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Abstract

There is ample empirical evidence to support the notion that the biological impacts of estrogen 

extend beyond the gonads to other bodily systems, including the brain and behavior. Converging 

preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental 

models of cognitive function and brain insult. However, the surprising null or even detrimental 

findings of several large clinical trials evaluating the ability of estrogen-containing hormone 

treatments to protect against age-related brain changes and insults, including cognitive aging and 

brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic 

treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of 

millions of women for a variety of health-related applications across the lifespan has made 

identifying conditions under which benefits with estrogen treatment will be realized an important 

public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-

containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We 

have devoted special attention to highlighting the notion that estrogen appears to be a conditional 

neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria 

standards for desired beneficial peripheral and neuroprotective outcomes among unique patient 

populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps 

even preventing, cognitive aging and brain injury.
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1. Introduction: the role of estrogen beyond the gonads

Our current understanding of the biological role of the sex hormone estrogen and more 

broadly, the field of women’s health, has its origins in the avian testis. Indeed, in 1849, the 

physiologist Arnold Adolf Berthold reported on his findings regarding the anatomical and 

behavioral consequences of testicular removal and transplantation in roosters (Berthold, 

1849). In an elegantly designed experiment, Berthold subjected cockerels to full or partial 

testicular removal. Among animals in which both testes were excised, physiology and 

behavior was markedly altered in that “they were not aggressive, they fought other cockerels 

rarely and in a half-hearted manner, and developed the monotone voice of the capon”. Yet, in 

birds that had only one testis removed or in castrated birds who received testicular 

transplantation, he noted that behavior remained indiscernible from that of a normal rooster, 

with these birds still crowing, fighting, and displaying the “usual reactions to hens”. Given 

that the transplanted testes did not always re-establish nerve connections within the rooster, 

Berthold attributed these findings to “some productive function of the testes. . . by their 

action on the blood stream, and then by corresponding reaction of the blood on the entire 

organism, of which, it is true, the nervous system represents a considerable part.” Thus, 

whether Berthold realized the impact of his discovery or not, this experiment provided some 

of the first empirical support for the influence of sex hormones on the body and brain.

Characterizing the physiological impacts of estrogen is as important today as it was in 

Berthold’s era. Nearly half of the global population is female, and sex-specific shifts in 

endogenous hormone levels related to cyclicity, pregnancy, and menopause are associated 

with differences in cognitive performance as well as altered risk for, and outcome from, 

neurological insults (Kimura, 2002; Kittner et al., 1996; Lisabeth and Bushnell, 2012; 

Workman et al., 2012). Further, today tens of millions of women use estrogen-containing 

treatments for many reasons ranging from menstrual cycle regulation to contraception to the 

amelioration of symptoms associated with the menopausal transition (Hersh et al., 2004; 

Jones et al., 2012). Although numerous reports note a multitude of beneficial 

neuroprotective effects of estrogens (reviewed in Acosta et al., 2013; Arevalo et al., 2015; 

Brown, 2009; Luine, 2014; Simpkins and Singh, 2008), the use of estrogenic compounds is 

controversial. Indeed, the known increased risk of stroke associated with oral contraceptive 

(OC) use coupled with the surprising null or even detrimental findings of the large, double-

blind, placebo-controlled Women's Health Initiative (WHI) clinical trial regarding the risk 

for adverse outcomes among post-menopausal women taking hormone therapy (HT) led to 

hesitation by both clinicians and patients in the use of exogenous estrogen-containing 

treatments for brain-related outcomes (Kittner et al., 1996; Manson et al., 2013). Thus, there 

is a pressing medical need to understand the conditions under which estrogens exert 

neuroprotection.

Here, we review the literature regarding the nature of neuroprotection by estrogen and 

estrogen-containing compounds among females. We limited this discussion to studies in 

which human participants, rodent subjects, or in vitro cultures were utilized to assess the 

effects of ‘estrogen’ within the context of cognition, stroke, and traumatic brain injury 

(TBI). Our strategy for selection of published articles for citation in the current review is 

defined by the inclusion of studies in which a finding was first demonstrated, as well as 
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seminal papers describing key caveats within a given field of research. In areas of research 

where the number of published studies is limited (for example, the cognitive impacts of 

estrone; E1), we made efforts to include all work conducted. Whenever possible, references 

included are primary research articles although we have also directed readers to several 

thorough and key reviews exhaustively addressing topics beyond the scope of the current 

discussion. For instance, neuroprotective actions of estrogens, and the complex mechanisms 

underlying these effects, have been documented in several domains of neurological function, 

injury, and disease (Chakrabarti et al., 2014), such as the experimental autoimmune 

encephalomyelitis model of multiple sclerosis (Offner and Polanczyk, 2006), spinal cord 

injury (Elkabes and Nicot, 2014) and Parkinson's Disease (Smith and Dahodwala, 2014), to 

name just a few. The beneficial effects of estrogens in these domains are noteworthy and we 

direct the reader to several key reviews on each of these important subjects.

As well, the majority of exogenous estrogen-containing therapies given to women also 

include a progestin. Progestins have known actions in the nervous system, many of which 

can be beneficial (Brinton et al., 2008). However, mounting evidence suggests that the 

addition of a progestin may in fact attenuate, obviate, or even reverse the beneficial actions 

of estrogens when administered together (Acosta et al., 2013). Indeed, many factors likely 

influence the impact of estrogen + progestin combination HTs including the type of 

progestin administered (natural progesterone versus synthetic versions), the age of the 

organism at time of treatment, and the duration between hormone depletion and subsequent 

treatment (Singh and Su, 2013). A detailed discussion of the neuroactive effects of 

progesterone, either alone or in combination with estrogen, is beyond the scope of this 

review and has been extensively discussed elsewhere. The authors direct interested readers 

to several excellent reviews on this subject (Deutsch et al., 2013; Wei and Xiao, 2013).

Of note, in many previously published reports, the term estrogen has been used 

indiscriminately and interchangeably to refer to both the large hormonal group or a specific 

molecule. As highlighted by Blaustein (2008), the importance of precision in hormone 

nomenclature is critical. For instance, until recently, the vast majority of studies assessing 

the neuroprotective effects of estrogen in animals utilized 17 beta-estradiol (17βE2). Yet, for 

the woman, a wide variety of hormone treatment options exist ranging from ethinyl 

estradiol-based OCs to 17βE2-based vaginal creams to Premarin®-based menopausal HTs 

(conjugated equine estrogens; CEE). As will be discussed in detail below, not all estrogens 

impart the same neurobiological effects and many of these estrogens and estrogen-

containing compounds have yet to be comprehensively evaluated for their unique 

neurobiological actions. Thus, for the purposes of this review, when the term estrogen is 

used, we refer to the broad class of natural and synthetic estrogen-like molecules that have 

estrogenic activity at the various estrogen receptors. As well, whenever possible, when 

referencing work in which exogenous estrogen treatment is administered, the specific 

estrogen used in each study cited will be listed.
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2. The estrogen molecule, its receptors, and its biological actions in the 

body and brain

Steroid hormones are synthesized from cholesterol through a variety of chemical reactions 

and can exert important physiological effects throughout the lifespan. 17βE2 is the most 

potent naturally-circulating estrogen, followed by E1 and estriol (E3), in order of receptor 

affinity (Kuhl, 2005; Sitruk-Ware, 2002). These and other hormones play crucial roles in the 

modulation of central nervous system (CNS) substrates and the behaviors they regulate. 

Indeed, endogenous hormones can have organizational physiological effects, operationally 

defined as permanent changes in tissue which occur early in life (either during prenatal 

development or in the initial days of the post-natal period); these organizational effects 

cannot be reversed by hormone depletion (Arnold, 2009). As well, later in life, activational 

effects of endogenous sex steroids and/or exogenous hormone administration can transiently 

impact the structure and function of these organized neural substrates and pathways. It has 

been suggested that both organizational and activational hormone actions account for the 

well-documented sex differences in cognitive outcomes and sex-specific risks for, and 

consequences of, diseased/injured brain states (Kimura, 2002; Manwani and McCullough, 

2011). Although hormone levels can vary greatly across the menstrual cycle and some of 

these variations have been associated with cycle stage-specific alterations in cognitive 

performance and damage following brain injury, the ratio of circulating 17βE2:E1 is 

generally considered to be 1:1 during the reproductive years of adulthood (Rannevik et al., 

1995). A notable exception to this is during pregnancy, in which E3 produced by the 

placenta is the predominant circulating estrogen; levels decline rapidly in the post-partum 

period (Neves-e-Castro, 1975). As women age, they experience menopause, a transition 

from reproductive capability to reproductive senescence (Timiras et al., 1995). The 

menopausal transition, typically occurring during the fifth decade of life, is characterized by 

depleted ovarian follicles, declines in naturally circulating levels of sex hormones, such as 

estrogens and progesterone, and a dysregulation of gonadotropin feedback loops marked by 

increasing levels of follicular stimulating hormone and luteinizing hormone (Rannevik et al., 

1995). During this time, the ratio of circulating estrogen levels shifts such that E1 is the 

principle circulating estrogen (Rannevik et al., 1995). As a result of these changing hormone 

levels, menopause is accompanied by hot flashes, urogenital atrophy, cognitive decline 

(specifically learning and memory), changes in risk for neurodegenerative diseases, 

worsened outcomes following brain trauma, and other symptoms that reduce quality of life 

(Freedman, 2002; Sherwin and Henry, 2008). These consequences of the menopausal 

transition become important when considering that life expectancy has increased over the 

past century, but the age of spontaneous menopause has not changed (Hawkes, 2003). This 

means that women now spend a larger proportion of life in this post-menopausal, 

hypoestrogenic state associated with numerous negative physiological and neurological 

consequences. As well, the size of the aging female population is growing. By the year 

2050, 90 million people are projected to be over 65 years of age (US Census, 2008). Given 

that women tend to outlive men, over half of this large aging population will be women. 

Thus, understanding the physiological impacts of female sex hormones is, and will continue 

to be, a crucial public health issue.
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Many of the diverse biological effects of estrogen are mediated by ligand interactions with 

two classical nuclear estrogen receptors (ER), ER-alpha (ERα) and ER-beta (ERβ). Both 

ERs are members of the nuclear receptor superfamily (Peterson, 2000) but they differ in 

their chromosomal localizations and ligand-binding domains (Gustafsson, 1999). Discovered 

in uterine tissue (Jensen and Jacobson, 1962; Toft and Gorski, 1966) and cloned in 1986 

(Greene et al., 1986), ERα was the first nuclear ER that demonstrated binding specificity for 

17βE2 and was thought to be the sole ER with which all estrogens interacted. However, 10 

years later, the discovery of a second nuclear ER in a cDNA library from rat prostate, ERβ, 

added clarity, and perhaps more complexity, to our understanding of the pharmacology and 

physiology of ER function (Kuiper et al., 1996). Currently, six ERβ splice variants have 

been reported in the brain and other tissues. Intriguingly, the ERβ1 isoform exhibits a 

neuroprotective role, functioning as a tumor suppressor, while the ERb2 isoform appears to 

function in a dominant negative role to initiate oncogenesis (Böttner et al., 2014; Dey et al., 

2015; Handa et al., 2012). Both ERα and ERβ regulate the physiological actions of 

estrogens primarily through the classical genomic signaling pathways, through which 

binding of an estrogenic ligand to ERα or ERβ in the cytoplasm promotes translocation of 

the ligand-receptor complex to the nucleus to serve as a transcription factor via binding to 

estrogen response elements (EREs) at gene promoters. Studies over the past decade have 

also revealed important physiological roles for another ER, G-protein coupled ER 1 

(GPER1; previously known as GPR30), in the brain and periphery. In contrast to ERα and 

ERβ, ligand binding to GPER1 occurs exclusively at the membrane and mediates several of 

the rapid, nongenomic signaling actions of estrogens (Prossnitz and Barton, 2014).

The pleiotropic actions of estrogens are amplified by the complex and diverse pattern of ER 

distribution throughout the brain and periphery. Traditionally, ERs have been associated with 

organs and tissues such as the uterus, ovaries, breast, hypothalamus, and pituitary and 

participate in the classical reproductive functions. As well, numerous nonreproductive 

functions for ERs have been identified in several other bodily tissues and organ systems 

including brain, cardiovascular tissue, bone, immune cells, and liver (Kuiper et al., 1997). 

Within the brain, ER subtypes are found in cognitive brain regions associated with learning 

and memory, such as the amygdala, cerebral cortex, hippocampus, and basal forebrain 

(Shughrue et al., 1997; Shughrue et al., 2000). ERs have also been identified in nearly all 

cell types found in the CNS, including neurons, astrocytes, microglia, oligodendrocytes, 

endothelial cells, and vascular smooth muscle cells. The physiological actions of each ER 

are not mutually exclusive, as converging data suggest the existence of both distinct and 

overlapping complex biological roles for each receptor subtype. Indeed, the physiological 

mechanisms with which endogenous and/or exogenous estrogens can impart their effects are 

diverse as estrogens participate in numerous modes of signal transduction. That estrogens 

can be synthesized de novo or via the action of aromatase in distinct brain regions further 

exemplifies the complexity of estrogenic signaling cascades (Li et al., 2014). The modes of 

ER signaling have significantly expanded beyond the traditional view of ERα and ERβ as 

transcription factors to include: rapid effects at the membrane on signal transduction 

pathways ligand, ligand-independent signaling, and receptor binding to non-traditional 

ligands (Deroo and Korach, 2006). Specific mechanisms of action for ERs in stroke, TBI, 

and cognition will be addressed later in this review (see Section 4).
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3. Use of rodent models to assess estrogenic actions in the nervous 

system

Within the context of aging and age-related hormone depletion, given the many parallels 

between humans and this animal model, from the basic science perspective the middle-aged, 

ovariectomized (Ovx) rodent is the gold standard. For instance, the effects of aging among 

women and rodents for a variety of insults including cognitive aging and brain injury are 

homologous. Indeed, cognitive aging occurs spontaneously in both species (Berchtold and 

Cotman, 2009) and stroke or stroke model neuropathology is similar in both humans and 

rodents (Durukan and Tatlisumak, 2007). Further, the physiological and cognitive 

consequences following surgical hormone depletion are also similar in both species. For 

instance, following oophorectomy in women, in which the ovaries are excised, circulating 

levels of sex hormones including 17βE2 and testosterone decline (Laughlin et al., 2000). 

Similarly, following surgical ovary-removal in rats, circulating estrogens and progesterone 

fall to low levels (Wise and Ratner, 1980). In both species, the sudden loss of ovarian 

hormones is also associated with memory impairments (Acosta et al., 2013; Henderson and 

Sherwin, 2007; Rocca et al., 2011). Further, stroke risk is higher among oophorectomized 

women who underwent surgical menopause prior to 40 years of age relative to women who 

underwent natural menopause during their early fifties (Baba et al., 2010), and stroke 

outcome is poorer among Ovx rodents compared to intact controls, at least in young adult 

animals (Leon et al., 2012). It is noteworthy that the Ovx methodological approach 

dramatically reduces levels of numerous other sex hormones including progesterone (Wise 

and Ratner, 1980), creating a background of minimal estrogen and progesterone hormone 

levels with which to assess the unique impacts of hormone loss or treatment. However, Ovx 

also initiates dramatic shifts in circulating gonadotropin levels (Wise and Ratner, 1980), an 

important consideration in the interpretation of findings using this model.

Despite the similarity in ovarian hormone profiles following surgical ovary removal in 

women and rats, an important limitation of this model is that most women do not undergo 

surgically-induced menopause. Indeed, the majority of women experience transitional 

menopause, in which follicles deplete and hormone levels change over many years, while 

only small portion of women experience oophorectomy (Timiras et al., 1995). This begs the 

question, why do we not use the intact aging female rat as a model of human menopause? 

The answer to this stems from differences in the mechanisms and the trajectory of 

spontaneous, transitional reproductive senescence in the two species. In women, the 

depletion of the ovarian follicles ultimately induces reproductive senescence (Neal-Perry et 

al., 2010). Conversely, in female rodents, the ovaries remain capable of reproduction given 

that transfer of an ovary from an aged donor rat to a young female recipient can still result in 

the support of normal cyclicity and the maintenance of viable pregnancies (Peng and Huang, 

1972). Instead, the proposed mechanism of female rodent reproductive senescence is 

dysregulation of the hypothalamic-pituitary-gonadal axis to respond to 17βE2 positive 

feedback. Indeed, Selmar Aschheim's 1964 seminal findings revealed that transplant of a 

young adult ovary into an aged rats failed to restore cyclicity (Neal-Perry et al., 2010). 

Similarly, transplant of hypothalamic nuclei from an aged rat into a young recipient 

disrupted normal cyclicity in these younger animals (Peng and Huang, 1972). This age-
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related hypothalamic dysregulation results in highly irregular cycles consisting of either 

constant estrus or persistent diestrus states, characterized by moderate levels of 17βE2 and 

high levels of progesterone, respectively (Lu et al., 1979; Wise and Ratner, 1980). Therefore, 

although evidence suggests that alterations in hypothalamic-pituitary-gonadal axis feedback 

mechanisms are early mediators of the menopausal transition in both women and rodents 

(Neal-Perry et al., 2010), the fundamental differences in follicular content and ovarian 

functional capacity during aging limit the utility of the ovary-intact aging rodent in studies 

investigating the aging process. However, new rodent models of transitional human 

menopause have been recently developed that selectively deplete ovarian follicles (Mayer et 

al., 2005) and have important implications for the field of women's health (see Section 7.2).

4. Mechanisms of estrogen neuroprotection

Estrogens have been shown to impact a number of distinct cell types, neuronal signaling 

cascades, and nervous system substrates associated with cognitive aging, injury, and disease 

(Prokai and Simpkins, 2007). Thus the mechanism behind estrogen's neuro-protective effects 

is most likely a multifactorial combination of diverse neurobiological and signaling impacts. 

As well, the source of estrogen may play an important role in neuroactivity and protection 

from injury as estrogens are derived not only from ovary in the periphery but also can be 

synthesized from cholesterol de novo or via the action of aromatase in various brain regions, 

such as the hippocampus, and by several neural cell types, including neurons and astrocytes 

(Li et al., 2014). It has been hypothesized that much of estrogen's protective actions in the 

brain following injury may be due to not to peripherally-derived estrogens but to estrogens 

synthesized within the CNS (Fester and Rune, 2014; Zhang et al., 2014), and this hypothesis 

has been reviewed elsewhere (Arevalo et al., 2015). The major neuroactive effects of 

estrogens are discussed here.

4.1. Cerebral microvasculature and blood–brain barrier

Compromised cerebral microvascular function impairs the integrity of the blood–brain 

barrier (BBB). The cerebral microvasculature, and by extension, the BBB, is a major target 

of estrogen action. ERα, ERβ, and GPER1 are expressed on brain endothelial cells, although 

most of the physiological activity of 17βE2 is mediated through ERα (Duckles and Krause, 

2011; Spary et al., 2009). Estrogens exert multiple protective actions at the 

cerebrovasculature by increasing vasodilation, decreasing vascular inflammation, and 

enhancing mitochondrial function. Acting through both genomic and non-genomic 

mechanisms, 17βE2 also increases expression of endothelial nitric oxide synthase (eNOS) 

which promotes increased vasodilation through enhanced nitric oxide availability in cerebral 

tissues (Duckles and Krause, 2011).

The protective actions of 17βE2 in brain endothelial cells is extended to the BBB, the 

dynamic interface that permits the passage of small molecules and limits entry of immune 

cells and larger inflammatory molecules into the brain parenchyma. The permeability of the 

BBB may be modulated through both ERα and ERβ (Bake and Sohrabji, 2004; Brown et 

al., 2010; Cipolla et al., 2009). 17βE2 also plays an important role in mediating 

leukocyteendothelial interations. It decreases messenger ribonucleic acid (mRNA) 
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expression of the proinflammatory endothelial molecules e-selectin, ICAM-1, and VCAM-1 

(Nakagami et al., 2010). Further, tight junction (TJ) proteins are critical for maintaining the 

structure and integrity of the vascular endothelial membrane in capillaries but play a less 

important role at postcapillary venules (Bechmann et al., 2007). The TJ proteins occludin 

and claudin-5 are also regulated by 17βE2 at the mRNA and protein level (Bake et al., 2009; 

Burek et al., 2010).

4.2. Mitochondrial function

several lines of evidence support a potential role of mitochondria in the neuroprotective 

effects of estrogens (Simpkins and Dykens, 2008). Long ago, estrogen was shown to bind to 

components of the mitochondria, including the F0/F1 ATPase (Zheng and Ramirez, 1999a,b) 

and more recently, we have shown ER localization to the mitochondria (Yang et al., 2004). 

Estrogens also influence anti-apoptotic proteins (Nilsen and Brinton, 2003; Pike, 1999; 

Singer et al., 1998; Wise et al., 2000; Yang et al., 2004; Zhao et al., 2004), which act on 

mitochondria such that they increase the production of adenosine triphosphate (ATP) under 

conditions of cellular stress (Wang et al., 2001, 2003a, 2006). With inhibition of ATP 

production by 3-nitropropionic acid (3NPA), a succinate dehydrogenase inhibitor that 

uncouples oxidative phosphorylation, estrogens reduce ATP decline. Similarly, H2O2 caused 

a dose- and time-dependent decline in ATP production (Wang et al., 2003b, 2006) by 

compromising mitochondrial oxidative phosphorylation. 17βE2 ameliorated the H2O2-

induced decline in cellular ATP (Wang et al., 2003b, 2006). More recently, we assessed the 

effects of estrogens on the inhibition of mitochondrial function induced by β-amyloid 

oligomers (Sarkar et al., 2015). We demonstrated that oligomeric β-amyloid caused a fission 

of mitochondria, slowed their movement, and reduced oxidative phosphorylation; all of 

these effects of oligomeric β-amyloid were ameliorated by 17βE2. Under glutamate 

stimulation, estrogens enhance Ca2+ flux into cells (Nilsen et al., 2002; Zhao et al., 2004), 

an effect that may be involved in estrogen's ability to increase memory function through an 

N-methyl-D-aspartate (NMDA) receptor-mediated mechanism (Diaz Brinton, 2001; Foy et 

al., 1999). Estrogens also potentiate Ca2+ influx through L-type Ca2+ channels (Sarkar et al., 

2008). However at high glutamate stimulation, estrogens reduce mitochondrial influx of 

Ca2+ (Nilsen and Brinton, 2003; Nilsen et al., 2002; Wang et al., 2006).

Estrogens also protect mitochondria Ca2+ from other stressors. 3NPA caused a rapid and 

profound increase in cytosolic Ca2+ concentrations (Wang et al., 2001). Estrogens reduced 

the influx of Ca2+ into the cytosol and mitochondria as a result of 3NPA treatment. 

Similarly, cytosolic and mitochondrial Ca2+ levels were reduced by 17βE2 when H2O2 was 

used as a pro-oxidant (Wang et al., 2006). Since sustained increases in mitochondrial Ca2+ 

impair oxidative phosphorylation, these observations indicate that the Ca2+ modulating 

effects of estrogens protects ATP production, and as a result, neuronal viability. The role of 

estrogenic mitochondrial actions in neuroprotection can be determined by the correlation 

between the potency of compounds in assays of mitoprotection and neuroprotection. A 

strong correlation between these two parameters supports the role of mitochondria in 

neuroprotection. We tested the correlation between the neuroprotective activity of estrogens 

and Δψm collapse induced by Ca2+ loading in a neuronal cell line. Ten estrogen analogs 

with neuroprotective potency (ED50) of 20 nM to 8.6 μM were compared (Dykens, 1995). 
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The correlation between ED50 values for neuroprotection and the ED50 values for Ca2+-

induced Δψm collapse were highly correlated (r2 = 0.73, Spearman r = −0.9387, p < 0.0001) 

(Dykens et al., 2003), suggesting a strong relationship between these two parameters.

4.3. Anti-inflammatory actions

The neuroprotective and anti-inflammatory actions of estrogens in early ischemic stroke and 

TBI are not mutually exclusive. The pleiotropic effects of estrogens and ERs across multiple 

cell types within the brain makes it difficult to dissociate these mechanisms from each other. 

Nevertheless, it is clear that physiological concentrations of 17βE2 exhibit dramatic anti-

inflammatory activity in the CNS when administered to young mice. Whether the anti-

inflammatory effects of 17βE2 persist following reproductive senescence (in rodents) or 

menopause (in humans) is under intense investigation. The majority of studies suggest that 

these effects do not persist in older female rodents (Leon et al., 2012; Sohrabji et al., 2013b; 

Strom et al., 2011). In addition to the loss of the anti-inflammatory properties of 17βE2 in 

young, Ovx mice, recent studies strongly suggest that the anti-inflammatory effects of 

17βE2 are lost during a period of prolonged hypoestrogenicity in middle-aged (Suzuki et al., 

2007a), or reproductively senescent (Selvamani and Sohrabji, 2010a; Sohrabji et al., 2013a), 

mice. 17βE2 also suppresses a systemic post-stroke immunosuppression phenotype in 

animal models that closely mimics a peripheral immunosuppressive phenotype seen in 

human patients (Ritzel et al., 2013; Zhang et al., 2010).

Several excellent reviews address cell type-specific anti-inflammatory mechanisms of 17βE2 

in microglia (Habib and Beyer, 2015; Vegeto et al., 2008), astrocytes (Acaz-Fonseca et al., 

2014), endothelial cells (Sohrabji et al., 2013a), and oligodendrocytes (Arevalo et al., 2010) 

during neurological injury. In young and middle-aged preclinical animal models of stroke, 

17βE2 inhibits the activation of the pro-inflammatory transcription factor, nuclear factor-κβ, 

which induces transcription of numerous cytokines such as tumor necrosis factor-α (TNFα), 

chemokine ligand 2 (CCL2), interleukin-6 (Vegeto et al., 2008). In contrast to its effects on 

eNOS in the brain cerebral microvasculature, 17βE2 also decreases expression of inducible 

NOS (iNOS), which produces nitric oxide as part of the innate inflammatory response 

(Garry et al., 2015). Some of the anti-inflammatory actions of 17βE2 in ischemic stroke are 

derived, in part, through interations with iNOS. In the permanent (pMCAO) middle cerebral 

artery occlusion (MCAO) model of ischemic stroke, Ovx iNOS null mice exhibited smaller 

infarct volumes than their wild type (WT) counterparts (Brown et al., 2008) but Ovx mice 

were afforded no additional protection with 17βE2 replacement (Brown et al., 2008; Park et 

al., 2006). More recent studies suggest that 17βE2 administration prior to transient MCAO 

(tMCAO) suppresses activation of the inflammasome, a multiprotein intracellular complex 

that coordinates the innate immune response, in male mice (Slowik and Beyer, 2015).

4.4. Free-radical scavenging

Estrogens exert anti-oxidant effects (Ayres et al., 1996; Miller et al., 1996; Mooradian, 1993; 

Romer et al., 1997a,b; Sawada et al., 1998; Tang et al., 1996) but are comparatively poor 

scavengers of reactive oxygen species (ROS). For neurons exposed to H2O2, 17βE2 is 

ineffective in reducing cellular ROS levels as measured by general ROS dyes. However, 

17βE2 is effective in preventing the production of ROS induced by 3NPA treatment (Wang 

Engler-Chiurazzi et al. Page 9

Prog Neurobiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2006). The observation that estrogens are potent in preventing ROS production led us 

to investigate their role in inhibition of lipid peroxidation. In neuroprotection assays in vitro, 

we showed that estrogens interact with the abundant aqueous soluble anti-oxidant, 

glutathione (Green et al., 1998; Gridley et al., 1998). Also since estrogens have a log P of 

about 3, they reside in the membrane component of cells (Liang et al., 2001), where they 

could prevent oxidation of phospholipids. Estrogens then may interrupt lipid peroxidation 

chain reactions using a major source of cellular reducing potential, such as glutathione or 

nicotinamide adenine dinucleotide phosphate (NADPH). We described estrogen conversion 

to a quinol product that was able to be reduced back to the parent estrogen in the presence of 

NADPH (Prokai et al., 2003a,b).

4.5. Synaptic and structural plasticity

Estrogen has known impacts on measures of plasticity within the CNS and this may 

represent an important mechanism by which estrogens can impact cognitive function. For 

instance, dendritic spine morphology and number are known to change following learning or 

long-term potentiation (LTP; Bliss et al., 2007); Woolley and colleagues first established that 

shifts in endogenous estrogen levels across the estrous cycle impacted dendritic architecture 

complexity in the cornu ammonis 1 (CA1) region of the hippocampus (Woolley et al., 1990). 

This same group later showed that hormone loss reduced spine number, and subsequent 

treatment with 17βE2 reversed this loss (Woolley and McEwen, 1992), an effect that was 

mediated by an NMDA receptor-dependent mechanism (Woolley and McEwen, 1994; 

Woolley et al., 1997), further supporting the ability of estrogen to modify hippocampal 

structure. As well, enhanced LTP has been noted in cycling females during the proestrous 

stage, when estrogen levels are high (Good et al., 1999; Warren et al., 1995), and chronic 

17βE2 treatment attenuates the disruptive effect of hormone depletion on long-term 

depression (Day and Good, 2005). Further, estrogen appears to modulate LTP through 

interaction with ERβ (Liu et al., 2008), which are localized within hippocampal axons, 

dendrites, and dendritic spines (Milner et al., 2001, 2005). More specifically, Liu et al. 

(2008) demonstrated that there were significant increases among synaptic plasticity marker 

proteins PSD-95 and GluR1 in Ovx wild type animals that received the ERβ agonist, 

WAY-200070. Interestingly, these changes were not shown among Ovx WT mice that 

received the ERα agonist nor in ERβ knockout (KO) mice. As well, hippocampal slices 

treated with WAY-200070 enhanced LTP when slices were from WT but not ERβ KO, 

female mice.

In addition to modifying synaptic architecture within a set of neurons, it appears that 

estrogen can modify structural plasticity to influence brain function. Neurogenesis, the 

process of creating new neurons, is indispensable in early brain development and to adult 

brain function. Previously, neurogenic activity was thought to be limited to early critical 

periods of neuronal development and 17βE2 appears to have a role in this process. Indeed, 

17βE2 promotes neuritogenesis in developing hippocampal neurons via a GPER-dependent 

mediated mechanism (Ruiz-Palmero et al., 2013). However, numerous laboratories have 

clearly demonstrated that neurogenesis also occurs in the subventricular zone (SVZ) and 

dentate gyrus (DG) in rodent and human adult brain (reviewed in Aimone et al., 2014). In 

the adult brain, sex hormones have been found to influence the number of new neurons 
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present in the hippocampal formation (Gould, 2007). Seminal findings from the Gould 

laboratory noted dramatic fluctuations in proliferation of progenitor cells with changes in 

endogenous estrogen levels across the cycle (Tanapat et al., 1999). Hormone depletion 

significantly reduces proliferating neuron number and 17βE2 treatment can reverse this if 

administered near the time of Ovx; this appears to occur through both genomic ER subtypes 

(Barha et al., 2009b; Ormerod et al., 2003; Suzuki et al., 2007b; Tanapat et al., 2005).

4.6. Impacts on the cholinergic neurotransmitter system

Estrogens may alter cognitive outcomes by their actions on distinct neurotransmitter systems 

known to be involved with cognition. The basal forebrain cholinergic system is important for 

learning and memory and is susceptible to age-related changes (for review, see Gibbs, 2010). 

For example, in aged female rats with working memory impairments, less choline 

acetyltransferase (ChAT) protein activity was found in the basal forebrain, relative to 

younger counterparts (Luine and Hearns, 1990), suggesting that lower levels of ChAT 

activity are associated with worse memory performance during aging. 17βE2 seems to 

beneficially impact the basal forebrain cholinergic system, as well as cognitive performance. 

In adult Ovx rats, 17βE2 treatment increased ChAT protein activity and ChAT 

immunoreactive cell counts in distinct basal forebrain subregions (Gibbs, 1997). Further, 

evidence from Gibbs’ laboratory suggests that not only did 17βE2 enhance memory 

performance but that the beneficial effects of 17βE2 treatment on cognition require a 

functioning basal forebrain cholinergic system. Indeed, 17βE2 was ineffective at improving 

cognition in animals with basal forebrain lesions, and enhanced memory only in nonlesion 

controls (Gibbs, 2002, 2007). Cholinergic projections to hippocampus are also involved with 

the memory enhancing effects of 17βE2 (Fader et al., 1998, 1999; Packard, 1998). In 

addition to 17βE2, other estrogenic formulations are known to impact the cholinergic 

system. Indeed, CEE treatment in middle-aged Ovx rats increased basal forebrain ChAT-

immunoreactive neuron counts and concomitantly aided spatial memory and retention 

(Acosta et al., 2009b). Yet, interestingly, the primary circulating estrogen following CEE 

treatment, E1, which impaired memory performance, also failed to impact basal forebrain 

ChAT-positive cell counts (Engler-Chiurazzi et al., 2012). Thus, these findings suggest that 

the basal forebrain cholinergic system may be a crucial component of the cognitive 

neuroprotection afforded by some, but not all, estrogens.

4.7. Cellular maintenance and survival

Neurotrophins may be one mechanism of estrogen-induced neuroprotection or mnemonic 

changes. Survival and maintenance of neurons are dependent upon neurotrophins, including 

nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF; Davies, 1996; 

Granholm, 2000). Age-related neurotrophin changes have been reported in animal models, 

and NGF and BDNF have been associated with cognitive function (Bimonte et al., 2003; 

Granholm, 2000; Hall et al., 2000; Kesslak et al., 1998). 17βE2 treatment significantly 

impacts neurotrophin systems in young and aged Ovx rats, increasing neurotrophin and its 

receptor mRNA levels in basal forebrain, frontal cortex, and hippocampus (McMillan et al., 

1996; Pan et al., 1999; Singh et al., 1995; Sohrabji et al., 1995) as well as elevating NGF and 

BDNF protein levels in cognitive brain regions (Bimonte-Nelson et al., 2004a,b). Moreover, 

there is mounting evidence from the Sohrabji group that estrogen imparts neuroprotective 
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action via interations with insulin-like growth factor (IGF) receptor (Sohrabji and Williams, 

2013). Indeed, in young animals, blockade of IGF receptors obviates the protective actions 

of 17βE2 against endothelin-1 (ET-1) induced stroke damage (Selvamani and Sohrabji, 

2010b). Interestingly, it appears that protective actions of IGF are dependent on an estrogen 

rich hormonal milieu as among aged animals, IGF was only effective at reducing infarct 

volume in Ovx animals that had been treated with 17βE2, but not in Vehicle treated animals. 

As well, it has been hypothesized that both estrogen and microglia-derived IGF act 

synergistically to promote cellular health in the context of the injured brain (Sohrabji and 

Williams, 2013).

In addition to modulating the growth factor system, 17βE2 is also known to modulate cell 

death cascades (Alkayed et al., 2001; Zhang and Bhavnani, 2006). Apoptosis and necrosis 

are the two primary mechanisms of neuronal cell death during neurological injury, although 

it is likely that other cell death mechanisms including autophagy are equally important 

(Gabryel et al., 2012). The anti-apoptotic effects of estrogens during ischemic stroke and 

TBI are well characterized in preclinical animal models. Numerous laboratories have shown 

that physiological concentrations of 17βE2 exert anti-apoptotic actions in the infarct 

penumbra but not in the infarct core, demonstrating that 17βE2 protects against delayed cell 

death but not immediate cell death in ischemic injury. Most apoptotic mechanisms 

implicated in stroke and TBI are either caspase-dependent or caspase-independent. Early 

studies showed that low levels of 17βE2 upregulate the cell survival factor bcl-2, an 

upstream inhibitor of caspases, in ischemic injury (Alkayed et al., 2001; Dubal et al., 1999). 

Data from several labs suggests that one anti-apoptotic mechanism utilized by 17βE2 is the 

suppression of activated caspase-3 during cerebral ischemia (Dubal et al., 2006; Harms et 

al., 2001; Jover et al., 2002; Rau et al., 2003; Soustiel et al., 2005). The specific pathways 

leading to caspase-3 activation are complex. The actions of caspase-3, a prototypical effector 

caspase, are regulated by the actions of two initiator caspases, caspase-8 and caspase-9. 

Caspase-8 activation is a hallmark of the extrinsic death receptor-mediated pathway, while 

caspase-9 activation is a hallmark of the intrinsic mitochondrial-cytochrome death pathway 

(Budihardjo et al., 1999; Zhang et al., 2004). Studies from the McCullough laboratory have 

implicated an important sex-specific mechanism for caspase-mediated effects of estrogens in 

ischemic stroke. Interestingly, caspase-dependent cell death mechanisms predominate in 

female mice while caspase-independent mechanisms are preferentially utilized in male mice 

(Koellhoffer and McCullough, 2013; Liu et al., 2009).

5. Estrogen and cognitive neuroprotection

5.1. What is cognition and how is it assessed in the human versus the rodent?

Cognition is an exceedingly large umbrella term used to describe the higher order neural 

processing and behavioral output that occurs within an organism in response to a given 

stimulus. Some of these responses may be simple, almost reflexive (such as the aversive 

avoidance withdrawal), and can be tested with ease in multiple experimental models 

spanning the entirety of the evolutionary totem pole. However, many responses are 

exceptionally complex and require the coordinated efforts of several neural systems in order 

to generate an appropriate behavioral output. Given the high degree of homology and 
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translatability between the everyday memory demands and mnemonic processing of humans 

and lower species, tests of learning and memory are commonly employed in preclinical 

evaluations of hormone effects on cognition. The demonstration of learned content by an 

organism is contingent upon a variety of factors including the perception of, and attention to, 

the information/stimulus to be learned, the consolidation of this information from short-term 

to long-term memory, and the eventual retrieval and recall of the necessary information 

when required. Estrogens are known to impact multiple aspects of this complex mnemonic 

system.

A number of tests with a high degree of human translational validity are employed in 

preclinical studies assessing learning and memory in rodents (Rodriguiz and Wetsel, 2006). 

Tests assessing hippocampal-dependent spatial navigation memory, a form of declarative 

memory that involves the ability to learn to utilize and remember distal landmarks that are 

associated with obtaining a reward and/or avoiding an aversive stimulus within a complex 

environment (Eichenbaum, 2000), are common in the field of rodent cognition. The ability 

to accurately navigate through space is crucial for the survival of all organisms, and 

performance on these tasks has been shown to be similar in both humans and rodents (for 

example, see Mennenga et al., 2014). Many tests, such as the Morris water maze (MM), 

assess hippocampal-dependent spatial reference memory (Morris et al., 1982), memory for 

information that remains consistent across time (Olton, 1979). As well, the spatial working 

memory system facilitates memory for information that changes across time, and must be 

updated, manipulated, and kept in a readily available state (Baddeley, 2010; Jarrard et al., 

1984; Olton, 1979). In addition, tests of novelty recognition are often employed given their 

relative ease of implementation and established use in the field (Ennaceur, 2010). Finally, 

fear-mediated memory can be assessed through the use of painful stimuli associated with a 

certain context, such as the active/passive avoidance, or contextual fear conditioning, 

paradigms (Maren, 2001). Many of these mnemonic processes are known to decline with 

increasing age and are impacted by estrogens in both species (Rodefer and Baxter, 2007), 

making them useful for the evaluation of estrogen effects in an aging preclinical model.

5.2. Effects of endogenous estrogens on cognitive function

Among humans, several lines of evidence support the impact of estrogen on cognition. 

Pronounced and reliable sexual dimorphisms in cognitive performance on specific functional 

domains established unique roles for the distinct sex hormones in cognition (reviewed in 

Kimura, 2002). For instance, men exhibit a clear advantage in visuospatial memory whereas 

women outperform men in tasks of verbal fluency and verbal memory (Bleecker et al., 1988; 

Galea and Kimura, 1993; Vandenberg and Kuse, 1978). Interestingly, cognitive performance 

among women is not static but fluctuates dramatically with changing levels of endogenous 

estrogens. For instance, women experiencing their menses, when estrogen levels are low, 

tend to display better performance on tasks typically associated with a male advantage 

(Hampson, 1990). Similarly, peri- and post-menopausal women show impaired memory 

scores, especially when compared to pre-menopausal women (Farrag et al., 2002; Greendale 

et al., 2010), with abrupt hormone loss via surgical oophorectomy prior to the age of natural 

menopause exacerbating cognitive decline (Nappi et al., 1999; Rocca et al., 2007). As well, 

some, but not all, studies note an association between worse memory performance and lower 
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circulating estrogen levels among aging women (Lebrun et al., 2005; Wolf and Kirschbaum, 

2002; but see Almeida et al., 2005; Barrett-Connor and Goodman-Gruen, 1999; Henderson 

et al., 2013). Thus, converging data suggest that endogenous hormones can impact 

mnemonic function and indicate that low levels of circulating estrogens is not optimal for 

cognition. Mirroring the results of experiments in humans, findings from the animal 

literature also support the notion that estrogen impacts cognitive outcomes. Males 

outperform females on tasks of spatial navigation memory (Luine and Rodriguez, 1994) and 

fluctuations in endogenous circulating sex hormone levels among females may moderate this 

effect. Some rodent studies have reported more accurate reference memory performance on 

the MM among female animals in estrus (Warren and Juraska, 1997), a phase of the estrous 

cycle when circulating 17βE2 levels tend to be low relative to other stages (Lerner et al., 

1990). Yet, enhanced reference memory performance has also been found during the 

proestrous phase when circulating estrogen levels surge (Frick and Berger-Sweeney, 2001). 

Still others have reported no alterations in working and reference memory performance 

across any estrous cycle stage (Berry et al., 1997; Stackman et al., 1997). Further supporting 

the notion of hormone-related changes in cognitive performance, age-related declines in 

spatial memory tend to emerge between 12 and 18 months of age (Markowska, 1999) when 

female rodents undergo the estropausal transition associated with increases in circulating 

gonadotropins, declines in estrogen levels, and dysregulation of progesterone and androgens 

(Lu et al., 1979). As is the case in women, surgical depletion of endogenous circulating sex 

hormones via Ovx in the rodent is associated with impairments on cognitive outcomes when 

compared to intact, cycling controls (Bimonte and Denenberg, 1999; Daniel et al., 1999; 

Feng et al., 2004; Talboom et al., 2008; Wallace et al., 2006).

5.3. Cognitive effects of exogenous estrogen treatments

Additional support for the beneficial effect of estrogen comes from findings of studies in 

which exogenous estrogen administration appears to ameliorate the cognitive deficits 

associated with hormone loss in both humans and rodents. In an elegantly designed study, 

Sherwin (1988) noted maintained verbal memory scores among women who received 17βE2 

HT following surgical removal of the ovaries while those women who received vehicle 

following oophorectomy surgery showed declined performance across time. As well, 

treatment of post-menopausal women with Alzheimer's Disease with transdermal 17βE2 

improved performance on tasks of attention and verbal memory (Asthana et al., 1999). Other 

findings, including case studies (Ohkura et al., 1995), non-randomized quasi-experimental 

designs (Carlson and Sherwin, 1998) and small double-blind, placebo controlled studies 

(Campbell and Whitehead, 1977), also support a protective role for the most commonly-

prescribed estrogen-containing menopausal treatment, CEE. However, several notable 

reports have found null or even detrimental cognitive effects following the administration of 

HT. For instance, findings from the now controversial WHI Memory Study (WHIMS) 

showed that CEE treatment yielded a non-significant increased incidence of probable 

dementia and mild cognitive impairment in women 65 and over (Espeland et al., 2004; 

Shumaker et al., 2004). Further, there was an elevated probable dementia risk, and no effect 

on mild cognitive impairment, in women with an intact uterus and ovaries taking Prempro® 

(CEE + medroxyprogesterone acetate (MPA); Shumaker et al., 2003). Thus, disagreement of 

clinical findings regarding the neuroprotection afforded by estrogen-containing treatments 
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has resulted in uncertainty among medical practitioners and patients regarding the 

effectiveness of estrogen for protection against cognitive aging and dementia.

17βE2 is the most commonly tested estrogen for cognition in the rodent, and a plethora of 

evidence supports the notion that treatment with this estrogen enhances learning and 

memory (Table 1). In young adult animals, studies assessing the effects of treatment with 

17βE2 following Ovx note beneficial effects on tasks of novel object recognition and object 

location memory (Gresack and Frick, 2004; Lewis et al., 2008; Luine et al., 2003), aversive 

avoidance memory (Foster et al., 2003; Simpkins et al., 1997a; Singh et al., 1994), and 

spatial working and reference memory (Bimonte and Denenberg, 1999; Daniel et al., 1997; 

El-Bakri et al., 2004; Gibbs, 1999; Hruska and Dohanich, 2007; Luine and Rodriguez, 1994; 

Talboom et al., 2008). Interestingly, the effects of exogenous administration of estrogens 

seem to be modulated, at least in part, by the age of the animal at the time of treatment. 

Indeed, converging data suggest that cognitive responsiveness to estrogen stimulation 

declines with age (Foster et al., 2003; Gresack et al., 2007; Talboom et al., 2008). For 

instance, the same dose of 17βE2 treatment that effectively enhanced performance on the 

MM among 4 and 16 month old, Ovx rats was generally ineffective in 24 month olds 

(Talboom et al., 2008). It is known that ER distribution changes with age in both aging 

women and Ovx rats (Adams et al., 2002; Mehra et al., 2005; Waters et al., 2011; 

Yamaguchi-Shima and Yuri, 2007) and it has been hypothesized that changes in ER ratios 

during aging may account for this reduced receptivity to estrogen treatment (Foster, 2012). 

However, some studies still report benefits of 17βE2 administration in aged rodents (Frick et 

al., 2002; Markowska and Savonenko, 2002), suggesting that other factors may interact to 

influence the realization of cognitive benefits with 17βE2 (see Section 7).

One strategy to optimize estrogenic HTs for cognitive outcomes has been through the 

methodical modulation of ER stimulation. Findings from several studies have indicated a 

role for specific ERs in memory performance. For instance, Rissman et al. (2002) found that 

17βE2 impaired learning on the MM in ERβ KO mice compared to estrogen-treated WT 

controls. Similarly, ERβ KO mice given 17βE2 were impaired on the Y-maze, exhibiting a 

lower percentage of trials without an error than WTs and ERα KO mice receiving the same 

treatment (Liu et al., 2008), further supporting the requirement of ERβ, and but not ERα, for 

17βE2-induced spatial memory enhancements. Interestingly, other findings highlight the 

importance of ERα in memory function. Foster et al. (2008) used a lentiviral vector to 

restore ERα expression in adult Ovx, ERα KO mice, finding that increased ERα expression 

in these animals enhanced spatial reference memory MM performance compared to that of 

ERα KO controls. Studies using selective ER modulators (SERMs) as tools to evaluate the 

impact of ER stimulation in young adult rats have also imparted mixed mnemonic effects. 

For instance, there is disagreement regarding the impact of SERMs on object memory, with 

some studies reporting that both propylpyrazole triol (PPT; ERα agonist) and 

diarylpropionitrile (DPN; ERβ agonist) enhance performance, and others reporting that 

either DPN or PPT, but not both, impart benefits (Frye et al., 2007; Jacome et al., 2010; Walf 

et al., 2006). As well, findings on spatial memory tasks are also inconsistent. For example, 

on the MM, DPN benefitted, while PPT failed to impact, spatial reference memory 

performance (Rhodes and Frye, 2006). Conversely, PPT, DPN, and 17βE2 each enhanced 

spatial working memory performance on the delayed match to position (DMP) task 
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(Hammond et al., 2009). Among middle aged animals, PPT was associated with delayed 

alternation impairments (Neese et al., 2010), even though Witty et al. (2012) found that 

lentiviral-induced increases in hippocampal ERα expression benefitted radial arm maze 

(RAM) working memory. Thus, the conflicting findings from these studies indicate that the 

relationship between memory outcomes, ERs, ER ligand stimulation, and aging is complex 

and requires further investigation to uncover clinical applications for ER-targeted 

interventions.

6. Estrogen neuroprotection in brain injury

6.1. Estrogen and ischemia

Afflicting nearly 795,000 people per year and associated with an annual total cost of 34 

billion US dollars, stroke is the fifth leading cause of death and the leading cause of long-

term disability in the United States. Similarly, stroke is the second-leading cause of death 

worldwide, accounting for 11% of all deaths globally (Mozaffarian et al., 2015). Broadly 

defined, stroke is a failure of the supply of oxygen and glucose to neurological tissues. 

Accounting for 87% of stroke cases, ischemic stroke is caused by a blockage of a cerebral 

artery, resulting in a loss of blood flow to the brain area supplied by that artery. The 

phenotype of functional consequences can be diverse and the success of medical 

recanalization interventions, such as chemical or mechanical endovascular therapy, are 

important predictors of outcome. While surgeons typically employ a variety of tools to 

physically disrupt or remove a clot, only one pharmacological option exists, recombinant 

tissue plasminogen activator (tPA) (Mozaffarian et al., 2015; Rouchaud et al., 2011). 

Although proven effective, the therapeutic window of tPA administration is exceptionally 

short, due to the unacceptable increased risk of cerebral hemorrhage when given after that 

time point (Gurman et al., 2015).

6.1.1. Clinical studies—Sex differences in stroke are well documented. Although 

younger women have a lower incidence of ischemic stroke than young adult men, the sex 

difference shifts in older cohorts such that post-menopausal women have an equivalent or 

higher incidence of stroke than their age-matched male counterparts (Reeves et al., 2008). 

Women are affected by 40,000 more strokes annually than men, and represent approximately 

56% of the 6.8 million stroke survivors in the United States. In addition, women are more 

likely to be older at the time of first stroke and have a lower quality of life post-stroke than 

their male counterparts, even after adjusting for other sex-specific variables (reviewed in 

Bushnell and McCullough, 2014; Gibson, 2013). Indeed, results of the Framingham Heath 

Study indicated that women were older at the time of stroke, have more comorbid disease at 

time of stroke, and tend to have more severe strokes with worse outcomes (Petrea et al., 

2009). Of the many modifiable risk factors for stroke, including hypertension, history of 

smoking, diabetic status, and physical activity, the primary non-modifiable risk factor for 

stroke is increased age (Goldstein et al., 2011). Another non-modifiable risk factor for stroke 

women is the onset of menopause. The stroke risk for women doubles approximately 10 

years post-menopause. Menopause is also associated with an increased risk of the 

modifiable risk factors listed above. Thus, large shifts in endogenous sex hormone levels, as 
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well as prior use of estrogen-containing therapies, appear to be additional risk factors that 

contribute to the female disadvantage in stroke risk (Lisabeth and Bushnell, 2012).

Few clinical studies have examined the relationship between HT and stroke risk as a primary 

outcome. Most clinical studies that have investigated the relationship between HT and 

cardiovascular disease have focused on prevention of coronary heart disease rather than 

stroke, and the overall evidence suggested no benefit of HT on stroke risk (Henderson and 

Lobo, 2012; Paganini-Hill, 2001). The Women's Estrogen for Stroke Trial (WEST) 

addressed stroke risk as the primary outcome in women with an intact uterus who had a 

history of prior ischemic stroke or transient ischemic attack. Results from the WEST showed 

that 17βE2-based HT had no effect on recurrent stroke after a 2.8 year follow-up (Viscoli et 

al., 2001). In contrast, stroke risk was a secondary outcome in the WHI. The CEE-alone trial 

of the WHI reported an increased risk (30%) of ischemic, but not hemorrhagic, stroke in 

women who received CEE compared to placebo. This risk corresponds to an additional nine 

cases of stroke per 10,000 person-years of HT use (Anderson et al., 2004; Henderson and 

Lobo, 2012; Hendrix et al., 2006).

Over the past 10 years since the termination of the WHI, several studies have re-examined 

the major findings of the WHI to focus on the group of women in the WHI who were 50–59 

years of age when they enrolled in the WHI, an age group that represents the time frame of 

the menopausal transition. In one secondary analysis of the WHI, Roussow and colleagues 

showed that the youngest group of women in the CEE arm of the study did not have an 

increased risk of stroke (Rossouw et al., 2007). In the WHIMS-Y study, CEE administration 

to women aged 50–55 at the beginning of the study sustained neither risk nor benefit to 

cognitive function (Espeland et al., 2013). Current clinical guidelines recommend against the 

use of any kind of HT for primary or secondary prevention of stroke. The guidelines also 

emphasize that signifi-cant gaps persist in our understanding of the benefits and harms of 

HT, particularly with younger women who are in the early peri-menopausal and post-

menopausal periods (Bushnell and McCullough, 2014; Bushnell et al., 2014).

6.1.2. Preclinical studies—The search for therapeutic agents to treat stroke remains 

elusive. A greater appreciation of the gender biology of stroke in preclinical studies will 

support this endeavor. In spite of the abundant epidemiological and physiological evidence 

for a sexual dimorphism in stroke, most preclinical studies in stroke have been performed in 

young, male rodents. We and others participated in a National Institute of Neurological 

Disorders and Stroke-sponsored workshop in 2006 to summarize the research gaps 

pertaining to stroke risk, with an emphasis on clinical and preclinical estrogen studies 

(Bushnell et al., 2006). Following the early termination of the CEE arm of the WHI in 2004, 

basic researchers sought to identify the reasons for the discrepancies between clinical and 

preclinical studies (Anderson et al., 2004). While much experimental evidence from rodent 

and non-human primate animal models of stroke, as well as in vitro models of ischemic 

injury, overwhelmingly demonstrated that estrogenic compounds were neuroprotective, the 

early termination of the estrogen-only arm of the WHI suggested otherwise.

Thus, it is critical that investigators identify the circumstances under which estrogen is 

beneficial and when it is harmful. Two of the basic science research recommendations from 
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this workshop pertained to sex steroids: (1) define which stimuli precipitate stroke events, as 

well as the influence of sex steroids on these processes, and (2) delineate the mechanism by 

which sex steroids and their mimetics act as neurovascular protectants in both stroke and 

neurodegenerative disease models. Incorporating the physiological complexity of sex 

steroids like estrogen into clinically-relevant, age-appropriate animal models of stroke is 

paramount for implementation of a successful therapeutic agent for treatment of ischemic or 

hemorrhagic stroke. We review critical variables in rodent models of stroke that have 

contributed to our current perspectives on estrogen-mediated neuroprotection. 

Representative studies are summarized in Table 2. Since many preclinical studies were 

performed in rodents, this section will be limited to mouse and rat models of ischemic 

stroke. The reader is referred to the following reviews for a discussion of animal models of 

stroke in other species including nonhuman primates (Casals et al., 2011; Cook and 

Tymianski, 2012) and estrogen action in animal models of ischemic stroke (Carswell et al., 

2010).

One of the most important factors in preclinical stroke research is the selection of the 

experimental model to ensure a reproducible injury. MCAO is the most common 

experimental stroke model employed in rodents, using an intraluminal filament to occlude 

the middle cerebral artery, thereby resulting in the loss of approximately 50–75% blood flow 

to the cortex or striatum (Longa et al., 1989; Macrae, 2011). In pMCAO, the filament 

remains lodged in the artery for the duration of experimental stroke (Bingham et al., 2005; 

Dubal et al., 1998; Dubal et al., 2001; Perez et al., 2005a,b). Conversely, in a tMCAO model, 

blood flow to the brain is blocked by the filament for a specific period of time, generally 30–

120 min, and is then removed. Filament removal allows re-entry of blood into the artery and 

also results in reperfusion injury. Thus, pMCAO primarily assesses the effect of estrogen on 

the injury due to loss of blood flow, while tMCAO assesses the effect of estrogen on injury 

due to loss of blood flow and reperfusion injury. Fewer studies have employed global models 

of tMCAO, which are characterized by brief (less than 20 min) periods that occlude blood 

flow to both hemispheres (Horsburgh et al., 2002; Miller et al., 2005). An alternative MCAO 

model employs injection of the vasoconstrictive peptide, ET-1; this method occludes blood 

flow to 30–50% of normal and results in a delayed hypoperfusion (Biernaskie et al., 2001). 

This model has been widely used to demonstrate the loss of estrogen's neuroprotective 

effects in aged, reproductively senescent rats (Lewis et al., 2012; Selvamani and Sohrabji, 

2010a,b). Similarly, Leon and colleagues (Leon et al., 2012) also showed a deleterious effect 

of estrogen in aged rats using a tMCAO model coupled with the tPA during reperfusion. In 

contrast, few laboratories have demonstrated a beneficial effect of estrogen in aged rats (Liu 

et al., 2012). Occlusion via electrocoagulation has been used less frequently in experimental 

ischemic stroke, with more neurodamaging effects of estrogen reported in this model than in 

others (Bingham et al., 2005; Carswell et al., 2004; Gordon et al., 2005). The distinctions 

among experimental stroke models, however subtle, are critically important when evaluating 

the efficacy of estrogenic action in neuroprotection.

An additional critical difference between preclinical and clinical studies to assess estrogen-

mediated neuroprotection in ischemic stroke is the study endpoint or outcome. As shown in 

Table 2, infarct volume or quantification of neuronal cell loss is the most common endpoint 

in preclinical studies. In general, these studies have demonstrated that continuous treatment 
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with 17βE2 reduces infarct volume in the cortex and to a lesser degree in the striatum, with 

limited, if any protection in the hippocampus (Dubal et al., 1998; Dubal et al., 2001; Rusa et 

al., 1999; Simpkins et al., 1997b). In contrast, the common endpoint for clinical studies is 

functional or disease outcomes. Comparatively, a smaller number of preclinical studies have 

employed acute functional endpoints or mortality as endpoints, whereas the benchmark for 

therapeutic efficacy in humans is either survival or long-term recovery of motor function, 

memory, or cognition. The effects of estrogen on functional outcome after ischemic stroke 

are unclear and under-studied, as we identified a limited number of studies that reported any 

effects of estrogen on either short-term (Strom et al., 2013; Wang et al., 1999; Zhang et al., 

1998) or long-term functional outcomes (Li et al., 2004). The appropriate design of 

preclinical studies to uncover the mechanisms that determine whether estrogen promotes 

long-term functional recovery following experimentally-induced stroke is essential for 

elucidating the biological underpinnings of estrogen-mediated neuroprotection.

We were one of the first laboratories to demonstrate estrogen-mediated neuroprotection in 

rodents (Simpkins et al., 1997b), and many laboratories have expanded upon these findings 

over the past twenty years. The age of animals, animal strain, estrogen treatment regimen, 

and estrogen dose are all critical factors that have contributed to the discrepancies between 

clinical and preclinical findings. overall, the majority of studies on estrogen and 

neuroprotection have employed the tMCAO model while restricting blood flow at various 

times within a 90 min time frame, with administration of varying doses and formulations of 

estrogen either before injury, at the time of injury, prior to reperfusion, and after reperfusion. 

It is critical that we elucidate, using clinically relevant models of ischemic stroke, the 

circumstances under which estrogens are neuroprotective and when they are neuro-

damaging in ischemic stroke, as well as neurodegenerative disease. The Stroke therapy 

Academic Industry Roundtable (STAIR) preclinical recommendations provide an excellent 

foundation for sound experimental design coupled with transparent reporting of study 

results. The recommendations of particular relevance to the study of estrogen-mediated 

neuroprotection urge investigators to: (1) employ both acute and long-term histological and 

functional endpoints and (2) use both permanent and transient occlusion models, and (3) 

define the window of therapeutic efficacy (Fisher et al., 2009). We urge investigators to 

implement these criteria in an effort to provide continued clarity to basic scientists, 

clinicians, and, most importantly, the millions of women who desire to use HT to improve 

their quality of life.

6.2. Estrogen and traumatic brain injury

TBI is defined as an injury induced by an external force which results in altered brain 

function or pathology, such as the presence of clinical symptoms of amnesia, loss of 

consciousness, etc. (Menon et al., 2010). Although the mechanisms can be diverse (blunt 

force, gun shot or other penetrative object, explosive blast, etc.), primary TBI is most 

commonly associated with shearing and contusive damage to neural tissues due to an 

external force and includes ischemic hypoxia, hematoma, edema, diffuse axonal injury and 

contusion (reviewed in Maas et al., 2008). The initiation of several pathological cascades 

results in a diffuse secondary TBI, the consequences of which may not be observable for 

many days, weeks, or even years following the initial injury. Causes of secondary injury 
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commonly include dysregulation of excitatory neurotransmitters, apoptosis and necrosis, 

initiation of the inflammatory cascade, disruption of the BBB and cerebral blood flow 

(CBF), altered energy metabolism, and free radical production. Thus, the pathophysiology of 

TBI is associated with numerous detrimental neurobiological consequences.

In addition to the devastating pathological processes associated with this condition, the 

human impact of TBI is high. Each year, an estimated 1.7 million people sustain a TBI and 

of those, approximately 53,000 will die (Coronado et al., 2011). Among the survivors, the 

primary and secondary neuropathological alterations are associated with a variety of 

detrimental consequences including cognitive decline, locomotor impairments, and 

psychological problems, all of which can have profound negative impacts on daily living and 

quality of life. It is known that TBI is associated with young adulthood, especially among 

males, as it is major cause of death in this age group (Maas et al., 2008). As of 2005, there 

were an estimated 3.17 million adults in the United States suffering from extended, and in 

some cases life-long, disability associated with a TBI, making these insults extremely cost-

burdensome on the healthcare system (Zaloshnja et al., 2008). In fact, total direct and 

indirect estimated annual costs (including costs associated with missed work and lost 

productivity) for the treatment of TBI have been estimated to be as high as 76.1 billion 

dollars (Ma et al., 2014). Unfortunately, the incidence of TBI is rising, given that it is 

becoming increasingly associated with aging as the large Baby Boomer population enters 

senescence and become at higher risk for neurotrauma-inducing falls (Roozenbeek et al., 

2013). Thus, taken together, TBI represents an urgent medical need; characterizing risk 

factors and developing interventions for these patients will become an increasingly 

important direction for research.

A significant risk factor for TBI, and therefore potential treatment option, may be genetic 

sex and the associated circulating sex-specific hormones. Indeed, preclinical observations of 

a female advantage in severity of TBI and functional recovery have been reported (Roof et 

al., 1993; Wagner et al., 2002). Evidence suggests that shifts in the hormonal milieu are 

associated with changes in risk/outcome. Protection from TBI in the rodent has been 

reported in proestrous phase (Maghool et al., 2013) when estrogen levels are increasing, 

although not all studies have replicated this effect (Wagner et al., 2004). Further supporting 

this hypothesis is the finding that the protective female advantage on outcome measures, 

such as a reduction of BBB permeability and cerebral edema, was attenuated or even 

completely absent in Ovx-induced surgically hormone-deplete rats (Bramlett and Dietrich, 

2001; Suzuki et al., 2004). Exogenous administration of 17βE2 either in the weeks 

preceding insult or within minutes to hours after injury appears to ameliorate the detrimental 

impacts of hormone deficiency (Khaksari et al., 2011; O'Connor et al., 2005; Roof and Hall, 

2000), the effects of which have been shown to be mediated through a variety of 

mechanisms including GPER1 and the classical genomic ERα and ERβ pathways as shown 

via the use of SERMs (Asl et al., 2013; Day et al., 2013; Khaksari et al., 2013). Despite 

these promising findings, not all studies report a beneficial effect of estrogen treatment 

among female animals (Bruce-Keller et al., 2007; Lebesgue et al., 2006). For instance, in 

Ovx mice, neither acute (10 μg/kg single intraperitoneal injection) nor chronic (180ug/ml 

subcutaneous Silastic® capsule) 17βE2 given prior to undergoing a controlled cortical 

impact TBI attenuated cortical and hippocampal cell loss nor impacted microglia reactivity 
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(Bruce-Keller et al., 2007). Taken together, in general, findings from these studies support 

the hypothesis that estrogens can exert neuroprotective benefits in TBI but further work is 

needed to clarify the conditions in which these benefits will occur (Table 3).

Similarly, the findings with regards to TBI at the bedside are also controversial. While some 

studies note a protective effect of female sex (Berry et al., 2009; Groswasser et al., 1998), 

many clinical reports have failed to find a sex-difference in post-TBI outcome (Coimbra et 

al., 2003; Magnotti et al., 2008; Slewa-Younan et al., 2004) and others have suggested that 

outcome among females was actually worse compared to male patients (Farace and Alves, 

2000). For example, even after controlling for a variety of subject-level confounding factors, 

female patients were found to have higher post-concussive symptoms at three months 

following mild TBI (Bazarian et al., 2010). While the male-dominated adulthood sex 

difference in TBI rate diminishes among elderly populations (Pentland et al., 1986), the 

interactive effect of age appears to play an important role in outcomes for women. 

Reproductive status is thought to mediate this effect. For instance, many of the studies in 

which a detrimental effect of female sex on TBI was found were conducted in populations of 

adult to middle-aged, and thus reproductively capable, women (Bazarian et al., 2010; 

Coimbra et al., 2003). Farin et al. (2003) reported that women (ages 15–79) had a greater 

frequency of brain swelling and intracranial hypertension than men. Yet when specific age-

groups were compared, the detrimental effect was observed only in women younger than 51 

while rates among aged men and women were similar. In addition, Berry et al. (2009) found 

women in age brackets of 45–54 years and those older than 55 years of age (presumably 

corresponding to the peri- and post-menopausal periods, respectively), but not women 

younger than 45, had reduced mortality following moderate to severe TBI as compared to 

males in this age-group. However, other studies have reported worse outcomes in older 

populations of women (Gan et al., 2004; Pentland et al., 1986). Unfortunately, neither 

reproductive status nor use of estrogen-containing treatments such OCs, HTs, etc., were 

directly assessed (for example, by way of assessing circulating hormone levels, survey of 

last menstrual period, or self-report of menopausal symptomology) in any of the 

aforementioned studies and therefore, hormone status cannot be directly associated with 

differences among these studies. Thus, the relationship between biological sex and outcome 

in regards to TBI cannot be easily predicted by sex hormones and controversy as to 

estrogen's neuroprotective role remains. Results of the RESCUE-TBI Phase II clinical trial 

(NCT00973674; www.clinicaltrials.gov), which will evaluate the potential beneficial effects 

of acute intravenous CEE treatment on short-term mortality and neurological outcomes 

following TBI, will begin to clarify this important issue.

7. Factors that influence the realization of neuroprotective effects of 

estrogen

The evidence presented thus far suggests substantial support of estrogen as a neuroprotective 

agent in several domains of brain function and injury. However, clinical and preclinical 

findings of detrimental neurological effects following HT suggest that the story of estrogen's 

impacts on the nervous system is not a simple one. Instead estrogen can be thought of as a 

conditional neuroprotectant that, when administered, is associated with a multitude of 
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beneficial impacts but whose biological actions are dictated by several modulating factors 

that can substantially alter the realization of these beneficial effects. We have directly 

addressed a set of these factors in the following subsections.

7.1. Etiology of hormone depletion

Evidence suggests that the nature of the menopausal transition, either spontaneous/

transitional (also referred to as natural) or surgical, can influence cognitive outcomes during 

aging. Studies in women have reported that cognitive performance is worse among women 

who underwent oophorectomy at or before the time of spontaneous menopause (Nappi et al., 

1999; Rocca et al., 2007). This notion has also been described in work with aging rodents. 

Indeed, the Bimonte-Nelson team has capitalized on a novel approach to hormone depletion 

in animals (Acosta et al., 2009a, 2010). Characterized by Loretta Mayer et al. (2002), the 

toxin vinylcyclohexene diepoxide (VCD) selectively depletes ovarian primordial and 

primary follicles, resulting in a hormone environment associated with increased 

gonadotropins, high circulating androstenedione, and very low levels of estrogens and 

progesterone, a state that more similarly parallels the physiological milieu of a naturally 

menopausal woman (Mayer et al., 2005). This transitional ‘menopause’ was associated with 

cognitive deficits on tests of spatial working memory in middle-aged female rats (Acosta et 

al., 2009a). Among these animals, higher levels of circulating androstenedione were 

correlated with worse memory performance. This impairment was ameliorated by surgical 

removal of the follicle-deplete ovary via Ovx. Animals that underwent transitional hormone 

depletion followed by surgical removal of the depleted ovaries also outperformed animals 

that underwent rapid hormone loss via Ovx surgery.

As well, the effects of estrogen treatment may also differ depending on menopause etiology. 

Findings from the WHI noted that different estrogen formulations given to women 

depending upon whether their menopause was transitional (CEE + MPA) or surgical (CEE 

alone) resulted in different effects on adverse outcomes such as stroke risk and probable 

dementia (Manson et al., 2013). From a preclinical perspective, Acosta et al. (2010) noted 

that CEE only benefitted memory performance in animals that had undergone Ovx; CEE 

treatment among VCD-induced gradual hormone depleted animals actually impaired 

memory performance among middle-age female rodents. Taken together, these findings 

suggest that etiology of menopause can have important impacts on age-related changes in 

cognition and response to injury; this factor should be considered in the context of 

administration of exogenous estrogenic treatments.

An additional important factor with regards to this issue is that patient age at the time of 

hormone depletion also may play a role in health outcomes following menopause (Shuster et 

al., 2010). Indeed, women with surgical menopause tend to be younger than transitional 

menopausal women and cognitive detriments are associated with younger age at the time of 

surgical hormone loss (Nappi et al., 1999; Rocca et al., 2007). Some studies have even failed 

to detect differences in cognitive change among women undergoing hysterectomy with or 

without bilateral oophorectomy when compared to similarly aged women undergoing 

transitional menopause (Kok et al., 2006; Kritz-Silverstein and Barrett-Connor, 2002). 

Additional support for the impact of age on hormone depletion effects stems from rodent 
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work suggesting that Ovx is detrimental for memory in young adult animals, beneficial in 

aged animals (Bimonte and Denenberg, 1999; Bimonte-Nelson et al., 2003), and transitions 

from detrimental to beneficial during the reproductive senescence period (Engler et al., 

2007). Further work teasing apart the role for menopause etiology and age at which 

menopause occurs is warranted.

7.2. Critical window for estrogenic intervention

For many decades, converging evidence from observational and small, randomized trials 

suggests that menopausal HT could protect against brain aging and cognitive decline 

(Sherwin and Henry, 2008). Results of the large WHI were eagerly anticipated and expected 

to validate the plethora of preclinical and clinical reports noting benefits with estrogen-

containing HTs. Yet, surprisingly, the WHI reported an increased risk for ischemic stroke, 

declines in global cognitive function, and a doubling in the risk of probable dementia among 

women taking CEE + MPA (Rapp et al., 2003; Rossouw et al., 2002; Shumaker et al., 2003). 

Among women taking unopposed CEE, there was an increased risk of stroke, a non-

significant 49% increased risk of probable dementia, and suggestive evidence for impaired 

global cognitive function (Anderson et al., 2004; Espeland et al., 2004; Shumaker et al., 

2004). Importantly, these women were at least 65 years of age at the time of evaluation for 

cognitive outcomes. The publication of these controversial findings generated substantial 

speculation as to the perplexing lack of neuroprotection. One prominent hypothesis was that 

of the ‘critical window of opportunity’ for the realization of beneficial outcomes of 

estrogenic intervention. Similarly, the ‘healthy cell’ theory proposed by Dr. Roberta Brinton 

suggested that reductions in risk for age-related memory changes with estrogen-containing 

treatments were more likely to be observed among younger, cognitively uncompromised, 

healthy patients as opposed to those women with underlying age-related neuropathology 

(Brinton, 2008). Indeed, analyses of WHI data stratified by age suggested that HT had fewer 

adverse outcomes among younger menopausal women, who initiated treatment near the time 

of menopause (Manson et al., 2013; Rossouw et al., 2002). Findings of a critical window of 

opportunity for estrogenic intervention are mirrored in small observational and randomized 

clinical studies in women (Maki, 2006). Indeed, among women who received bilateral 

oophorectomy prior to age of spontaneous menopause, those that were treated with estrogen 

therapy until age 50 did not show cognitive decline relative to a referent group of women 

(Rocca et al., 2007). Similarly, Dumas et al. (2008) reported that estrogen is capable of 

counteracting the memory impairing effect of cholinergic challenge but only when 

administered near the time of menopause. As well, in women who initiated a short-term 

regimen (2–3 years) of 17βE2-based HT near the time menopause, risk for cognitive decline 

was reduced when performance was assessed at age 64 (Bagger et al., 2005). It is 

noteworthy that this short-term treatment regimen was as effective at protecting cognitive 

function as estrogen treatments lasting many years in duration. However, the estrogen 

formulation used in the WHI was CEE, either alone or in combination with MPA. The WHI 

Memory Study of Younger Women (WHIMS-Y) failed to note memory benefits with CEE 

even when initiated near the time of menopause (Espeland et al., 2013). As well, the Kronos 

Early Estrogen Prevention Cognitive and Affective Study (KEEPS) did not detect 

differences on global cognitive outcomes (as measured by the Mini Mental Status Exam) 

among women randomized to receive estrogen + progestin combination treatment (either 
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oral CEE, or transdermal 17βE2, +micronized progesterone) as compared to placebo 

(Gleason et al., 2015). Other factors, such as type of progestin included in the HT 

formulation, differed between these studies; the impact of these other factors are hotly 

debated and discussed in the sections detailed here as well as in several key reviews (Rocca 

et al., 2014; Singh and Su, 2013). Nevertheless, results of an additional clinical trial 

assessing the critical window of menopausal HT initiation, the Early Versus Late 

Intervention Trial with Estradiol (ELITE; NCT00114517; www.clinicaltrials.gov) are 

eagerly anticipated and will hopefully clarify this complicated hypothesis.

Evidence from rodent literature also supports the notion that beneficial neuroprotective 

effects of estrogen treatment will be realized if initiated near the time of hormone depletion 

(Daniel, 2013; Maki, 2006). For instance, in an elegantly designed study of middle-aged 

rats, 17βE2 was only protective against cognitive decline on the water RAM when initiated 

at the time of, but not five months following, Ovx (Daniel et al., 2006). Other animal studies 

support the existence of a critical period for estrogenic intervention following hormone 

removal (Gibbs, 2000; Vedder et al., 2014), even if the duration of estrogen treatment is 

short (Rodgers et al., 2010). This reduction in cognitive benefit following long delays 

between hormone depletion and 17βE2 intervention is associated with an attenuated ability 

of 17βE2 to increase hippocampal spine density, a failure to improve LTP, and brain region 

specific changes in ERα expression (Bohacek and Daniel, 2009; McLaughlin et al., 2008; 

Smith et al., 2010). Indeed, mounting evidence implicates age-related changes in expression 

and/or function of ERα in the reduced neurological responsivity to estrogen and represents a 

possible target for extending the therapeutic window of estrogen intervention (Foster, 2012). 

Taken together, there is sufficient preclinical and clinical data to support the possible 

existence of a critical window for HT initiation following hormone depletion. However, it is 

as yet unclear whether a critical window exists for CEE, highlighting the possibility that 

factors associated with the estrogenic formulation may also influence the neuroactive actions 

of estrogen-containing HTs.

7.3. Estrogen type

7.3.1. Conjugated equine estrogen therapy—The majority of studies reporting 

beneficial effects of estrogen within the context of cognition, stroke, and TBI utilized the 

most potent circulating estrogen, 17βE2 (Maki, 2012; Sherwin and Henry, 2008). Yet, 

17βE2 is not a prevalent component of the most common menopausal HTs used by women. 

CEE, a purified pregnant mare urine complex of estrogens first developed by Wyeth, is the 

most widely used estrogen-based menopausal HT in North America (Hersh et al., 2004). 

Although primarily composed of E1 sulfate and containing only trace amounts of 17βE2, 

CEE is a mixture of at least 10 estrogen sulfates, many of which are unique to horses and 

have yet to be evaluated for their neuroprotective impacts in a human or rodent model (Kuhl, 

2005). After metabolism, the biologically active hormones in circulation are primarily E1 

and the more potent 17βE2, as well as equine-specific estrogens such as equilin and delta8,9-

dehydroestrone (Bhavnani, 2003; Kuhl, 2005). Despite CEE being an effective treatment for 

relieving the negative vasomotor symptoms and vaginal atrophy of menopause (Freedman, 

2002), clinical and preclinical findings of CEE's neuroprotective effects are inconclusive. 

Model-specific effects have been noted. Among women, in an excellent review by Sherwin 
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and Henry (2008), the authors note that studies in which menopausal HT improved cognitive 

performance measures utilized 17βE2, while CEE was the principal HT used by women in 

those studies reporting null or negative effects. Cell culture models suggest that CEE can be 

neuroprotective. Specifically, CEE enhances neuronal growth and increases neuronal 

survival after experimentally-induced insult in vitro (Brinton et al., 2000; Diaz Brinton et al., 

2000). The results from a limited number of preclinical studies assessing the effects of CEE 

in experimental stroke in vivo suggest that CEE may, but not always, reduce infarct volume 

(Littleton-Kearney et al., 2005; Rusa et al., 1999). One study noted no differences in post-

stroke lesion volume, and thus no protection, among Ovx female rats given an acute CEE 

injection 30 min before MCAO (Rusa et al., 1999). However, it is worth noting that these 

studies were carried out in young, healthy rodents. CEE has also been shown to impact 

cognition in the middle-aged Ovx rat. CEE administered subcutaneously via an acute 

injection (Walf and Frye, 2008), via chronic cyclical injections (Acosta et al., 2009a,b), or at 

higher doses administered via continuous release from osmotic pumps (Engler-Chiurazzi et 

al., 2011), enhances object memory and spatial navigation memory. Yet, detrimental effects 

have also been reported. Indeed, in young adult Ovx rats, although daily injections of CEE 

increased hippocampal neurogenesis, this treatment was associated with memory 

impairments on the RAM (Barha and Galea, 2013). In this same study, CEE also increased 

numbers of new neurons; this increase correlated with worse maze performance among 

treated groups. Further, we have reported that CEE dose-dependently impaired working 

memory performance in middle-aged, Ovx rats, an effect possibly related to the ratio of 

circulating estrogens (Engler-Chiurazzi et al., 2011). Taken together, the findings regarding 

the neurobiological impact of CEE are inconsistent across several experimental models.

7.3.2. Feminizing estrogenic components of conjugated equine estrogen—
Feminizing estrogen components of CEE appear to exert their own neuroactive, yet not 

always neuroprotective, effects. E1 sulfate is the principle component of CEE and following 

treatment with CEE to peri- and post-menopausal women, and middle-aged, Ovx rats, 

circulating levels of E1 increase (Acosta et al., 2009a,b; Yasui et al., 1999). In addition, prior 

to menopause, endogenous E1 circulates in approximately a 1:1 ratio with 17βE2 (Rannevik 

et al., 1995). However, during the menopausal transition, levels of 17βE2 decline to a greater 

extent than do levels of E1, changing the circulating E1 to 17βE2 ratio to 2:1 (Rannevik et 

al., 1995). Thus, this large change in the circulating ratio of E1 to 17βE2 both due to aging 

and to HTs may have a significant impact on cognitive ability and neuroprotection and 

makes quantifying the neurobiological impact of this estrogen clinically relevant. In vitro 

work suggests protective effects with E1 treatment against cellular insult (Zhao and Brinton, 

2006). However, for most measures in which other estrogenic CEE components (e.g., equilin 

and delta8,9-dehydroestrone) were neuroprotective, E1 was less effective (Brinton et al., 

1997; Zhao and Brinton, 2006). In an in vivo behaving rodent, detrimental effects are 

observed. Indeed, unlike 17βE2 or another CEE component, delta8,9-dehydroestrone, E1 

dose-dependently failed to impact, and at some doses even impaired, aversive memory in the 

contextual fear conditioning task and spatial working memory among adult and middle-aged 

Ovx rats (Barha et al., 2009a; Engler-Chiurazzi et al., 2012; Talboom et al., 2010). Further, 

while chronic 17βE2 increased basal forebrain ChAT-immunoreactive neurons and number 

of bromodeoxyuridine (BrdU)-labeled neurons in the DG, substrates underlying memory 
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performance, chronic E1 does not impart these same changes (Engler-Chiurazzi et al., 2012; 

McClure et al., 2013). Thus, taken together, evidence suggests that E1 is not an optimal 

neuroprotectant nor an ideal component of menopausal HT and highlights that the type of 

estrogen contained in a HT formulation should be of primary consideration in the design of 

future treatments.

7.3.3. Non-feminizing estrogens—The use of non-feminizing estrogens holds promise 

as an alternative for the development of novel HTs (Petrone et al., 2014). 17 alpha-estradiol 

(17αE2) binds to each ER with a substantially lower affinity than does 17βE2 (Kuiper et al., 

1997) and likely does not stimulate peripheral reproductive tissues. In vitro, 17αE2 is as 

protective against the toxic effects of serum deprivation (Green et al., 1997) and oxidative 

stress as 17βE2 (Green et al., 2001). Further, 17αE2 is synthesized in the brain and thought 

to underlie the rapid membrane receptor-mediated actions of estrogen (Toran-Allerand et al., 

2005). 17αE2 protects against ischemic insult (Simpkins et al., 1997b), reduces Alzheimer's 

Disease-associated β-amyloid levels in transgenic mice (Levin-Allerhand et al., 2002), and 

improves cognitive outcomes including object, reference, and context fear memory (Barha et 

al., 2009a; Inagaki et al., 2010; Luine et al., 2003; Rhodes and Frye, 2006). These enhancing 

effects may be mediated by its demonstrated ability to increase DG cell proliferation (Barha 

et al., 2009b) and/or to increase hippocampal spine density (MacLusky et al., 2005). In some 

disease states, 17αE2 may even be more neuroprotective than its stereoisomer. Using a 

model of neonatal brain damage, McClean and Nuñez (2008) note that 17αE2, but not 

17βE2, attenuated memory impairments and reductions in hippocampal cell volume 

following muscimol treatment. Thus, the findings regarding beneficial effects of 17αE2 

suggest that feminizing ligand-ER interations may not be a pre-requisite for estrogen 

neuroprotection.

More broadly, the identification of the molecular characteristics necessary for the 

neuroprotective effects of 17βE2 represent an important strategy in the optimization of 

current and future HT options. Indeed, it is the phenolic structure of the estrogen molecule 

that is essential for the realization of protection against oxidative stress and serum 

deprivation (Behl et al., 1997; Green et al., 1997). Modifications to the molecular structure 

of endogenous parent estrogens, E1 or 17βE2, to minimize the detrimental stimulatory 

estrogenic actions in uterus and breast while simultaneously imparting neuroprotective 

effects have yielded promising results (Yi et al., 2011). In general, A-ring modifications such 

as the addition of bulky alkyl groups at the 2- and 4-carbon positions can enhance 

neuroprotection following a variety of in vitro insults (Perez et al., 2005a,b) as well as 

following cerebral ischemia in vivo (Perez et al., 2005a). Importantly, in these models, such 

modifications are more potent neuroprotectants than the parent 17βE2 molecule yet also 

substantially reduce binding to and activity at the ER. These findings suggest that these 

novel estrogen analogs impart their neuroprotective effects via their anti-oxidant activity or 

other mechanisms independent of the classical nuclear cascade (Perez et al., 2005b), 

representing a novel and effective therapeutic intervention approach for the treatment of 

menopausal symptoms and the prevention of injury-induced neuropathology.
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7.4. Estrogen dose, mode of administration, and regimen

In addition to the type of estrogen formulation selected, factors associated with the way in 

which the estrogenic treatment is administered are important clinical considerations; 

variations in estrogen administration can have meaningful impacts on the realization of 

neuroprotection. Indeed, several studies suggest that there is an optimal dose range for 

cognitive outcomes in rodents (Barha et al., 2009a; Holmes et al., 2002; Inagaki et al., 2010; 

MacLusky et al., 2005). As well, converging evidence suggests that the mode of treatment 

regimen (acute/cyclic versus chronic/continuous) can influence the effectiveness of the 

estrogen formulation. For instance, acute or intermittent injection regimens of 17βE2 impart 

neuroprotection in models of TBI and stroke and can enhance memory on multiple 

behavioral tasks (Bimonte-Nelson et al., 2006; Gresack and Frick, 2004; Luine et al., 2003; 

O’Connor et al., 2005; Roof and Hall, 2000). However, as shown in Tables 1–3, studies 

utilizing chronic treatment via continuous administration regimens do not always report 

beneficial effects. Differences in ER expression, with cyclic estrogen treatment facilitating 

ER recycling, and continuous estrogen treatment down-regulating ERs, indicate divergent 

neural mechanisms of action for distinct modes of treatment administration that likely 

impact the neurobiological effects of estrogens (Blaustein, 1993; Brown et al., 1996; Kassis 

and Gorski, 1981; Rosser et al., 1993). However, differences in methodological approach, 

such as injury model used, timing of estrogen treatment relative to assessment, or outcomes/

cognitive tests evaluated, could also account for lack of consistent beneficial estrogenic 

effects between studies. More work to clarify the unique impact of each of these factors is 

warranted.

7.5. Genetic sex

The recent change in National Institutes of Health funding guidelines to require the 

consideration as sex as a biological variable in new grant proposals highlights the 

importance of systematic investigation of sex differences in response to neuroprotective 

interventions. As such, a brief discussion of the actions of estrogens in the male is 

warranted. As has been shown among females, 17βE2 treatment in males can impact 

cognitive outcomes. For instance, continuous administration of 17βE2 enhanced delayed 

memory retention among adult and aged male rats (Luine and Rodriguez, 1994) and acute 

post-training 17βE2 injected directly into hippocampus enhanced reference memory MM 

performance (Packard et al., 1996). The protective effects of estrogen treatment in the 

context of brain injury also extend to males. Indeed, although castration of adult male rats 

did not alter stroke injury following reversible MCAO, treatment of 17βE2 to castrated 

animals reduced cortical and caudate infarct volume (Toung et al., 1998 but see Hawk et al., 

1998). As well, some of the earliest reports of estrogen use in rodent models of TBI 

suggested that 17βE2 could attenuate infract size and improve CBF of male animals 

(Emerson et al., 1993; O'Connor et al., 2005; Roof and Hall, 2000). Other estrogens and 

estrogen formulations also show promising neuroprotective effects in males. A single 

intravenous injection of CEE during reperfusion following MCAO reduced infarct volume 

(Toung et al., 1998) and increased CBF recovery (McCullough et al., 2001). Further, both 

CEE (Chen et al., 2009; Soustiel et al., 2005) and E1 (Gatson et al., 2012) significantly 

reduced insult-induced lesion size and apoptosis following TBI in young adult male rats. As 

of yet, there is a paucity of reports examining the neuroprotective effects of CEE or E1 in 
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both males and females following stroke or TBI. Investigations regarding the impacts of 

these unique estrogen types and formulations in both sexes are crucial to attaining a 

comprehensive understanding of the utility of estrogen as a neuroprotective agent (see 

Section 7.3).

8. Summary, conclusions, and future directions: from testes to today

As has been discussed in the preceding sections, there is ample empirical evidence to 

support the notion that sex hormones impact body and brain. As was shown in Berthold's 

caponized roosters, the loss of these hormones can have dramatic behavioral alterations. 

Since that time, the knowledge regarding the intricacies of reproductive control by the 

endocrine system and the interations between this system and other body structures, 

including the brain, has advanced substantially, leading to the growth of the women's health 

field and to the development of therapeutic interventions to modulate the physiological 

effects of shifts in hormonal milieu, such as those occurring during the menopausal 

transition. Some of these interventions have numerous beneficial impacts not only on 

symptomatic relief but may also provide protection against cognitive aging and brain 

trauma. Yet, sufficient evidence suggesting null or even detrimental neurological effects of 

some estrogen-containing formulations has led to uncertainty among basic scientists, 

clinicians, and patients regarding the use of estrogen-containing treatments for neuro-

protection and rescue of the damaged brain.

Deciphering the complexities of this important public health issue has proved a significant 

challenge for the field given the diversity of models, formulations, administration regimens, 

and outcome measures used to evaluate estrogenic action. Converging evidence presented 

here has identified a number of factors that impact the realization of beneficial effects of 

estrogenic treatments (Fig. 1). These factors can be divided into three broad categories that 

include: (1) subject factors, (2) treatment administration factors, and (3) treatment 

formulation factors. It is noteworthy that none of these factors can be considered in isolation 

as they likely interact to exacERβate or attenuate the actions of each other. As well, 

consistency and specificity of biological outcome measures across studies are crucial for a 

cohesive understanding of the actions of a particular estrogen-containing treatment. For 

example, administration of CEE, a formulation with mixed findings regarding its impact on 

memory, may not be sufficient to alter cognitive performance of a healthy perimenopausal 

woman. However, detrimental cognitive impacts of CEE could be compounded when it is 

administered to an elderly woman many years removed from spontaneous menopause. 

Further, these detriments may be especially prominent if the CEE treatment were 

administered chronically via non-optimal route or at an inappropriate dosage. Finally, these 

impacts may not be global but instead specific to certain performance domains. Thus, the 

actions of estrogen within the normal, aging, and injured brain are diverse, conditional, and 

contingent on a number of factors. Developing criteria standards for desired beneficial 

peripheral and neuroprotective outcomes while simultaneously avoiding detrimental 

stimulatory actions among unique patient populations will be an important future direction 

for the optimization of estrogen treatments within the context of cognitive aging and brain 

injury.
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Abbreviations

3NPA 3-nitropropionic acid

17αE2 17 alpha-estradiol

17βE2 17 beta-estradiol

ATP adenosine triphosphate

BBB blood brain barrier

BDNF brain-derived neurotrophic factor

BrdU bromodeoxyuridine

CA Cornu ammonis

CBF cerebral blood flow

CCL2 chemokine ligand 2

CEE conjugated equine estrogens

ChAT choline acetyltransferase

CNS central nervous system

DG dentate gyrus

DMP/DMS delayed match to position/delayed match to sample

DPN diarylpropionitrile

E1 estrone

E3 estriol

ELITE Early Versus Late Intervention Trial with Estradiol

eNOS endothelial nitric oxide synthase

ER estrogen receptor

ERα estrogen receptor-α

ERβ estrogen receptor-β

ERE Estrogen Response Element

ET-1 endothelin-1
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GPER1 G protein-coupled ER 1 (or GPR30)

HT hormone therapy

IGF insulin-like growth factor

iNOS inducible nitric oxide synthase

KEEPS Kronos Early Estrogen Prevention Cognitive and Affective Study

KO knock out

LTP long term potentiation

MCAO middle cerebral artery occlusion

MM morris water maze

MPA medroxyprogesterone acetate

mRNA messenger RNA

NGF nerve growth factor

NADPH nicotinamide adenine dinucleotide phosphate

NMDA N-methyl-D-aspartate

OC oral contraceptive

Ovx ovariectomy

pMCAO permanent MCAO

Premarin® CEE

Prempro® CEE + MPA

PPT propylpyrazole triol

RAM radial arm maze

RNA ribonucleic acid

ROS reactive oxygen species

SERMs Selective Estrogen Receptor Modulators

STAIR stroke therapy academic industry roundtable

SVZ subventricular zone

TBI traumatic brain injury

TJ tight junction

tMCAO transient MCAO
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TNFa tumor necrosis factor alpha

tPA tissue plasminogen activator

VCD vinylcyclohexene diepoxide

WEST Women's Estrogen for Stroke Trial

WHI Women's Health Initiative

WHIMS WHI Memory Study

WHIMS-Y WHIMS of Younger Women

WT wild type
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Fig. 1. 
Estrogen as a conditional neuroprotectant. Estrogen acts as a neuroprotectant whose 

biological actions are modulated by subject factors, treatment administration factors, and 

treatment formulation factors.
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Table 1

Effects of exogenous estrogen treatment on cognition in ovariectomized female rodents.
a

Estrogen Reference Age (months) Treatment regimen Dose Cognitive outcome Cognitive effect

17βE2 Luine et al., 
2003

2 Acute injection 15 μg/kg OR, OP Enhanced

Daniel and 
Dohanich, 
2001

2 Acute injection 10 μg RAM Enhanced

Gresack and 
Frick, 2004

6 Cyclic daily injections 0.1 mg/kg Water RAM, OR No impact

0.2 mg/kg Water RAM, OR Enhanced

Simpkins et 
al., 1997a,b Adult

b
Continuous

c Pellet 2-way AA, MM Enhanced

Bimonte and 
Denenberg, 
1999

2
Continuous

c 10 mm capsule 
(0.025 in ID)

Water RAM No impact

2 × 10mm capsules 
(0.025 in ID)

Water RAM Enhanced

Gibbs, 1999 5
Continuous

c 3 mm capsule (0.058 
in ID)

DMP + scopolamine 
challenge

Enhanced

Daniel et al., 
1997

2
Continuous

c 5 mm capsule (0.058 
in ID)

RAM Enhanced

Talboom et 
al., 2008

4 Continuous 0.25 mg; pellet MM Enhanced

16 Continuous 0.25 mg; pellet MM Enhanced

24
Continuous

c 0.25 mg; pellet MM Minor enhancement

Daniel et al., 
2006

12
Continuous

c 5 mm capsule (0.058 
in ID) at time of Ovx

RAM Enhanced

5 mm capsule (0.058 
in ID)

RAM No impact

5 months post-Ovx

CEE Barha and 
Galea, 2013 Adult

b Cyclic daily injections 10μg/0.10ml RAM Impaired

20 μg/0.10ml RAM No impact

Walf and 
Frye, 2008

13 Acute injection 0.625 mg/kg OR Enhanced

Acosta et al., 
2009a,b

13
Cyclic daily injections

d 10 μg/day MM, DMS Enhanced

20μg/day MM, DMS Enhanced

30μg/day MM, DMS Enhanced

Engler-
Chiurazzi et 
al., 2011

13 Continuous 12 μg/day; pump MM, DMS Impaired

24 μg/day; pump Water RAM, DMS Enhanced

36 μg/day; pump Water RAM, DMS Enhanced

E1 Barha et al., 
2009a,b Adult

b Acute injection 0.30 μg/.10ml Contextual 
Conditioned Fear 
Response

No impact

1 μg/.10ml Contextual 
Conditioned Fear 
Response

Impaired
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Estrogen Reference Age (months) Treatment regimen Dose Cognitive outcome Cognitive effect

10 μg/0.1 ml Contextual 
Conditioned Fear 
Response

No impact

McClure et 
al., 2013 Adult

b Cyclic daily injections 10 μg/0.1 ml MM Impaired

Engler-
Chiurazzi et 
al., 2012

13 Continuous 2.6 μg/day; pump DMS No impact

4.0 μg/day; pump DMS No impact

8.0μg/day; pump DMS Impaired

17αE2 Luine et al., 
2003

2 Acute injection 15 μg/kg OR, OP Enhanced

Barha et al. 
2009 Adult

b Acute injection 0.30 μg/.10ml Contextual 
conditioned fear 
response

Enhanced

1 μg/.10ml Contextual 
conditioned fear 
response

Impaired

10 μg/0.1 ml Contextual 
conditioned fear 
response

Impaired

Note: All outcomes described are compared to Ovx animals given vehicle.

a
See list of abbreviations for tests used.

b
Weights, but not ages, were provided.

c
Subcutaneous pellets or Silastic capsules were used. Doses listed, when provided in each reference, were based on approximate circulating 

estrogen levels after release. ID refers to inner diameter.

d
Injection regimen consisted of two days of treatment followed by two days off.
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Table 3

Effects of exogenous estrogen treatment on traumatic brain injury in ovariectomized female rodents.

Estrogen Reference Age (months) Injury mechanism Treatment regimen Dose Outcome Effect

17βE2 Roof and 
Hall, 2000 Adult

a Impact acceleration 
(500g from 1.5 m)

Cyclic daily injections 0.1 mg/kg Cortical blood flow Protection

O'Connor 
et al., 
2005

2 Impact acceleration 
(450g from 2m)

Acute injection 33.3 μg/kg Cerebral edema
Blood-brain barrier 
permeability

Protection
Protection

Roof et 
al., 1993

3 Controlled cortical 
impact (2.25 m/s, 2 
mm depth)

Continuous 5 mm capsule Cerebral edema No impact

Bruce-
Keller et 
al., 2007

2-3 Controlled cortical 
impact (3.5 m/s, 1 
mm depth)

Acute injection 10 μg/kg Cortical tissue 
sparing
Hippocampal 
neuronal injury

No impact
No impact

Microglial activation No impact

2-3 Controlled cortical 
impact (3.5 m/s, 1 
mm depth)

Continuous 10 mm Cortical tissue 
sparing
Hippocampal 
neuronal injury

No impact
No impact

Microglial activation No impact

Petrone et 
al., 2014

Adult Controlled cortical 
impact (3.0 m/s, 
1.2 mm depth)

Acute injection 100 μg/kg Cortical apoptosis Protection

Lebesgue 
et al., 
2006

Adult
a Lateral fluid 

percussion (2.4-2.9 
atm pulse)

Continuous 0.1 mg; pellet Hippocampal 
apoptosis
Hippocampal DNA 
damage

No impact
No impact

MWM No impact

Mortality Worsened

Note: All outcomes described are compared to Ovx, injured animals given vehicle.

a
Weights, but not ages, were provided.
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