced mt ROS production and nuclear factor-

kappaB (NFkB) translocation. TFAM-TG models showed reduced mitochondrial damage 

with age [160]. Increased TFAM enhances mt stability and reduces oxidative stress. A 

patient based study analyzing single nucleotide polymorphisms within the TFAM gene 

(rs1937 and rs2306604) showed that mutations in the TFAM gene contribute to declining 

mitochondria biogenesis leading to disease [161]. The Aguirre-Reuda group found that 

overexpression of PGC-1alpha and TFAM protect against oxidative stress [162]. 

Overexpression of TFAM leads to a mitochondrial rescue, which impacts the survival rate of 

mitochondrial driven diseases. An interesting complimentary study by the Xu group 

expressed the beneficial effects of TFAM overexpression on mitigating ROS production 

[163].

Cardiac hypertrophic state is found among diabetes related cardiomyopathies. Adiponectin 

an adipocyte secreted hormone is stated to be cardioprotective. Functionally, adiponectin 

which is released from adipocytes increases insulin sensitivity, glucose uptake and fatty acid 

oxidation [164]. Diabetic mice with chikusetsu saponin IVa pretreatment after I/R injury 

showed ameliorating results by enhancing adiponectin levels. Adiponectin upregulation 

increased AMPK activity, thereby increasing GSK-3beta for increased glucose release for 

this adiponectin induced insulin sensitivity and enhanced glucose uptake [165]. Glycogen 

synthase kinase (GSK3b) phosphorylates glycogen stores initiating the release of glucose 

from glycogen storage. The cardioprotective aspects of adiponectin are found within its 

regulator activity over Serca2a. According to Yan et al, adiponectin increases CamKII 

phosphorylation of phospholamban, which directly increases Serca2a activity. It is also 

noted that this activity is stimulated by sphingosine-1-phosphate [166].

Extracellular signal-related kinase activation (ERK 1, 2) regulates mt function through direct 

phosphorylation of TFAM resulting in suppression of mt transcription [167]. TFAM 

phosphorylation impairs DNA binding and promotes degradation by Lon protease [81]. 

Adiponectin activity is inhibited in the pathological state of diabetes; it is interesting that 

diabetes related cardiomyopathies are greatly increased as compared to other synergistic 

pathologies.
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The Santos group expresses the effects of diabetes on mitochondrial biogenesis showing that 

hyperglycemia reduces mitochondrial biogenesis and the binding rate of HSP-70 and TFAM 

is 30% lower than normal [168]. The activator of heat shock proteins called heat shock 

transcription factor (HSF-1) is down-regulated by both GSK3beta and ERK, MAPK 

resulting in a loss of HSP-70, this action is performed by displacing HSF-1 from its active 

transcription site [169]. A pharmacological inhibitor of GSK3beta affected mitochondrial 

biogenesis resulting in loss of mRNA TFAM expression but had no effect on TFAM content. 

Also glycolysis inhibitor 2-Deoxyglucose resulted in an increase in mitochondrial DNA 

content and increased levels of PGC-1alpha, NRF-1 and TFAM, therefore decreasing 

glucose levels favors TFAM production [170]. Inactivation of GSK3beta assisted in recovery 

of the mitochondrial membrane potential by suppressing ROS and inhibiting the opening of 

the mitochondrial permeability transition pore [171]. Fig 4 represents events that connect 

diabetes with TFAM. We speculate that the mitochondrial membrane potential 

depolarization could propagate an ionic signal to other mitochondria attached to the same 

SR inducing depolarization of other interconnected mitochondrial membranes.

Final Statement

In conclusion, this review states that TFAM which is a mitochondrial transcription factor is 

synthesized in the nucleus and transported to mitochondria with the help of hsp60-70 

complex and the binding of Lon protease to hsp60 plays a role in mitochondrial regulatory 

activity. TFAM upregulation within mitochondria reduces ROS production (Fig 5). The 

absence of TFAM in mitochondria of failing hearts plays a role mitochondrial dysfunction 

(Fig 5). TFAM is regulated by epigenetic factors like methylation of the mtDNA, TFAM 

promoter and microRNAs (Fig 6). As we have hypothesized in this review TFAM-PE may 

assist in mitochondrial related cardiomyopathies both dependent and independent of the 

negative synergistic effects of diabetes. TFAM regulates cardiomyocyte cytoplasmic calpain 

and calcium levels via increasing Serca2a mRNA and protein levels. Additionally, TFAM 

regulates ROS production via inhibiting NFAT activity, which is a hypertrophic stimulator 

and NOX regulator. Exogenous delivery of TFAM is beneficial to cardiac function.
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Fig 1. TFAM transport and LON Dependent TFAM Release
TFAM is transcribed in the nucleus and transported to the mitochondria with the help of 

HSP60-HSP-70 complex. In view of increase in the ROS production in mitochondria, the 

Lon protease is up regulated, which then binds to the HSP60 of the HSP60-HSP-70 

complex. This facilitates the release of TFAM from the HSP60-HSP-70 complex into the 

mitochondria. Subsequently, high levels in the mitochondria block ROS production.
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Fig 2. 
Primary activation of SIRT-3 deacetylase is via the PGC-1alpha/ERRalpha pathway. A 

potential secondary activator of SIRT-3 is TFAM, due to stimulated but decreased activation 

when eliminating the ERRalpha signal.
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Fig 3. Proposed model
TFAM-PE enter the blood stream and effectively fuse with the basolateral cellular 

membrane. Upon entering TFAM is transported to the mitochondria via the HSP60-70 

complex. We speculate that TFAM acts as a secondary activator of ERRalpha inducing the 

up regulation of SIRT-3 and Mfn-2. Mfn-2 has regulatory function over calcium storage and 

SIRT-3 increases ROS mediators. TFAM’s major function of regulatory activity is to inhibit 

NFAT activation. Loss of TFAM would result in up regulation of NFAT causing hypertrophic 

gene expression and blockage of the SERCA2a ATPase pump and increase in cytoplasmic 

calcium levels inducing protease activity of calpains. Additionally, NFAT increases NOX 2 

& 4 expression causing increased ROS generation, NFAT activation increases when calcium 

binds calcineurin. Increased ROS induces MMP activity. As an apoptotic trigger calcium 

induces the translocation of NF-kB resulting in release of the P65 subunit. The p65 subunit 

binds NFAT greatly stimulating NFAT activity. We speculate that exogenous TFAM will 

inhibit NFAT function and drive mitochondrial rescue.
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Fig 4. 
In diabetes there is increase in the GSK-3 beta expression, which is known to inhibit TFAM 

and HSF-1 both necessary for mitochondrial biogenesis. There is Increased GTT 

Intolerance, decreased insulin response and decreased Glycogen synthase. It also promotes 

apoptosis by inactivating P53.
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Fig 5. Comparison of a healthy and failing heart shows the molecular transport of TFAM
With respect to the increased levels of ROS in the failing heart which up-regulates lon 

protease activity. We speculate that upon Lon binding to the “HSP60-HSP70 complex, a 

locking mechanism occurs forcing TFAM to be trapped within the complex and not allow 

for TFAM transport to the mitochondria. Lack of TFAM transport leads to mitochondrial 

decline.
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Fig 6. Epigenetic regulation of TFAM
Methylation of TFAM promoter region decreases the rate of TFAM release. 

Hypermethylation of TFAM coactivators PGC-1alpha and NRF-1 inhibit their 

transcriptional activity, hence they cannot act as co-activators for TFAM. Additionally, 

miRNA’s block TFAM mRNA production.

Kunkel et al. Page 33

Heart Fail Rev. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Mitochondrial Transcription Factor A (TFAM)
	TFAM Roles and Regulation
	TFAM Transport
	Mitochondrial Dynamics (MFN-2: The Gate Keeper?)
	Epigenetics & miRNA
	Role of TFAM in ischemic and non-ischemic cardiac dysfunction
	TFAM effects: matrix turnover

	Protease Regulation
	Calpains, MMP’s & Lon Protease
	Nuclear Factor of Activated T-cells and ROS
	Serca2a & Calcium Mishandling

	TFAM Directed Therapeutics
	Cardioprotection & Diabetes
	TFAM expression by drugs or natural compounds
	Diabetic Mitochondrial Stability

	Final Statement
	References
	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6

