A homolog of *Escherichia coli* RecA protein in plastids of higher plants

(chloroplast/recombination/recA gene/DNA damage/DNA repair)

H. Cerutti[†], M. Osman, P. Grandoni, and A. T. Jagendorf[‡]

Section of Plant Biology, Cornell University, Ithaca, NY 14853

Contributed by A. T. Jagendorf, April 24, 1992

ABSTRACT Studies of chloroplast DNA variations, and several direct experimental observations, indicate the existence of recombination ability in algal and higher plant plastids. However, no studies have been done of the biochemical pathways involved. Using a part of a cyanobacterial *recA* gene as a probe in Southern blots, we have found homologous sequences in total DNA from *Pisum sativum* and *Arabidopsis thaliana* and in a cDNA library from *Arabidopsis*. A cDNA was cloned and sequenced, and its predicted amino acid sequence is 60.7% identical to that of the cyanobacterial RecA protein. This finding is consistent with our other results showing both DNA strand transfer activity and the existence of a protein of the predicted molecular mass crossreactive with antibodies to *Escherichia coli* RecA in the stroma of pea chloroplasts.

The observation of chloroplast DNA recombinants in somatic hybrids of higher plants (1), genetic studies of the inheritance of chloroplast markers in several crosses of *Chlamydomonas* (2–4), the integration of donor DNA by homologous recombination in chloroplasts of transformed *Chlamydomonas* (5), and extensive comparative analyses of chloroplast genome structure (6–9) indicate that DNA recombination occurs in chloroplasts of both higher plants and green algae. The biochemistry of any recombinational mechanism in chloroplasts is completely unknown, however.

It is generally accepted that plastids originated from cyanobacterial progenitors, acquired by an ancestral eukaryotic cell through an endosymbiotic event (10, 11). Therefore it seemed probable that any chloroplast recombination system should be related to a eubacterial counterpart. In Escherichia coli and many other prokaryotes, the RecA protein is essential for homologous recombination and for a variety of SOS responses to DNA damage (12-20). In searching for a possible higher-plant recA gene we used a cyanobacterial recA as a probe and found homologous sequences in nuclear DNA from pea and Arabidopsis thaliana. With the same probe we have cloned an Arabidopsis thaliana cDNA that encodes a protein highly homologous to eubacterial RecA, except for a predicted chloroplast transit peptide at its amino terminus.§ The likely expressed protein was detected in chloroplast stromal extracts by crossreaction with polyclonal antibodies to E. coli RecA protein.

MATERIALS AND METHODS

Materials. Standard laboratory chemicals were purchased, unless otherwise noted, from Sigma. Purified RecA protein was obtained from United States Biochemical. Cellulysin and Macerase were from Calbiochem. Horseradish peroxidaseconjugated goat antibodies to rabbit IgG, and a chemiluminescent substrate, were from Amersham.

Isolation of Stroma from Intact Chloroplasts and Immunodetection of a RecA Protein. Protoplasts were prepared from leaves of Arabidopsis or pea by digestion with 3% (wt/vol) Cellulysin and 0.5% (wt/vol) Macerase. Intact chloroplasts were isolated by passage of washed protoplasts through a nylon mesh (10- μ m pore size) for disruption, followed by centrifugation of the homogenate on discontinuous Percoll gradients (21). Chloroplasts were broken by osmotic lysis and thylakoid membranes were removed by centrifugation. The supernatant was concentrated by acetone precipitation to give the chloroplast stromal fraction. Potential bacterial contamination was tested by plating aliquots of isolated protoplasts or chloroplasts on LB medium (22). Proteins from the different fractions were separated by SDS/polyacrylamide gel electrophoresis, transferred to nitrocellulose, and probed with two polyclonal rabbit antisera to RecA protein from E. coli strain K-12. Detection was by means of goat anti-rabbit IgG antibodies conjugated to horseradish peroxidase, and a chemiluminescent substrate. In some cases, the enzyme was inactivated by incubation in 15% (wt/vol) H_2O_2 and the blot was reprobed with an antibody against the γ subunit of CF1.

DNA Isolation and Probing with a Cyanobacterial recA Gene Fragment. Total DNA was isolated from Arabidopsis leaves by a miniprep procedure (R. L. Last, personal communication). Isopycnic CsCl centrifugation (22) was used for the purification of total DNA from pea leaves and of chloroplast DNA from intact pea chloroplasts. Standard procedures were used for digestion, electrophoretic separation, and transfer of the DNA to nylon membranes (22). The filters were probed with a ³²P-labeled BstEII fragment comprising the 5' half of the coding sequence (23). Prehybridization was at 70°C for 6 hr and hybridization was at 60°C overnight (24). Filters were washed three times for 1.5 hr with 2× SSC/0.1% SDS (22) at room temperature, then three times in 0.2× SSC/0.1% SDS at 50°C for another 1.5 hr. The membranes were exposed to Kodak XAR-5 film with an intensifying screen.

cDNA Cloning and Sequencing. A cDNA was isolated by screening $\approx 300,000$ members of an Arabidopsis library in the λ YES vector (25), using as probe the Synechococcus recA gene (23). The bacteriophages were plated on an *E. coli* strain deleted for recA (JC 10289, ref. 26). Standard procedures were used for library screening (22). After subcloning into pBluescript (Stratagene), nested deletions were generated and the DNA was sequenced on both strands by the dideoxy chain-termination method using T7 DNA polymerase (22). The sequences were analyzed with the Genetics Computer Group software package (27).

Protoplast Treatments. Protoplasts (10 ml, 10⁶ protoplasts per ml) in liquid LP* medium (28) were placed in 9-cm Petri

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

[†]Present address: Department of Botany, Duke University, Durham, NC 27706.

[‡]To whom reprint requests should be addressed.

[§]The sequence reported in this paper has been deposited in the GenBank data base (accession no. M98039).

dishes. Mitomycin C was added to the desired concentration, and protoplasts were incubated for 12 hr in the dark. Intact protoplasts were reisolated by flotation, and proteins were extracted and analyzed by Western blotting.

RESULTS

Detection of a Protein in Chloroplast Stroma That Is Immunologically Related to E. coli RecA. An immunoblotting technique was used to detect Arabidopsis proteins related to RecA (Fig. 1a). Nonimmune serum did not reveal any bands (data not shown). Two polyclonal antibodies raised against E. coli RecA crossreacted with three protoplast proteins. Two of them are soluble chloroplast proteins detected in the stromal fraction (Fig. 1a). The apparent molecular mass of the faster moving stromal protein is 40.5 kDa, almost identical with that of E. coli RecA (Fig. 1a). Similar proteins were also identified in pea chloroplasts (Fig. 1b). Consistent with the presence of RecA in chloroplasts, we detected DNA strand exchange, an essential activity of E. coli RecA (12, 14), in crude stromal extracts from pea (H.C. and A.T.J., unpublished work).

Induction by DNA Damage. It has been argued that the primary biological role of recombination is the repair of DNA damage (29). Exposure of *E. coli* to DNA-damaging agents induces the SOS response, resulting in derepression of ≈ 20 genes (including *recA*) (12–20). The RecA protein is involved in multiple aspects of this response: regulation of gene induction by promoting cleavage of the LexA repressor (13, 15, 19, 20), recombinational repair (13, 14, 19, 20), SOS mutagenesis (13, 16, 19), DNA replication (13, 17), and duplication mutagenesis (13). In other organisms, genes involved in DNA repair/recombination are also induced in response to DNA damage (19, 30).

To see whether DNA-damaging agents would affect expression of the proteins immunologically related to RecA, pea protoplasts were incubated with mitomycin C. Mitomycin C is a bifunctional alkylating agent that forms interstrand crosslinks (15, 31), presumably requiring a recombinational pathway for repair (29). The treatments increased the steady-state level of the chloroplast crossreacting protein similar in

FIG. 1. Detection of proteins immunologically related to *E. coli* RecA in *Arabidopsis thaliana*. (a) Lane 1, protoplast fraction; lane 2, chloroplast fraction; lane 3, chloroplast stromal fraction (half the amount of protein loaded in lanes 1 and 2); lane 4, purified *E. coli* RecA protein. (b) Mitomycin C induction in the steady-state level of the chloroplast protein similar to *E. coli* RecA. This protein is slightly smaller in pea (39 kDa) than in *Arabidopsis*. Pea protoplasts were incubated for 12 hr in the presence of 0, 6, 15, or 30 μ M mitomycin C (lanes 1–4, respectively), before protein isolation. (c) The same blot shown in *b* was reprobed with antiserum to the γ subunit of the chloroplast ATP synthetase, a nuclear-encoded chloroplast protein similar in size to RecA. This protein was not induced by DNAdamaging agents and served as a control for the proper loading of the lanes.

molecular mass to RecA, suggesting its involvement in DNA repair/recombination (Fig. 1b). The same blot was probed with an antibody against the γ subunit of the chloroplast ATP synthetase as a control for the proper loading of the lanes (Fig. 1c). Further details of the induction will be described elsewhere (H.C., H.-Z. Ibrahim, and A.T.J., unpublished work).

Homologous DNA in Higher Plants. Blot hybridization of restriction enzyme-digested genomic DNA revealed sequences homologous to the Synechococcus recA gene (23) in pea and Arabidopsis (Fig. 2). However, we were unable to detect any hybridization to purified chloroplast DNA (Fig. 2) or mitochondrial DNA (data not shown). Homology to recA has not been found in the completely sequenced chloroplast genomes of tobacco (32), Marchantia (33), or rice (7). Moreover, induction of the stromal protein was prevented by protein synthesis inhibitors acting on cytosolic (80S) ribosomes, also suggesting a nuclear localization for this gene (data not shown).

A recA Gene in Arabidopsis thaliana. Using the Synechococcus recA gene (23) as a probe, we screened an Arabidopsis cDNA library and cloned a gene showing extensive homology to eubacterial recA. The cloned cDNA was sequenced by standard techniques. Polymerase chain reaction analysis showed that this was the longest cDNA in the library encoding the RecA protein (data not shown). Although the cDNA is truncated at its 5' end (Fig. 3a), it is long enough to reveal the features of the encoded protein. The amino terminus shows no similarity to bacterial RecA sequences and is probably a chloroplast transit peptide (Fig. 3b). Chloroplast transit peptides are not highly homologous, except for a loosely conserved motif at the cleavage site for the stromal processing protease (35, 36). The deduced amino acid sequence contains a perfect match to this consensus cleavage site (Fig. 3a). When such a match is found, it is predicted to specify the correct cleavage site with 90% probability (35). The sequence upstream of the putative cleavage site is enriched for serine and threonine (29.5%) and is almost devoid of acidic residues (2.0%). It also lacks predicted secondary structures except for two relatively small regions, one of them an amphiphilic β -strand next to the cleavage site (data not shown). These are typical features of chloroplast

FIG. 2. Southern blot showing sequences related to Synechococcus recA in genomic DNA from Arabidopsis and pea. Lanes 1 and 2, total Arabidopsis DNA (1 μ g); lane 3, total pea DNA (8 μ g); lane 4, pea chloroplast DNA (1 μ g). Restriction enzymes: H, HindIII; P, Pst I. Size markers are in kilobases (kb).

а

1	GAT	TCA	CAG	CTA	GTC	TTG	TCT	CTG	AAG	CTG	AAT	CCA	AGC	TTC	ACT	CCT	CTT	TCT	CCT	CTC	TTC	CCT	TTC	ACT	CCA	TGT	TCT	TCT	TTT	TCG	CCG	TCG	стс	CGG	TTT
-51	Asp	<u>Ser</u>	<u>Gln</u>	Leu	Val	Leu	Ser	Leu	<u>F78</u>	Leu	Asn	Рго	<u>Ser</u>	<u>Phe</u>	<u>Thr</u>	Рго	Leu	<u>Ser</u>	<u>Pro</u>	Leu	Phe	<u>Pro</u>	Phe	<u>Thr</u>	Pro	<u>Cyre</u>	Ser	Ser	<u>Phe</u>	<u>Ser</u>	<u>616</u>	Ser	Ley	Arg	<u>Phe</u>
104	101	101				~~~	~~~		***		~~~						<u>ل</u>					~~~							~~~						
-16	Ser	Sec	160	TVC	Sec	Aca	Aca	1.00	TVP	Sec	Dec.	Vel	The	USC .	The		41.0	AA6	1.00	1.00	Fee	LAL	1.000	ALC	All	1UI Con	GI	Dhe	GA1	Ann	Alan	AIG	ANC	614	600 I
- 10	261	361		120	361	AL N		Leu	TH.	261	<u>PT0</u>		TUL		LT.	<u></u>	ALO	LYS	Lys	Leu	261.	113	Lys	116	961.	961.	ulu	rite	хер	мер	AIT	ILE	ABR	uly	ALB
211	стс	TCT	CCC	GAC	GCT	GAT	TCC	CGC	TTC	стс	GAC	CGC	CAA	AAG	GCT	TTA	GAG	GCA	GCT	ATG	AAT	GAC	ATT	AAC	AGT	TCA	TTT	GGT	***	GGA	AGT	GTA	ACA	AGA	TTG
20	Leu	Ser	Pro	Asp	Ala	Asp	Ser	Arg	Phe	Leu	Asp	Arg	Gln	Lys	Ala	Leu	Glu	Ala	Ala	Net	Asn	Asp	Ile	Asn	Ser	Ser	Phe	Gly	Lys	Gly	Ser	Val	Thr	Arg	Leu
316	GGG	AGT	GCT	GGT	GGA	GCA	TTA	GTG	GAG	ACC	TTT	TCG	AGT	GGT	ATT	TTG	ACT	CTT	GAT	CTT	GCT	TTA	GGT	GGA	GGC	CTA	CCA	AAG	GGT	CGG	GTA	STC	GAA	ATA	TAT
55	Gly	Ser	Ala	Gly	Gly	Ala	Leu	Val	Glu	Thr	Phe	Ser	Ser	Gly	Ile	Leu	Thr	Leu	Asp	Leu	Ala	Leu	Gly	Gly	Gly	Leu	Pro	Lys	Gly	Arg	Val	Val	Glu	Ile	Туг
421				ACT	ACT			400					-	007			~		~~~			~~~	~~~						CAT	~~	***	-	~~~		
90	GUN	Pro	610	Ser	Ser	GIV	Ive	Thr	Thr	Lau	Ala	1.000	Nie	Ala	11.	Ala	GLU	Vel	Gin	I ve	1.001	GIV	GUL	Aen		Het	1.001	Val	Arn		Ciu	UNI Nie	Ala	Phe	Aen
	,					,	-,-					200								- ,-		,	,						, and the						nep.
526	CCA	GCG	TAT	тст	***	GCA	TTA	GGT	GTT	GAT	GTA	GAA	AAT	TTG	ATA	GTG	TGC	CAG	CCA	GAT	AAT	GGC	GAG	ATG	GCT	TTA	GAA	ACT	GCA	GAC	CGT	ATG	TGT	CGC	TCA
125	Рго	Ala	Tyr	Ser	Lys	Ala	Leu	Gly	Val	Asp	Val	Glu	Asn	Leu	Ile	Val	Cys	Gln	Pro	Asp	Asn	Gly	Glu	Met	Ala	Leu	Glu	Thr	Ala	Asp	Arg	Net	Сув	Arg	Ser
631	GGT	GCG	GTT	GAC	CTT	ATA	TGT	GTT	GAT	TCT	GTT	TCA	GCA	CTT	ACT	CCA	CGA	GCT	GAG	ATT	GAA	GGT	GAG	ATT	GGA	ATG	CAG	CAA	ATG	GGT	TTG	CAA	GCT	CGT	CTT
160	Gly	Ala	Val	Asp	Leu	Ile	Cys	Val	Asp	Ser	Val	Ser	Ala	Leu	Thr	Pro	Arg	Ala	Glu	Ile	Glu	Gly	Glu	Ile	Gly	Het	Gln	Gln	Het	Gly	Leu	Gln	Ala	Arg	Leu
734	ATC	ACT	-	CCT	CTT	COT		ATC	TCA	GCA		600	тет		667	666	TOT	ACT	CTT		TTC	CTA		-	AT 8	AGA	TAC	-	ATT	CCT	CTC	TAC	TAT	666	AAT
195	Met	Ser	Gln	Ala	Leu	Arg	LVB	Met	Ser	Glv	Asn	Ala	Ser	LVS	Ala	GLV	Cvs	Thr	Leu	Ile	Phe	Leu	Asn	Gln	Ile	Ang	Tyr	Lys	Ile	GLV	Val	TYT	Tyr	GLY	Asn
							-,-							-,-		,																			
841	CCA	GAG	GTG	ACT	AGC	GGA	GGA	ATT	GCG	TTA	AAG	TTC	TTC	GCG	TCG	GTC	CGT	CTA	GAA	ATT	CGT	TCT	GCT	GGG	AAG	ATC	***	TCT	AGC	AAA	GGG	GAT	GAA	GAT	ATT
230	Pro	Glu	Val	Thr	Ser	Gly	Gly	Ile	Ala	Leu	Lys	Phe	Phe	Ala	Ser	Val	Arg	Leu	Glu	Ile	Arg	Ser	Ala	Gly	Lys	Ile	Lys	Ser	Ser	Lys	Gly	Asp	Glu	Asp	Ile
																												•••							
940	GGT	CII	CGG	GCT	CGI	GIA	AGA	GIG	CAG	AAG	AGC	AAG	GII	TCA	AGA	CCG	IAI	AAG	CAA	GCA	GAG	111	GAG	ATT	AIG	111		GAA		GIC	Alii	***	CIG		TIGC
200	uly	Leu	Arg	ALG	Arg	val	Arg	val	uin	Lys	Sel.	Lys	val	361.	Arg	Pro	1 yr	Lys	นเก	ALG		Pile		110	Her	PTHE	uty		uly	vel	361.	Lys	Leu	wty	LYS
1051	GTT	стт	GAT	TGT	GCT	GAA	ATT	ATG	GAA	GTT	GTG	GTC	AAG	***	GGT	TCC	TGG	TAC	AGC	TAC	GAA	GAC	CAA	AGG	стс	GGG	CAA	GGA	AGA	GAG	***	GCA	CTG	CAG	CAC
300	Val	Leu	Asp	Cys	Ala	Glu	Ile	Net	Glu	Val	Val	Val	Lys	Lys	Gly	Ser	Trp	Туг	Ser	Туг	Glu	Asp	Gln	Arg	Leu	Gly	Gln	Gly	Arg	Glu	Lys	Ala	Leu	Gln	His
1156	TTA	AGG	GAA	AAC	CCT	GCT	CTT	CAA	GAC	GAA	ATT	GAG	AAG	***	GTG	AGA	TTG	TTG	ATG	TTA	GAT	GGA	GAA	GTT	CAT	CGA	TCA	ACT	CCT	TTG	ATG	AGC	AGC	AGC	TCT
335	Leu	Arg	Glu	Asn	Pro	Ala	Leu	Gln	Asp	Glu	Ile	Glu	Lys	Lys	Val	Arg	Leu	Leu	Net	Leu	Asp	Gly	Glu	Val	Nis	Arg	Ser	Thr	Pro	Leu	Net	Ser	Ser	Ser	Ser
1261	TCC	100	607	TCA	-		CAA	C.8.4	GAA	CAA	GAA	CAC	TCO		GAC	CAT	TTC	-	TGA	-		CTT4	ACCT	TGAC		1000	1107	ITCC	ATCT/		CACT			 TCTC	ATCA
770	500	Fen	الي ي ملقا	500		400		ciu	clu	C Lu	ciu	Aen	Sen	1.000	Ann	Aco	Dhe	Cin.	. den	un												. 431	1119	1410	
510	96L	ser	718	961.	n18	Arg	uu	elu	alu	atu	atu	лар	961.	Leu	лар	лар	-16	etn																	
1381	тет			 TCTT	TCAN		r																												
1301	101		~!!!!	18.1			•																												

D	-4535	
Con	FGKG G L A G GG E	GPES GKTT
At:	DSQLVLSLKLNPSFTPLSPLFPFTPCSSFSPSLRFSSCYSRRLYSPVTVYAAKKLSHKISSEFDDRINGALSPDADSRFLDRQKALEAAMNDINSS	Y S L
Ssp:	MSAISNNP.KENLVL.Q.ERN AIM D.AQ-MK.A.IPAQ.M - F.RI.	V
Av:	MAINTDTSGKTMVL.Q.ER. AIM D.TR-MRI.T.A	V
Bf:	.DK.EKIMKM- EEVV-EQVIPT.SIA NA . V Y.RII.	• • •
Bs:	MSA.DM.LKQ.EKQ	V
Am:	MVSQ.ERA .IMK GKDQVVET.VV.TRG .V . 1 V.R11	
Ng:	MSD.KSA.LAQ.EK. AIMKMD.GOUETENL.VIII.S.GV .KK.I.	r
Mf:	MDEN.SA.LEQU.EKU	
Bp:		
PC:	MIAENSA.LAWLENW .IN.M DUCAMEDIAVY.I.S.G.I.S. M. I.	
EC:		ATP Hyd.
	105	
Con	A EADYLG L P D DSVALPEEGG GARMSAR FNGRK GPELGGALK	FSVK
At:	ALKAT EVOKLEGNAMLVDA H F PA SKA VDVEN TVCO DNGEMALETADRICKSGAV LTCV S T KA T ET MUUM LU L G L KNSUNSKAGULTI L TTTTAVTTA V S T	Y D
Ssp:		Y D
AV:		Y D
BT:	ALL ALLAFIL FREAM TO TRANSFER TO TRANSFER TO A TRANSFER TO	YS V
BS:	TA V TAE SADY ALDE TEE A O T TIV D VIV A V CI WONH H LT.SV SKTIV T M MF. TT N	Y. M.
Max	C E V OC N VCAE V ARK K EVIS T O IC TIV CI MUV A VK DM DSHV	YS .D.
Mg.	T SV OM T AFT I V ADK N SD IIS T O I MIV S VVV A K. M DSH	YD.
Bp:	T. QV. MTCAF	YS .D.
Pc:	T.QV. LT.AFI L VQ AAK .N.PE LIST.QIT.ALVSI M.VI A VKM DSLPLT.TIKRTN.LV. I . MMF. T. N	YS .D.
Ec:	T.QV. AA.RE.KTCAFI	YD.
	Nucleotide binding	
	285 277 285 285 205 715 715 275 275 275 375 375 385	IDENTITY
Con		
At.	CACHT SCHORED TO BARUP O SKYCE WOAFFEMEE VSKI GOVI DOAF IMEVVVKK SY POORI G REKALOHI RENPALODE TEKKVRL LNLDGEVHRSTPLMSSSSSASHREEEEEDSLDDFO	100.0 %
Sen.	PIGTI SCASEFI K KAN AP FRI. DI KIRV. M.L. OTG ITR. A. GDNIA .DN.VKY.EDVAAIVTGENLDMSSMGFGDEHNTTEEE	60.7 %
Av:	RIGTI TDEF N. VK.K.A.N. AP FRID.I. KTLV.L. ETGILLR. A. NGDNIS .DN.IKY.E.K.EFAEQ.KQQ. EKLDK.A.VSANSVAKANEEDEEDVDLD. E	55.1 %
Rf:	GSQQD.E.V. KQTK.K V N. AP FRKD I.HS.EII.LGADLGIIK.S N.TK JA.K.CIADE.AE.L.GLIFEKLREHK	57.0 %
Bs:	R.EQLQ.NDVM NKTKIK V N.AP FRT.VD Y . I.E.EII.LGTELDI.Q.SEEK.F.K.KDIMLM.QEQI.EHYGLDNNGVVQQQAEETQEELEFE.	54.3 %
Am:	RV.A. DRVV NQTKV N.LAP F.VVD.D.Y. IM.ELI.LGVKAN.K.S.A F NST.IN.K.F.DMAAGAI.QNAGLISEALAAVPDLDGTPV.E	56.5 %
Ng:	RT.SE.VL NETK.IN.AP FRD.LY. I.WE.ELI.IGVKNDIIN.S.A. NGAKI. KDNVRVW.KEISDA.I.A.NGVEMHITEGTQDETDGERPEE	53.8 %
Mf:	RT.AVT SETK V NN.AP F.LD LY I. I.RE.EIIELGVNLKLIE.A A . KGEKI. KDN.REFH.EIANDA.I.EHSNLANAAMT.APDEE.DE	55.4 %
Bp:	RI.AVV NET.K VN.AP FD Y S I.RE.EII.LGVQAND.S A. SGN.I. KDNVREY.K.HKEMAINENGGIVSRAATF.ASEAEDGE	54.2 %
Pc:	RI.SI N.V. NET.K VN PFRE.I.D LY . I.RQ.EII.LGVQAKI.D.A A . NGEKI. KDN.REFEIARNRI.ESLGVVAMPDGAGHEAEAMDEEE	55.4 %
Ec:	RI.AV E.ENVV SET.K WW. IAAFQ Y . INFY.ELV.LGVKEKLIE.A A. KGEKI. KAN.TAW.KDETAKE.LSNPNSTPDFSVDD.EGVAETN.DF	52.0 %
	DNA Binding	
	Nucleotide binding	

FIG. 3. Nucleotide and deduced amino acid sequences of a cDNA encoding the A. thaliana RecA protein. (a) The truncated cDNA contains a continuous open reading frame starting at its 5' end. The stop codon (star) is followed by sequences with 75-80% homology to elements implicated in efficient polyadenylylation of plant mRNAs (34) (dotted lines). The amino acid sequence contains a putative chloroplast transit peptide (underlined residues) with a perfect consensus cleavage site (35) (box). Amino acids are numbered from the predicted start of the mature protein (arrow). (b) Comparison of the amino acid sequences of Arabidopsis RecA and several eubacterial homologs. Numbering of residues starts at the predicted cleavage site (arrow) for the chloroplast transit peptide in the Arabidopsis sequence. Invariant amino acids (row labeled Con) were determined by the alignment of 22 sequences (14, 23) (GenBank release 69 and this work) and are indicated by shaded areas. Dashes represent gaps introduced to optimize alignments. Dots indicate residues conserved with respect to the Arabidopsis sequence. Postulated functional domains in E. coli RecA (12) are shown below the sequence. Potential caveats on these assignments have been discussed (12, 14). At, A. thaliana; Ssp. Synechococcus sp.; Av, Anabaena variabilis; Bf, Bacteroides fragilis; Bs, Bacillus subtilis; Am, Aquasprillum magnetotacticum; Ng, Neisseria gonorrhoeae; Mf, Methylobacillus flagellatum; Bp, Bordetella pertussis; Pc, Pseudomonas cepacia; Ec, E. coli. transit peptides (35–37) and strongly support that identity for the first 51 amino acids of the truncated sequence.

The mature protein is predicted to be 387 amino acids long (Fig. 3a), with a calculated molecular mass of 41.8 kDa. This is close to the apparent molecular mass of the faster moving protein identified in the chloroplast stromal fraction (Fig. 1a). The amino acid sequence shows 60.7% overall identity with the Synechococcus protein and 52-57% identity with 20 other prokaryotic RecA proteins, 10 of which are shown in Fig. 3b. The amino and carboxyl termini are poorly conserved (Fig. 3b), although they may have functional significance (12, 14). Interestingly, the carboxyl end is enriched for acidic residues in almost all species analyzed (Fig. 3b). Although this sequence is more divergent than any of the eubacterial RecA proteins found to date, predicted functional domains of the E. coli protein (12, 14, 16, 18) are largely conserved (Fig. 3b). Amino acids known to cause recombination deficiency when altered in E. coli RecA (12, 14, 16, 18) are invariant in the Arabidopsis sequence. However, residues affecting preferentially co-protease activity (12, 14, 16, 18) and/or causing hyper-recombinogenic phenotypes (12, 14) are not so well conserved in the Arabidopsis gene. Since this gene is now located in the nucleus of a eukaryote, it is tempting to speculate that it has acquired a different regulatory system and it is able to evolve independently of LexA.

Table 1. Codon usage in *A. thaliana* nuclear genes encoding chloroplast proteins and several eubacterial *recA* genes

Genes*	CGN/AGR ratio [†]	Codon usage distance [‡]
EPSP synthase [§]	0.62	5.07
Tryptophan synthase	0.47	6.28
Acetolactate synthase	1.36	6.48
Cs gene	0.33	6.42
Rubisco activase	0.91	6.88
Average¶	0.74 ± 0.41	6.22 ± 0.68
Arabidopsis recA	1.56	6.87
Anabaena recA	5.00	10.78
Synechococcus recA	8.50	11.39
Escherichia recA	œ ll	15.82

By Spearman's rank correlation coefficient, the CGN/AGR ratio and codon usage distance are correlated with each other (r = 0.88; P < 0.005).

- *In plant genes (first six listed), sequences corresponding to the mature proteins were used for the analysis (i.e., introns and chloroplast transit peptides were excluded). References for the *Arabidopsis* genes are listed in ref. 41. The Cs gene codes for a chloroplast protein of unknown function. The eubacterial *recA* genes were obtained from GenBank (release 69).
- [†]Arginine coding ratio, where N = A, C, G, or T, and R = A or G (40).
- [‡]Determined by a modification of a published procedure (38). Briefly, synonymous codons differing only in their third nucleotides were grouped. Termination codons and single codon groups (methionine and tryptophan) were excluded, leaving 21 codon groups with a total of 59 codons. The relative frequency of different codons in each group was calculated. The overall difference in codon usage between any gene and the *Arabidopsis* average was computed by a distance algorithm (38):

$$D(A, \overline{X}) = \sum_{i=1}^{i-59} |x(i, A) - x(i, \overline{X})|,$$

where x(i, A) and $x(i, \overline{X})$ are the frequencies of the *i*th codon in gene A and in the average Arabidopsis nuclear gene encoding a chloroplast protein (determined by pooling the coding sequences of the five genes shown).

§5-Enolpyruvylshikimate-3-phosphate synthase.

The Arabidopsis average was calculated from the five individual genes shown (41) and is expressed as the mean \pm SD. To avoid giving excessive weight to fluctuations in codon usage for rare amino acids, a problem with short proteins, only genes of similar length to recA were analyzed.

E. coli RecA lacks arginine residues encoded by AGR.

The plastid genome encodes only a small proportion of the proteins needed for functional chloroplasts (7, 32, 33), and it is thought that most genes have been transferred to the nucleus during evolution (11, 38). The base composition and codon usage of these transferred genes have adjusted to reflect their nuclear localization (38). It has been hypothesized that codon usage is genome-specific and provides a basis for species classification comparable to classical systematics (39). We applied several methods used to compare nonhomologous sequences (38-40), to determine the degree of similarity between the sequenced cDNA and several other Arabidopsis nuclear genes encoding chloroplast proteins. The dinucleotide frequency and base composition (TA/AT ratio, and %G + %C) were not significantly different between the genes examined (analyses not shown). However in codon usage distance and the arginine coding ratio, the cloned sequence was indistinguishable from the Arabidopsis genes and clearly different from several eubacterial recA genes (Table 1). These data suggest that the Arabidopsis recA gene has adjusted to reflect its localization in the nuclear genome, clearly diverging from even the more closely related cyanobacterial homologs.

DISCUSSION

Chloroplast DNA recombination has been studied extensively, particularly in *Chlamydomonas*, by genetic analysis (3, 4). There has also been much work suggesting the involvement of certain sequence elements in plastid DNA recombination (4, 6, 7). However, very little is known at the enzymatic level. Our finding of a plastid-localized RecA homolog provides biochemical evidence for a chloroplast recombination system and strongly supports its relationship to the eubacterial counterpart. To our knowledge, this is also the first observation of a *recA* homolog in a eukaryote. While recombination/repair enzymes have been identified in various other eukaryotes (42-46), they have structures and enzymatic characteristics that differ from those of the bacterial RecA protein.

In view of the known roles for RecA in E. coli, and induction of the pea enzyme by DNA damage, it is likely that the chloroplast enzyme is also concerned with DNA repair. We have not yet determined whether the Arabidopsis gene can complement a recA-deficient strain of E. coli. However, by using a complementation assay, Pang et al. (ref. 47, next paper in this issue) isolated a gene from the same Arabidopsis cDNA library, and found that it could increase the survival of a mutant $(phr^{-}, uvrB^{-}, recA^{-}) E$. coli strain exposed to UV light. Its DNA sequence is quite different from the one isolated by hybridization with a recA probe, however. In view of the complex pathways for DNA repair in bacteria (18, 19, 20, 48), it is likely that a number of proteins will be needed to interact with RecA in chloroplasts as well. Further work is needed to define fully the enzymology of DNA repair and recombination in chloroplasts.

We thank J. W. Roberts for antibodies against *E. coli* RecA, D. A. Bryant for the *Synechococcus recA* clone, J. T. Mulligan for the *Arabidopsis* cDNA library, and R. L. Last for helpful advice. H.C. was supported by a predoctoral fellowship and P.G. by a postdoctoral fellowship from the Cornell National Science Foundation Plant Science Center. M.O. was supported by a fellowship from the Afgrad Foundation. This work was supported in part by a Hatch grant to A.T.J.

- Medgyesy, P., Fejes, E. & Maliga, P. (1985) Proc. Natl. Acad. Sci. USA 82, 6960-6964.
- Gillham, N. W. (1978) Organelle Heredity (Raven, New York), pp. 397-422.
- 3. Lemieux, B., Turmel, M. & Lemieux, C. (1990) Theor. Appl. Genet. 79, 17-27.

- Boynton, J. E., Gillham, N. W., Newman, S. M., & Harris, E. H. (1991) in *Cell Organelles: Advances in Plant Gene Research*, ed. Herrmann, R. (Springer, Vienna), Vol 6, pp. 1-48.
- Kindle, K. L., Richards, K. L. & Stern, D. B. (1991) Proc. Natl. Acad. Sci. USA 88, 1721-1725.
- Howe, C. J., Barker, R. F., Bowman, C. M. & Dyer, T. A. (1988) Curr. Genet. 13, 343–349.
- Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K. & Sugiura, M. (1989) Mol. Gen. Genet. 217, 185-194.
- 8. Palmer, J. D. (1985) Annu. Rev. Genet. 19, 325-354.
- 9. Palmer, J. D. (1990) Trends Genet. 6, 115-120.
- Cedergren, R., Gray, M. W., Abel, Y. & Sankoff, D. (1988) J. Mol. Evol. 28, 98–112.
- 11. Gantt, J. S., Baldauf, S. L., Calie, P. J., Weeden, N. F. & Palmer, J. D. (1991) *EMBO J.* 10, 3073-3078.
- 12. Kowalczykowski, S. C. (1991) Biochimie 73, 289-304
- 13. Echols, H. & Goodman, M. F. (1990) Mutat. Res. 236, 301-311.
- Roca, A. I. & Cox, M. M. (1990) CRC Crit. Rev. Biochem. Mol. Biol. 25, 415–456.
- 15. Sassanfar, M. & Roberts, J. W. (1990) J. Mol. Biol. 212, 79-96.
- Dutreix, M., Moreau, P. L., Bailone, A., Galibert, F., Battista, J. W., Walker, G. C. & Devoret, R. (1989) J. Bacteriol. 171, 2415-2423.
- Witkin, E. M., Roegner-Manisalco, V., Sweasy, J. B. & Mc-Call, J. O. (1987) Proc. Natl. Acad. Sci. USA 84, 6805–6809.
- Wang, W. B. & Tessman, E. S. (1986) J. Bacteriol. 168, 901-910.
- 19. Walker, G. C. (1985) Annu. Rev. Biochem. 54, 425-457.
- 20. Little, J. W. & Mount, D. W. (1982) Cell 29, 11-22.
- Nivison, H., Fish, L. E. & Jagendorf, A. T. (1986) Methods Enzymol. 118, 282-295.
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
- Murphy, R. C., Gasparich, G. E., Bryant, D. R. & Porter, R. D. (1990) J. Bacteriol. 172, 967–976.
- Church, G. M. & Gilbert, W. (1984) Proc. Natl. Acad. Sci. USA 81, 1991–1995.
- Elledge, S. J., Mulligan, J. T., Ramer, S. W., Spottswood, M. & Davis, R. W. (1991) Proc. Natl. Acad. Sci. USA 88, 1731– 1735.

- 26. Csonka, L. N. & Clark, A. J. (1979) Genetics 93, 321-343.
- Devereux, J., Haeberli, P. & Smithies, O. (1984) Nucleic Acids Res. 12, 387–395.
- Lehminger-Mertens, R. & Jacobsen, J. H. (1989) In Vitro Cell Dev. Biol. 25, 571–574.
- Bernstein, H., Byerly, H. C., Hopf, F. A. & Michod, R. E. (1985) Science 229, 1277–1281.
- 30. Friedberg, E. C. (1991) BioEssays 13, 295-302.
- Tomasz, M., Lipman, R., Chowdary, D., Pawlak, L., Verdine, G. L. & Nakanishi, K. (1987) Science 235, 1204-1208.
- Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B. Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H. & Sugiura, M. (1986) *EMBO J.* 5, 2043–2049.
- Ohyama, K., Fukuzawa, K., Kohchi, T., Shirai, H., Sano, T., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S. I., Inokuchi, H. & Ozeki, H. (1986) Nature (London) 322, 572-574.
- Mogen, B. D., MacDonald, M. H., Graybosch, R. & Hurt, A. G. (1990) Plant Cell 2, 1261–1272.
- 35. Gavel, Y. & Von Heijne, G. (1990) FEBS Lett. 261, 455-458.
- Von Heijne, G., Steppuhn, J. & Herrmann, R. G. (1989) Eur. J. Biochem. 180, 535-545.
- 37. Von Heijne, G. & Nishikawa, K. (1991) FEBS Lett. 278, 1-3.
- Oliver, J. L., Marín, A. & Martínez-Zapater, J. M. (1990) Nucleic Acids Res. 18, 65-73.
- Grantham, R., Gautier, C. & Gouy, M. (1980) Nucleic Acids Res. 8, 1893-1912.
- 40. Grantham, R. (1978) FEBS Lett. 95, 1-11.
- Von Heijne, G., Hirai, T., Klösgen, R. B., Steppuhn, J., Bruce, B., Keegstra, K. & Herrmann, R. (1991) *Plant Mol. Biol. Reporter* 9, 104-126.
- Moore, S. P. & Fishel, R. (1990) J. Biol. Chem. 265, 11108– 11117.
- 43. Kmiec, E. B. & Holloman, W. K. (1982) Cell 29, 367-374.
- Kolodner, R., Evans, D. H. & Morrison, P. T. (1987) Proc. Natl. Acad. Sci. USA 84, 5560-5564.
- Sugino, A., Nitiss, J. & Resnick, M. A. (1988) Proc. Natl. Acad. Sci. USA 85, 3683–3687.
- Lowenhaupt, K., Sander, M., Hauser, C. & Rich, A. (1989) J. Biol. Chem. 264, 20568–20575.
- Pang, Q., Hays, J. B. & Rajagopal, I. (1992) Proc. Natl. Acad. Sci. USA 89, 8073-8077.
- 48. Smith, G. R. (1987) Annu. Rev. Genet. 21, 179-201.