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Abstract

Mathematical modeling has become a valuable tool that strives to complement conventional 

biomedical research modalities in order to predict experimental outcome, generate new medical 

hypotheses, and optimize clinical therapies. Two specific approaches, pharmacokinetic-

pharmacodynamic (PK-PD) modeling, and agent-based modeling (ABM), have been widely 

applied in cancer research. While they have made important contributions on their own (e.g., PK-

PD in examining chemotherapy drug efficacy and resistance, and ABM in describing and 

predicting tumor growth and metastasis), only a few groups have started to combine both 

approaches together in an effort to gain more insights into the details of drug dynamics and the 

resulting impact on tumor growth. In this review, we focus our discussion on some of the most 

recent modeling studies building on a combined PK-PD and ABM approach that have generated 

experimentally testable hypotheses. Some future directions are also discussed.
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Introduction

Mathematical modeling and computer simulation has increasingly gained popularity as a 

toolset for studying the mechanisms underlying carcinogenesis [1]. It has a wide range of 

applications that include predicting chemotherapeutic drug delivery, discovering potential 

drug targets, and simulating tumor growth and progression behaviors, among many others 

[2–4]. In particular, mathematical models allow scientists to gain insights into factors not 

easily observed in wet lab experiments, such as how cell-cell interactions influence the 

phenotypic transitions of neighboring cells on the individual cell level instead of a cell 

population level, as often observed in vitro. Many modeling approaches have been 

investigated and developed over the past two decades within the field of cancer research, 

including pharmacokinetic-pharmacodynamic (PK-PD) modeling [5–7], agent-based 

modeling (ABM) [8–13], hybrid modeling [14,15], and multiscale modeling [16]. Each 

approach has advantages and disadvantages, and the correct method must be chosen to gain 

the insight the modeler is searching for (see [17–19] for a detailed discussion on these 

topics). As modeling approaches become more advanced, hybrid models containing more 

than one approach have emerged, allowing for increasingly intricate descriptions of tumor 

cells and their environment.

PK-PD modeling is comprised of pharmacokinetics (PK), the study of the body’s effect on 

drug molecules, and pharmacodynamics (PD), the effect of drug molecules on the body. This 

modeling approach has become increasingly important especially in preclinical trials to 

support drug discovery and determine optimal dosing strategies. Thus far, the majority of 

current PK-PD models consists of systems of ordinary differential equations that describe 

the temporal response of a population (or multiple populations) of tumor and normal cells to 

a given therapeutic drug [5–7,20,21]. However, cancer is widely known as a heterogeneous 

entity (with regions of hypoxia, necrosis, quiescence, and proliferation) whose growth 

depends also on the changing microenvironment (such as oxygen, glucose, and pH 

gradients) and irregular vasculature structure [22]. Drug resistance sometimes occurs due to 

limited penetration of effective quantities of chemotherapeutic drugs deep into the tumor, 

caused by the fact that drug transport is mainly restricted to diffusion [23]. This implies that 

not only “time” but also “space” factors should be taken into account when investigating 

drug effects on the tumor. In this perspective, the PK-PD approach coupled with 

spatiotemporal tumor modeling is potentially more suitable for exploring drug dynamics and 

the resulting impact on tumor growth.

In this paper, we present a review of recent advances in PK-PD modeling integrated with a 

particular discrete-based modeling approach, i.e., ABM. As further discussed below, this 

integrated concept can provide modelers with advanced approaches to generate more 

complete models, which may provide new, additional insights into the details of the cancer 

system being investigated.

Wang et al. Page 2

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Modeling Methods

Agent-based modeling

ABM has been widely accepted as a useful tool in a variety of cancer research fields 

[11,12,24–35], as it offers many advantages over other methods in understanding cancer 

initiation, progression, and invasion mechanisms (for excellent reviews please see [1,17,19]). 

In particular, it is straightforward to use an ABM to examine the role of diversity in cell 

populations as well as within each individual cell and to determine the relationship of tumor 

behaviors between scales. In an ABM (and its variant, cellular automata [36]), each cell is 

often represented as an agent with unique properties and its own spatial coordinates 

[8,30,37]. Agents are subject to experimentally-inspired, computationally-coded rules that 

they must follow, such as two agents may not occupy the same space. Other rules determine 

agent behaviors and decisions, including if agents will replicate, enter quiescence, 

experience apoptosis or necrosis, undergo mitosis, or transition into a cancerous phenotype. 

Modeling each agent individually allows for inclusion of details at the cellular level, such as 

cell-cell interactions and autocrine and paracrine signaling events. Agents are often 

simulated in a background environment, where they glean information about their 

surroundings (including both cellular and environmental elements). An agent will then be 

able to determine its phenotype for the next step using a variety of computational 

techniques, ranging from neural network approaches [38], to random phenotypic transitions 

based on a determined distribution and the agent’s internal and external states [28], and even 

to include Monte Carlo techniques [39,40], all of which can be conducted in either two or 

three dimensions in space. Whenever possible, the agents’ decisions are based on 

experimentally measured data, whether in vitro or in vivo. For example, the concentration or 

total uptake of a chemotherapy drug necessary to kill a cancer cell can be measured in vitro; 

the agents query the surrounding environment to detect the local drug concentration: if it is 

above the known lethal concentration based on experimental results, it enters apoptosis/

necrosis. Information such as local oxygen, nutrient, and therapeutic drug concentration are 

often solved over the large scale background using numerical methods, including, e.g., finite 

difference [41], alternating direction implicit [42], or finite element methods [43–45]. The 

combination of different spatiotemporal scales in a model often results in a hybrid model, 

where multiple modeling techniques (such as discrete and continuum) are combined into one 

model.

Two methods of spatial representation for agents are commonly used: agents may be placed 

on a grid (i.e., grid-based), or allowed to move freely (i.e., grid-free), without the restriction 

of grid alignment [46]. Grid-based models only allow agents to occupy certain places on the 

grid, such as intersections of grid lines, whereas grid-free models permit agents to move and 

proliferate in any direction (as determined by the model’s rules), as long as there is sufficient 

space for the cell. In general, grid-free models allow for more accurate representations of 

physical cell packing, but may come at a cost of requiring longer simulation times for cells 

to achieve confluence [46]. These costs, however, are often outweighed by their benefits, 

including allowing modelers to generate more correct descriptions of physical phenomena. 

When a cell undergoes mitosis, it results in two smaller daughter cells with reduced radii 

relative to the parent cell (initially because each daughter is roughly half the volume of the 
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mother, but also to reflect the increase in packing pressure that corresponds to higher cell 

density). Cells in a grid-based model are uniformly distributed, making the size disparity 

difficult to describe while maintaining physical contact between agents. In models where 

mechanical effects, cell-cell adhesion, and crowding are important, off-grid models may 

therefore be a better choice [47]. However, for grid-based models, these limitations can be 

overcome by refining the mesh such that it is much smaller than the radius of an agent, 

without introducing a major computational cost, due to the highly computationally efficient 

nature of regular meshes [48].

ABM has also been successfully implemented by many research groups to examine the 

nature of tumor heterogeneity. Diversity in the tumor environment is linked to heterogeneity 

in the cellular states across the tumor, and ABM provides a convenient method to link this 

tumor heterogeneity to cellular response. Moreover, ABM is uniquely suited to modeling 

cellular-level cancer contributors [17], such as genetic mutation, epithelial to mesenchymal 

transition, cell-cell signaling (including interactions between heterogeneous cells), and 

individual cellular sensitivity to drug treatment. For example, an ABM work has shown that 

low genetic mutation rates often lead to tumor homogeneity and angiogenesis lowers 

competition between tumor cells [49]. Heterogeneous distribution of key signaling 

molecules may result in heterogeneous cellular states as well. Epidermal growth factor 

receptor (EGFR) heterogeneity in the tumor environment has been shown to have an impact 

on growth patterns, with higher EGFR receptor density even leading to transition from a 

proliferative to metastatic phenotype [50]. This indicates that tumor heterogeneity is a key 

contributor towards transition to and selection for more aggressive phenotypes, warranting 

the need for current and future study in this area.

A high degree of usability and widespread applicability of ABM has resulted in the 

development of a number of dedicated ABM software packages. Commercial software 

packages include AnyLogic and Matlab, while some of the more popular free packages 

include NetLogo, MASON, Java Swarm, Objective-C Swarm, and Repast (see [51] for a 

review). Other modelers prefer to code their own ABM, which is often necessary for 

implementation of multiscale models, as the computations for all scales considered can be 

included in one programing language. The many possible packages allow for versatility in 

implementing an ABM, where each modeler may choose the approach they are most 

comfortable with.

Pharmacokinetic-pharmacodynamic modeling

As stated before, PK focuses on determining concentration profiles and the fate of drug 

molecules in the body, while PD examines modifications in the body caused by the drug, 

which in the case of chemotherapy is desirably cancer cell death and inhibition of tumor 

growth. Employed heavily in the pharmaceutical industry, the rationale for PK-PD 

modelling is to quantify dose-response relationships, and subsequently describe and predict 

the time-course effect resulting from a drug dose [52]. PK-PD modeling often uses a 

translational approach to combine drug-specific and system-specific pathological, 

physiological, and pharmacological behavior to gain a more complete description of system 

response. Properties of model variables are described using a series of ordinary or partial 
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differential equations (ODEs or PDEs), and rate constants are quantified based on 

experimentally measured values whenever possible. While PK-PD refers specifically to drug 

molecules, the equations for describing the movement of other small molecules in the body 

(e.g., oxygen and glucose) and the body’s response to them can be described using similar 

(if not the same) equations.

Recently, PK-PD techniques have been expanded to describe the mechanistic behaviors of 

new types of anticancer therapies, such as antibody-drug conjugate molecules. These 

antibody-drug conjugates likely have more complex behaviors than more traditional drug 

molecules; PK-PD modeling is being used to unlock these mechanisms. These new 

approaches have successfully described trastuzumab emtansine (an antibody-drug conjugate 

(ADC)) efficacy, tumor conjugation, and tumor catabolism in HER2-oxerexpressing 

BT474EEI murine xenografts [53]. PK-PD modeling of ADCs has been shown to be 

effective for clinical applications as well, and was even able to predict responses to 

brentuximab-vedotin in Hodkin’s lymphoma patients [54]. Another group has developed a 

semi-mechanistic PK-PD model that accurately described therapeutic inhibition of cyclin-

dependent kinases 4 and 6 (CDK4/6, which play important functions in cell cycle 

regulations pathways) by LY2835219 (a potentially antineoplastic CDK4/6 inhibitor) and 

resultant cell-cycle arrest in murine colo-205 human colorectal xenografts, while also 

correctly predicting therapeutic efficacy in human melanoma A375 murine xenografts [55]. 

PK-PD modeling techniques are progressing to describe more complicated drug molecules 

and molecular signaling pathways, as well as including cell-cycle specific parameters and 

biomarkers. The PK-PD modeling field is actively growing in exciting directions, including 

hybridization with other modeling techniques, including ABM. For more information on the 

clinical directions of PK-PD modeling, the reader is referred to [56].

There is a distinct difference between system-specific and drug-specific mathematical 

descriptions [57]. In PK-PD modeling, transitional states of drug molecules are determined 

by using known rate constants (when possible), while rate constants that are not known or 

not easily determined via experimental means can be tuned through trial and error until they 

accurately recreate in the model behavior observed in vivo or in vitro. An example of this is 

drug diffusion from the blood. At the time of bolus drug injection, all drug is in the blood, 

and the system quickly responds to remove drug from the blood through renal excretion, 

biliary excretion, and hepatic update, rapidly lowering drug concentration in the blood. For 

example, high dose range bolus delivery of MTX has a half-life of only 2–3 hours [58]. The 

total concentration of the compound cannot exceed the amount injected into the system, as a 

drug molecule could be in the blood, or in the surrounding tissue, but not at both 

compartments at the same time. Efflux rates from the blood into the tumor are represented 

by a rate term in the PK-PD equations, and as time progresses during the initial drug 

treatment period and in the case of continuous drug infusion periods, more chemotherapeutic 

drug will move from the blood to the tumor. Other rates such as active drug uptake are also 

modeled, and the series of linked equations in PK-PD models can quickly become very 

complicated as more factors are included in the model (for an example, the reader is referred 

to [59]).
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The techniques of PK-PD modeling have been successfully implemented to study 

chemotherapy treatment effects on tumor. The well-known Norton-Simon hypothesis, i.e. 

that increasing the dose intensity may optimize the treatment effects by reducing tumor 

regrowth between chemotherapy cycles, was generated by a PK-PD model [60,61], and it 

was successfully validated in clinical trials later on [62]. More recent examples include 

prediction of chemotherapy drug efficacy using a murine model, which was later modified to 

human conditions [6], and a study on the effectiveness of 6-mercaptopurine treatment on 

acute lymphoblastic leukemia [63] based on a series of ordinary differential equations 

(ODEs) adapted from Mackey’s work [64]. Both models were calibrated to rate constants 

reported in the literature and to patient data. PK-PD has also been used to study drug 

interactions [21] and the effect of immune-stimulatory agents [65], which can often be 

additive (but may also lead to unintended interactions) as some chemotherapy drugs may 

stimulate the immune system as well [66]. Although PK-PD modeling is often accomplished 

through algorithms generated and programmed by the modeler, commercially available 

software such as ACSLXTREME (AEGIS Technologies) [67] and SAAMII [68] have 

emerged as modeling options as well, offering a diverse toolset for modelers to choose from.

Integrated ABM and PK-PD modeling

As modeling techniques move forward, hybrid multiscale approaches have emerged that 

combine attributes from multiple methods and spanning scales from whole tissues to cells, 

and even down into the molecular and atomic range [17,69]. PK-PD modeling provides 

information on the larger scale, while ABM functions on the cellular scale. Thus, these two 

approaches hybridize well (Fig. 1), with the PK-PD model providing information to agents 

in the ABM and agents contributing to and/or changing the parameters in the PK-PD 

component.

Commonly, PK-PD methods are used to model factors such as oxygen, nutrient, and 

chemotherapy drug influx into a tissue (although O2 is not a drug, the equations are similar 

and the numerical methods of solution are the same, i.e. both O2 and drug move through 

tissue by way of diffusion); these values are then passed on to the ABM. Agents use this 

information to make behavioral decisions, based on rules imposed by the modeler. In the 

case of cancer modeling, the PK portion of a hybrid model is often responsible for 

computing the chemotherapy drug concentration profile, which is transferred to the agents in 

the ABM. Each individual agent then decides if it will undergo necrosis by comparing the 

local drug concentration to a programed threshold for drug-induced cancer cell death from 

the PD portion of the model. Agents may be able to alter their response to the PD model, 

however; for example, cells may be able to evolve a more drug resistant phenotype. In this 

way, feedback between the different scale representations and mathematical solutions in 

these hybrid models allows computational biologists to achieve a more accurate description 

of tumor response to drug treatment and drug dynamics in both spatial and temporal 

domains.
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Major Hybrid Modeling Work

Discrete tumor modeling

A hybrid PK-PD ABM method was used to investigate the behavior of the bioreductive drug 

Tirapazamine [70]. Bioreductive drugs are targeted to the under-oxygenated region of the 

tumor through activation by specific reductases associated with hypoxia [71]. This complex 

model implements a neural network method adapted from Gerlee and Anderson [38] in 2D 

to describe a tumor in both proliferation and drug exposure stages. The agent-based tumor 

growth model includes cellular proliferation, death, quiescence, extra-cellular matrix (ECM) 

degradation, cell movement, and cell-cell adhesion. The PK-PD system consists of a series 

of PDEs describing drug concentration profile, nutrient distribution and consumption, and 

hydrogen ion production. The modelers found that even though bioreductive drugs 

specifically target the hypoxic region of the tumor, they do not diffuse far enough into the 

tumor to kill the entire hypoxic region. In their simulations, the chemotherapeutic drug was 

allowed to diffuse into the tumor via blood from the entire tumor perimeter, but 

concentrations are reduced towards the center of the tumor due to diffusion limits, hindering 

drug-induced tumor kill in that region. This is consistent with results from a series of recent 

mechanistic models of chemotherapy drug transport based on diffusion theory, which 

identified a direct correlation between blood availability of the drug and its efficacy of 

killing tumor cells [72–77]. This hybrid approach offers advantages over the separate 

modeling techniques: PK-PD modeling does not represent the movement of each individual 

cell, individual cell-cell adhesion and communication (i.e. paracrine signaling), nor does it 

track each cell’s influence on ECM (i.e. local ECM degradation), while ABM does not track 

quantities such as large-scale distribution of chemotherapy drug and signaling molecules 

(i.e. endocrine signaling). Combining both allowed modelers to determine that the drug was 

not able to reach the inner edge of the hypoxic region, partially due to consumption by 

agents as it diffused into the tumor. Thus, this hybrid model provided a more complete 

picture of the tumor environment than either modeling approach alone.

Leukemia treatment using cytosine arabinoside (Ara-C) in acute myeloid leukemia, with 

consideration of effects from circadian rhythm, was investigated in silico using hybrid PK-

PD and ABM [42]. In the ABM, cells are modeled as elastic spheres in 2D and are allowed 

to move off-grid. Pharmacokinetics of the Ara-C uptake and phosphorylation into its active 

form are described in detail using a system of equations that combines several Michaelis-

Menten terms to determine the amount of active drug in tumor cells. Ara-C acts by replacing 

natural nucleotides during DNA replication, preventing subsequent replication [78], which is 

taken to have a constant rate, so the pharmacodynamics are described using a linear 

equation. This work showed that the time dosage schedule plays a critical role in cell killing 

effectiveness, which was related to a resonance effect based on cell cycle length. Moreover, 

proper coordination between cell cycle length, stage and drug dose delivery can both 

improve cancer cell number reduction and patient tolerance. This in silico description of 

leukemia proved to be incomplete, however, as the modelers found that, when compared to 

published clinical results of chemotherapy in patients [79], the number of leukemia cells in 

the model was lower than measured in the clinic. The authors attributed this to the fact that 

their model only included one type of cell, while, in reality, leukemia affects more than one 
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type; the addition of the other types of cells to the model would likely increase the number 

of leukemia cells at the end of the simulation. In this way, the addition of agents to a PK-PD 

model resulted in findings that might have gone unnoticed without knowing the exact 

number of agents at every time step, leading the authors towards a more complete and 

accurate understanding of leukemia than would have been achieved with either modeling 

approach implemented separately.

The efficacy of angiogenesis inhibitors (AI), vascular disruption agents (VDA), and 

cytotoxic chemotherapy agents was investigated in glioblastoma multiforme [80]. A hybrid 

PK-PD ABM method was implemented using a Voronoi tessellation (a method of dividing 

the plane into cells such that the area of each cell contains all the points that are closer to the 

agent within it than to any other agent) to generate a distribution of agents, each representing 

a physical cluster of cells (7 glial cells per cluster). Within the agents, a series of uniform, 

parallel, straight blood vessels was generated using a modified Krogh cylinder model. The 

PK-PD portion of the model was implemented using a series of PDE algorithms previously 

described in [81]. It was found that AI restricted tumor size, and this effect was enhanced 

when AI was combined with a cytotoxic chemotherapy agent. VDA also helped to reduce 

the tumor size, but all treatments tested were insufficient to kill the rumor. The modelers 

observed good agreement between their simulated AI inhibitor treatment and clinical data 

[82], and the VDA treatment agreed with preclinical observations on VDA antitumor effects; 

but even so, the combination of both treatments could not kill the tumor. Tumors are a 

biologically complex environment, and as mentioned above, destruction or lack of 

vasculature can result in large portions of hypoxic or necrotic regions relative to the 

biologically active tumor region. By tracking each individual agent’s response to the PK-PD 

portion of the simulation, the modeler was able to identify and track these regions exactly, 

and to identify which part of the simulated tumor would not be killed by vasculature 

destruction, which would have been more difficult without the addition of agents to the PK-

PD model. Although these anti-angiogenesis agents were unable to kill the whole tumor in 

the simulations, they do suggest promising approaches to restrict tumor growth, which the 

author suggests may be better than attempting to kill the tumor in some cases, based on the 

work by Gatenby et al. [83,84].

Tumor resistance to the chemotherapy agent cisplatin was studied in silico by simulating the 

consequence of cisplatin resistance on tumor control [39] based on findings from an in vitro 

study by Sorenson et al. [85]. Tumors were simulated as ABMs, starting with a single cell 

and growing until the simulating tumor contained 105 agents. PK in the model simulated 

drug delivery, including bolus drug administration once a day for two weeks at a defined 

“clinical dose” concentration that resulted in 80% cellular arrest in the G2 phase. PD in the 

model included cellular response to drug, cellular phenotype alteration to increase drug 

resistance, and phenotype alteration to have a decreased tendency towards entering apoptosis 

in response to drug exposure. The authors found that, in the case of cisplatin, the quiescent 

cells are not killed efficiently (cisplatin crosslinks DNA, inhibiting mitosis; so cell division 

is required for cisplatin to kill cancer cells), indicating that a method of inducing the cells to 

move forward in the cell cycle would increase the efficacy of tumor kill. It was also found 

that drug resistance is cumulative, resulting in increased resistance to treatment efficacy. 

Inclusion of ABM with the PK-PD model allowed the modelers to track how drug resistance 
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in some cells was imparted into daughter cells, as well as keep track of the quiescent cells 

that were not susceptible to cisplatin. Additionally, a relationship between the percent of 

cycling cells and decrease in population was examined. These findings await further 

validation using experimental data.

A larger scale collaboration between individuals at eight institutions has led to the 

development of the ContraCancrum project, a multi-scale modeling effort intended to 

translate cancer modeling into the clinical setting [41]. The project is capable of simulating 

both cancer growth and response to therapy, and consists of three main parts: an ABM 

component, a molecular simulation component that describes both intra and extra-cellular 

regions, and a continuum reaction-diffusion model for the macroscale, which is solved using 

both explicit and implicit finite difference methods over a discretized mesh. The continuum 

model comprised of ODEs and PDEs is used to describe tumor growth, while the discrete 

ABM component is used to examine response to treatments, and provides modelers with 

spatiotemporal predictive information about the cellular mitotic potential, information that 

would not be readily available without representation of each agent individually. At each 

time step in the simulation, the PK-PD system is solved, in addition to computations related 

to metabolism, mechanics, and cytokinetics. Using clinical data, the modelers were able to 

compare their model results with clinically observed cancer behavior. More importantly, the 

interconnectivity of the ContraCancrum project allows for collaboration between modelers 

and doctors with patient data and imaging data, attempting to provide an approach for 

integrating models into the clinical setting in order to help design individualized treatment 

plans.

Continuum tumor modeling coupled with discrete angiogenesis modeling

In some cases, a full hybrid PK-PD ABM model is not the best choice for a model design. It 

may not be necessary to represent the entire tumor growth model with agents, especially 

when information about each agent is not known. In this case, models can be designed to be 

computationally more efficient by only modeling the regions of interests with agents, while 

representing the rest of the regions less granularly, i.e. as a continuum; note, however, that 

this may come at a cost of potentially missing some key information regarding cell-cell and 

cell-matrix interactions that occur outside those regions of interest. Lowengrub’s group has 

been using this technique to study tumor response to chemotherapy drug administration. We 

only introduce two of their most recent developments here.

A model for studying angiogenesis by modeling the tumor as a continuum and newly 

growing vasculature using ABM was designed to understand how interstitial fluid pressure 

(IFP) affects delivery of nutrients and other small molecules to the tumor environment [86]. 

The model expands on previous work [25,87–89], where the continuum model includes cell-

ECM interaction, ECM degradation, cell-cell interactions, and tumor cell proliferation, 

migration and necrosis. Angiogenesis was simulated as an ABM, which includes blood flow 

and vasculature network remodeling (branching, endothelial cell proliferation, and branch 

sprouting). ABM is especially well-suited for vasculature modeling, because modelers must 

keep track of the location of all new endothelium, a task which is inherently built into ABM. 

Representing endothelial cells as agents offers the additional ability to model interactions 
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between agents (in this example, modelers took into account ECM distribution and Notch 

signaling between endothelial cells), hence providing a more complete description of 

endothelial development.

The continuum and ABM models were coupled by (1) oxygen flow from the vasculature to 

the tumor, and (2) tumor angiogenesis factors for stimulating vasculature proliferation 

delivery to the ABM. The PK-PD model was represented by parabolic and elliptic PDEs, 

which were solved by backward Euler and centered finite difference methods. They found 

that elevated IFP led to a reduction in blood and lymph vessel radius, which limited the 

amount of new blood that could enter the tumor, resulting in decreased oxygen and small 

molecule delivery and increased hypoxia in the tumor. The model was then further modified 

to determine if the high IFP would also reduce therapeutic drug efflux into the tumor (also 

see Fig. 2) [90]. They found that the IFP profile in larger tumors is more homogeneous, but 

as the tumor shrinks in response to chemotherapy the IFP becomes non-uniform, slowing 

chemotherapeutic efficacy at later stages. Changes in blood and lymphatic vessel radial 

distributions [91] were also found to have effects on drug delivery. Dynamic changes to 

vasculature diameter are easily accomplished with ABM, as the location of each agent is 

simply shifted to a new position, making agents a natural choice for representation in this 

application. Using information the hybrid modeling approach made readily available, the 

authors conclude that optimization of both the vasculature conditions and IFP are ideal for 

optimum drug delivery to the tumor microenvironment, which is consistent with prior work 

on relevant topics [92,93]. In summary, with this combined spatiotemporal tumor growth 

and PK-PD modeling platform, a variety of tumor and microenvironmental properties 

relevant to drug delivery can be readily investigated in detail. For example, the effect of 

different types of drugs (implicating different drug-cell binding kinetics) and their dose and 

dosing schedules, either used alone or in combination, can be simulated in the heterogeneous 

tumor environment with the integrated model.

Discussion

We have presented a review of some of the major accomplishments achieved in the past few 

years using an integrated hybrid PK-PD ABM modeling approach. The examples included 

here are by no means inclusive, and have partially been selected because a special focus here 

is on PK-PD modeling of cancer. However, it should be noted that models for simulating 

cancer therapy typically implement a PK-PD concept, even when the term “PK-PD” is not 

specifically mentioned. Commonly, the PK component of the model, i.e. diffusion of 

nutrient, oxygen, drug, and other small molecules from the vasculature into the tumor is 

computed using some variation of Fick’s laws, employing diffusion or reaction-diffusion 

equations. These models must also address the PD aspect of modeling as well, as they need 

a method of computing how agents react to the surrounding conditions.

The complexity of cancer has made the use of mathematical modeling an active area of 

research. Although much has already been accomplished with PK-PD modeling, the future 

will see improvements and increases in complexity to allow even more information to be 

obtained from this approach. However, increased model complexity requires more data to 

describe the various processes involved. As such, when increasing the complexity of a 
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model, modelers need to recognize the problem of over-fitting the model to data [94]. A 

large number of models developed so far occur in 2D, which is suitable for many 

applications without being too computationally intensive. However, improvements in 

computational speed and the emergence of graphics processing unit based technology 

[95,96] have reduced limitations of computational ability, opening the way for more 

complex models. This is already occurring in the form of 3D modeling, as seen in the 

ContraCancrum project described above, and even as hybrid PK-PD ABM with finite 

element solutions of the PDEs [97]. Three dimensional modeling opens up the way for full-

tissue models, which may comprise whole organs or even organ systems. In fact, whole 

body PK-PD models are emerging [59], and it is likely whole body hybrid models will 

follow.

Overall, as models become more sophisticated, the gap between theoretical modeling and 

clinical applications will likely become smaller. The reader is referred to [69] for further 

discussion on clinically relevant ABM work. We are hopeful that modeling will ultimately 

provide a valuable tool for clinicians to designing individualized treatment plans in an effort 

to increase treatment efficacy and improve patient survival rates. However, challenges exist, 

as with any cancer modeling approach, and they start with data access, which is essential to 

advance this field [98]. For instance, sharing curated, consented patient data, needed to build 

more realistic and clinically more useful models, can be technically difficult and time 

consuming if multiple institutions are involved. Moreover, clinicians can be skeptical of the 

power of mathematical modeling, despite its scientific basis, strict adhesion to physical laws, 

inclusion of experimentally measured values (when known), and validation against in vivo 
data. Fortunately, this has started to change in recent years, as modelers continue to 

successfully compute behaviors and predict outcomes seen in the clinical setting [94,99].
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Figure 1. 
Schematic of how PK-PD and ABM approaches can be integrated in order to provide more 

information than using any approach alone in modeling cancer treatment. Briefly, PK-PD 

models provide information that can be transformed into computationally-coded rules or 

thresholds which, in turn, can be used to define how cancer cells change their phenotypes 

and how drug and cells interact, etc. in an ABM. The ABM can then be used to simulate the 

time- and space-dependent tumor response to drug treatment and drug dynamics (e.g., drug 

concentration profile).
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Figure 2. 
Examination of the interactions of chemotherapy drug delivery with heterogeneous tumor 

dynamics at approximately day 18 of the rescaled, simulated treatment. (A): control; (B): 

interstitial fluid pressure (IFP) with elevated tumor interstitial hydraulic conductivity; (C): 

IFP with elevated tumor vascular hydraulic conductivity. The IFP with elevated tumor 

interstitial hydraulic conductivity (B) decreases the drug concentration in and near the 

tumor. The IFP with elevated tumor vascular hydraulic conductivity (C) is larger than that of 

control due to excessive fluid extravasation, but the drug distribution is more heterogeneous 

compared to the control. Tissue Overlay display: tumor with viable tissue in red, hypoxic in 

blue, and necrotic in brown, with the pre-existing vasculature (brown rectangular gridlines) 

and neovasculature (irregular brown lines); IFP display: scale-bar, pressure in Pa; and Drug 

display: non-dimensional unit. Reproduced with permission from [90].
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