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ABSTRACT

Genomics has been used with varying degrees of success in the context of drug discovery and
in defining mechanisms of action for diseases like cancer and neurodegenerative and rare
diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-
effectiveness optimization of analytical methods, especially those that translate to clinically
relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a
biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis
and significantly defining therapeutic targets. Biomedical robot analytics differ from his-
torical methods in that they are based on melding feature selection methods and ensemble
learning techniques. The biomedical robot mathematically exploits the structure of the
uncertainty space of any classification problem conceived as an ill-posed optimization
problem. Given a classifier, there exist different equivalent small-scale genetic signatures
that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the
biomedical robot concept using synthetic microarrays perturbed by different kinds of noises
in expression and class assignment. Finally, we show the application of this concept to the
analysis of different diseases, inferring the pathways and the correlation networks. The final
aim of a biomedical robot is to improve knowledge discovery and provide decision systems
to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical
robots are robust against different kinds of noises and particularly to a wrong class as-
signment of the samples. Assessing the uncertainty that is inherent to any phenotype pre-
diction problem is the right way to address this kind of problem.

Key words: biomedical robots, phenotype prediction, translational genomics, uncertainty

assessment.

1. INTRODUCTION

Despite all of its promises, clinical translation of genomics findings has been tempered by analytical

limitations, the requirement for extensive numbers of subjects, and cost. To help address these issues,

we have developed a coordinated set of bioinformatics algorithms derived from a combination of applied

mathematics, statistics, and computer science that are capable of analyzing dynamically (as a function of
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time) high-dimensional data. Aside from specifically addressing the interpretation of genomic data, strength

of the method is its ability to synchronously include nongenomic inputs (epigenetics, demographic variables,

etc.) as a component of a comprehensive analysis. To best describe the concept and potential applications of

the biomedical robot, we first present the generic and broadly applicable problem of phenotype prediction.

For a clinical perspective, this problem applies to linking a set of genes to a specific disease or condition.

Second, we describe the design and construction of the biomedical robot, and finally, we provide specific

applications of the methodology to different disease datasets: chronic lymphocytic leukemia (CLL), inclu-

sion body myositis (IBM)-polymyositis (PM), and amyotrophic lateral sclerosis (ALS).

2. THE PHENOTYPE PREDICTION PROBLEM

The primary objective of phenotype discrimination is to define sets of genes/probes that optimally

differentiate between populations expressing or not expressing a particular phenotype such as disease risk,

drug responsiveness, or medication toxicity. This concept can be useful in identifying biological and

molecular pathway differences between normal and cancer cells, or investigating drug mechanisms of

action for a certain type of disease.

We built a conceptual model that related different genes/probes to class prediction (phenotype) as a

nonlinear classification problem, since the classifier and the genetic features that serve to achieve an

optimum prediction of the phenotype are unknown. Therefore, as a first step a given type of classifier

(nearest-neighbor, neural networks, support vector machines, etc.) should be built ad-hoc to relate the

genetic features to the observed phenotype classes. The classification problem of phenotype discrimination

does not need necessarily to be binary, it could be multiclass. This can be considered as the first source of

uncertainty in the phenotype prediction problem, since the perfect classifier is a priori unknown.

First we start with a set of expressions of n genes/probes for a set of m samples whose phenotype classes

are defined, usually by medical expert annotation. This information is typically organized in the expression

matrix E 2 Mm · n(R) with m<< n and in the class phenotype vector cobs 2 Rm. The classifier L�(g) can be

formally defined as an application between the set of genetic features g 2 M � Rs and the set of classes

C = fc1‚ c2‚ . . . ‚ cng:

L�(g) : g 2 Rs ! C = fc1‚ c2‚ . . . ‚ cng: (1)

Importantly, not all the genes/probes provide useful information to the phenotype prediction inverse

problem. These extraneous genes are noisy and can be analytically disruptive. Fortunately, it is possible to

discard irrelevant features, that is, those genes that do not provide any useful information for the phenotype

discrimination, since these features introduce ambiguity in the classification. The relevant genes would be

defined as the ones that minimize a given target function O(g) related to the class prediction array:

g : O(�g) = min
g2RS

O(g)‚ (2)

O(g) = kL�(g) - cobskp (3)

L�(g) = (L�(g1)‚ . . . ‚ L�(gi)‚ . . . ‚ L�(gm))‚ (4)

where cobs is the set of observed classes, p is the norm applied in the distance criterion, L�(g) is the set of

predicted classes, and gi 2 RNS

is the genetic signature corresponding to sample i. Otherwise said, the

relevant genes would be the ones that allow us to predict the phenotype of new incoming samples. Three

considerations are particularly relevant:

� First, several equivalent genetic signatures exist that explain the phenotype class equally well or have a

similar predictive accuracy. This is known as the ill-posed character of the phenotype classification

problem. Thus, we can apply the parsimony principle to identify small-scale signatures by introducing the

concept of redundancy. Given a genetic signature g 2 Rs characterized by its class predictive accuracy and

length s, redundant features (or genes) are those that provide no additional information than the currently

selected features; that is, the prediction accuracy does not increase by adding these genetic features to g in

the classifier. Interestingly, the fact that the parsimony principle is applied does not avoid the existence of

other equivalent signatures that form the equivalent space of the phenotype prediction problem.
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� Second, the ill-posed character of the classification is due to the high underdetermined character of the

inverse problem involved, since the number of samples m is much lower than the total number of

genetic probes n. (Fernández-Martı́nez et al. (2012, 2013) analyzed the uncertainty space of linear and

nonlinear inverse and classification problems showing that the topography of the cost function O(g) in

the region of lower misfits (or higher predictive accuracies) corresponds to one or several flat elon-

gated valleys with null gradients, where the high predictive genetic signatures reside. This valley is

unique and rectilinear if the classification/inverse problem is linear, and bends and might be composed

of several disconnected basins if the inverse problem is nonlinear and the classification problem

becomes nonlinear separable. Also, if we are somehow able to define the discriminatory power of the

different genes, a classification problem could be interpreted as the Fourier expansion of a signal; that

is, there will be genes that provide high accuracy for the classification problem alone (head genes),

while others will assist in expanding the high frequency details (helper genes) in order to improve the

predictive accuracy. Nevertheless, there is a time when adding more details to the classifier does not

increase its predictive accuracy. The smallest scale signature is the one that has the least number of

highest discriminatory genes. This knowledge could be important for diagnosis and treatment opti-

mization since it allows a fast and cheap genetic data gathering.
� Third, genomic data is notorious for containing noise that has historically contributed to issues around

reproducibility, especially as related to gene/clinical phenotype relationships. Similarly, genomic noise

also impedes accurate mechanistic conclusions by partially falsifying biological pathways. There are

two main sources of noise:
� First, noise in the genes’ expressions that is introduced by the process of data filtering and mea-

surement. The observed genetic expression of a sample, gobs, can be expressed as the sum of the

noiseless expression gtrue and the measurement noise dg: gobs = gtrue + dg.
� Second, noise in the class assignment dc, which is due to an incorrect labeling of the samples by the

experts. Therefore, the observed class vector can be expressed as the sum of the true class vector ctrue

and the class assignment noise dc. For instance, sometimes the classification problem is parameterized

as binary when in fact there are more than two classes. Therefore, assigning two different classes to the

samples will input noise in the classification. In this case, finding a predictive accuracy lower than

100% would be the expected result, otherwise the algorithm will find a wrong genetic signature to fit

(or explain) the wrong class assignment. Obviously this situation is always difficult to detect, since the

strategy that is normally followed consists in achieving a perfect classification. This is not the point of

view that is proposed in this article.

It is straightforward to show that both kinds of noise induce a modeling error in the classifier. Therefore,

in the presence of these types of noise (dg and dc) the genetic signature with the highest predictive accuracy

(and therefore the lowest misfit error) will never perfectly coincide with the genetic signature(s) that

explains the disease (noise-free phenotype classification problem). For that reason it is desirable to look

also for genetic signatures with lower predictive accuracy than the optimum. Besides, the classifier L� is

built ad-hoc, and it is just a mathematical abstraction used to discover the genes that are involved in the

phenotype discrimination, but it is not the reality itself.

3. BIOMEDICAL ROBOTS

A biomedical robot is a set of algorithms derived from applied mathematics, statistics, and computer science

that are capable of dynamically analyzing high-dimensional data, discovering knowledge, generating new

biomedical working hypothesis, and supporting medical decision making with its corresponding uncertainty

assessment. In this definition the data does not need necessarily to be of the same type; that is, several types of

data could be used for decision-making purposes. In the present case the data come from microarray differential

expression analysis, between individuals that develop the illness and others that do not.

Generating a new working hypothesis in the present case includes the analysis of biomarkers and

mechanisms of action involved in the illness development, and finding existing drugs that could target the

main actionable genes. Also, a benefit of this approach could be the design of intelligent systems to support

medical doctors/researchers in the decision-making process of new incoming uncatalogued samples to

decide questions relative to their diagnosis, treatment, and prognosis before any decision is taken. These
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techniques can help (de Andrés-Galiana et al., 2015, 2016) for instance in segmenting patients with respect

to response to treatment (deAndrés-Galiana et al., 2015) and also to drug response, to predict the devel-

opment of induced toxicities (Saligan et al., 2014), to infer the possible surgical risk, etc., among many

different applications that we can imagine.

Figure 1 shows a conceptual scheme of the biomedical robot concept. From a training data set we built

Nr robots. The robot is in this case a set of classifiers characterized by their small-scale genetic signatures g

and their corresponding set of parameters needed to perform the classification of the samples. These robots

will be deduced from the dataset by applying different supervised filter feature selection methods and

dimensional reduction algorithms. Each robot will be also characterized by its predictive accuracy

according to the classification cost function O(g) in a testing dataset. The design of the cost function is

important because the set of genetic signatures found might depend on that design. In this article we have

used a leave-one-out-cross-validation (LOOCV) average error because it makes use of most of the samples

that are at our disposal, and also mimics the process that we will find in real practice: predicting the class of

a new sample using a set of samples that were previously observed and annotated by medical experts

(training data set).

It is important to remark that we are not interested in building a black-box methodology, but also being able

of inferring the mechanisms of action and the genetic and biological pathways that are involved. The final

decision approach is as follows: Given a new incoming sample, each of the equivalent robots will perform

a prediction. A final prediction with its uncertainty assessment will be given using all these predictions via

a consensus strategy such as majority voting. This approach has been used by Fernández-Martı́nez

FIG. 1. Conceptual scheme for the design of biomedical robots.
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and Cernea, (2014) in a face recognition problem obtaining very high stable accuracies. Ensemble classifi-

cation and majority vote decisions are based on Condorcet’s jury theorem, which is a political science

theorem about the probability of a given group of individuals arriving at a correct decision. In the context of

biomedical robots and ensemble learning, it implies that the probability of being correct for a majority of

independent voters is higher than the probability of any of the individual voters, and tends to one when the

number of voters (or weak classifiers) tends to infinite. In this case the weak classifiers are any of the

biomedical robots of the ensemble that have a high predictive accuracy. These classifiers are guaranteed to be

independent since they use different high discriminatory genetic signatures, measured by their corresponding

discriminatory power.

Several methods exist to assign the discriminatory power of the genes: fold-change (Schena et al., 1996),

Fisher’s ratio (Fisher, 1936), entropy (Shannon, 1948), mutual information (Quinlan, 1993), significance

analysis of microarrays (SAM) (Tusher et al., 2001), percentile distance between statistical distributions

(deAndrés-Galiana et al., 2015), etc. Generally speaking, high-discriminatory genes are those that have

very different distributions in both classes (in a binary problem) and whose expression remains quite stable

or homogeneous within each class.

The algorithm used in this article is similar to the one that was introduced in Saligan et al. (2014) and

(deAndrés-Galiana et al., 2015) and consists of several steps (see Fig. 1):

1. Applying several filter feature selection methods to find different lists of high discriminatory

genes.

2. Establishing the predictive accuracy of these lists of genes using a leave-one-out-cross-validation

(LOOCV) cost function via a k-nearest-neighbor (k-NN) classifier. Others classifiers could also be

used. This sampling procedure of the phenotype prediction uncertainty space aims at obtaining from

these lists different biomedical robots with their corresponding predictive accuracy. For that purpose

we can use backward feature elimination and/or random sampling methodologies.

3. Selecting robots above a certain predictive accuracy (or below a given error tolerance) and per-

forming the consensus prediction through majority voting.

According to the definitions stated in (1), (2), (3), and (4) we can formally define a biomedical robot as

the set of classifiers:

Ltol = fL�(gk) : O(gk)ptol; k = 1‚ . . . ‚ mg‚ (5)

whose predictive error (the number of misclassified samples) is lower than a given bound tol. The phe-

notype prediction problem with uncertainty estimation consists of, giving an incoming sample snew, ap-

plying the set of biomedical robots Ltol [with predictive accuracy higher than (100 - tol)%] and performing

the consensus classification. Following the rules of importance sampling, and supposing that the uncer-

tainty analysis was correctly performed, then the probability of snew to belong to class ci is calculated as the

number of robots that predicted the sample to belong to class ci divided by the total number of selected

robots in the set Ltol.

In this article we apply this concept to the analysis of three kinds of diseases: cancer (CLL), neurode-

generative (ALS), and rare diseases (IBM-PM). Although the concept is theoretically correct before ap-

plying it to these datasets, we have analyzed its robustness against different types of noises using synthetic

microarrays. This analysis helped us to extract interesting conclusions regarding the interpretation of the

results obtained for real datasets.

3.1. Noise sensitivity analysis

We have generated different synthetic data sets using three types of noise: additive Gaussian noise,

lognormal noise, and noise in class assignment. These last two types belong to the category of non-

Gaussian noise, since they are multiplicative and systematic random noises. The method consists in

building a synthetic dataset with a predefined number of differentially expressed discriminatory genes, and

subsequently introducing different types of noise, and determining the predictive accuracy (Acc) as a

function of the number of applied robots (#R). The synthetic dataset was built using the OCplus package

available for The Comprehensive R Archive Network (Pawitan and Ploner, 2015).

Table 1 shows the results obtained for the sensitivity analysis. d represents the level of noise imputed for

each type of noise, Acc the mean LOOCV accuracy, P the precision established using the set of genes
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constructed with the union of all the genes found by the robots, and #R the number of robots used in the

consensus strategy. The precision is defined as follows:

precision =
jfDE genesg \ fSelected genesgj

jfSelected genesgj (6)

where fDE genesg stands for the set of differentially expressed genes that we introduced in the synthetic

dataset, and fSelected genesg is the union set of the high discriminatory genes selected by different robots.

This analysis is very important since the correlation networks (Lastra et al., 2011) and biological pathways

will be established this way. The results can be summarized as follows:

� The precision P keeps quite stable when noise in class assignment is increased. This result is very

interesting since the biomedical robots are able to find the differentially expressed genes when the

noise in class assignment is introduced. In the case of Gaussian noise the precision is very high for

noise levels less than 5%. The worst result was obtained when multiplicative noise is added to the

expressions. The fact that the precision gradually decreases when noise in the expression increases

implies that some of the biological pathways that are inferred might be partially falsified.

Therefore, any filtering step that is usually performed in the microarray data will have important

consequences with respect to the pathway analysis. Future research will be devoted to this im-

portant subject.
� The mean predictive accuracy (Acc) systematically decreases when a higher level of noise is added to

the class assignment vector, and is very stable when Gaussian and non-Gaussian noises are added

to the expression data, meaning that the biomedical robots are robust in terms of accuracy with respect

to the presence of noise in the expressions. This result also suggests that noise acts as regularization

with respect to the accuracy in the prediction as it has been theoretically proven by Fernández-

Martı́nez et al. (2014a, b) in inverse problems. It can be also concluded that if the biomedical robots

are unable to improve the accuracy of the best prediction, the dataset must have some wrong class

assignment that prevents achieving a perfect classification. Another possibility is that parameterization

of the samples is incorrect; in the present case that would mean that none of the genes that have been

measured bring enough information to achieve a good phenotype discrimination.

3.2. Chronic lymphocytic leukemia

B-cell chronic lymphocytic leukemia (CLL) is a complex and molecular heterogeneous disease, being

the most common adult leukemia in western countries. In our cohort, DNA analyses served to distinguish

two major types of CLL with different survival times based on the maturity of the lymphocytes, as

discerned by the immunoglobulin hyeavy chain variable-region (IgVH) gene mutation status (Ferreira

et al., 2014). In this first example we had at our disposal a microarray dataset consisting of 163 samples and

48807 probes.

Table 1. Noise Results

d (%)

Class assignation Gaussian Log Gaussian

Acc(%) P #R Acc(%) P #R Acc(%) P #R

1 98.77 1.00 98 100.00 1.00 98 100.00 1.00 98

3 96.93 1.00 98 100.00 1.00 98 100.00 0.74 98

5 94.48 1.00 98 100.00 1.00 98 100.00 0.35 98

10 90.18 1.00 98 100.00 0.60 98 100.00 0.14 10

15 87.12 1.00 3 100.00 0.33 98 99.39 0.05 37

20 80.98 1.00 1 100.00 0.22 11 100.00 0.03 43

25 77.30 1.00 10 99.39 0.13 81 98.77 0.04 98

30 73.62 0.92 43 99.39 0.14 7 100.00 0.03 14

The following information is given: d, the percentage of noise introduced; Acc, the mean LOOCV predictive accuracy; P, the

precision of the selection using the union of all the genes found by the robots; and #R, the number of robots applied in the consensus

strategy.
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The best robot predicted the IgVH mutational status with 93.25% accuracy using small-scale signature

composed by 13 genes: LPL (2 probes), CRY1, LOC100128252 (2 probes), SPG20 (2 probes), ZBTB20,

NRIP1, ZAP-70, LDOC1, COBLL1, and NRIP1.

Table 2 shows the results of applying the methodology of biomedical robots to this problem. In this case

the highest prediction accuracy obtained by the set of biomedical robots equal the accuracy provided by the

best robot (93.25%). This result implies that some samples are behavioral outliers or might be misclassified.

This happened with 11 samples that are identified in the PCA graphic in two dimensions (Fig. 2) using the

genetic signature composed of these 13 genes. It can be observed how the classification in this reduced set

of genes becomes almost linearly separable; while using all the genetic information that we have at our

disposal the classification is nonlinear. Therefore, as an important conclusion we can affirm that reducing

the dimension to the set of discriminatory genes helps to linearize the phenotype classification problem.

Figure 3 also shows the correlation network of the most discriminatory genes of the CLL-IgVH mu-

tational status found in this analysis. This is an interesting tool to understand how the most discriminatory

genes regulate the expression of other genes involved in different biological pathways. The head of the

graph is the gene that has the highest discriminatory power LPL. It can be observed as one main network

associated with ZBTB20.

Finally the pathway analysis deduced from the biomedical robots has revealed the importance of the

ERK signaling super pathway that includes ERK signaling, ILK signaling, MAPK signaling, molecular

mechanisms of cancer, and rho family GTPases pathway. These pathways control proliferation, differen-

tiation, survival, and apoptosis. Also, other important pathways found were allograft rejection, the in-

flammatory response pathway, CD28 costimulation, TNF-alpha/NF-kB signaling pathway, akt signaling,

PAK pathway, and TNF signaling. The presence of some of these pathways suggests viral infection as a

possible cause for CLL.

3.3. Inclusion body myositis and polymyositis

Myositis means muscle inflammation and can be caused by infection, injury, certain medicines, exercise,

and chronic disease. Some of the chronic, or persistent, forms are idiopathic inflammatory myopathies,

whose cause is unknown. We have modeled the inclusion body myositis /polymyositis (IBM/PM) dataset

published by Greenberg et al. (2005). The data consisted of the microarray analysis of 23 patients with

IBM, 6 with PM, and 11 samples corresponding to healthy controls. The best robot perfomed the classi-

fication of the IBM+PM vs. control, obtaining a predictive accuracy of 97.5% using a reduced base with

only 17 probes. The genes belonging to the highest predictive small-scale genetic signature are HLA-C

(three probes), HLA-B (four probes), TMSB10, S100A6, HLA-G, STAT1, TIMP1, HLA-F, IRF9, BID,

MLLT11, and PSME2. It can be observed in the presence of different HLA-x genes of the major histo-

compatibility. Particularly the function of the gene HLA-B would explain alone the genesis of IBM:

‘‘HLA-B (major histocompatibility complex, class I, B) is a human gene that provides instructions for

Table 2. CLL, IBM & PM, and ALS results

CLL IBM & PM ALS

Acc(%) Tol #R Acc(%) Tol #R Acc(%) Tol #R

92.64 85.89 488 87.50 82.50 223 84.71 83.53 547

92.64 86.50 487 87.50 85.00 159 85.88 84.71 441

92.64 89.57 486 90.00 87.50 138 87.06 85.88 241

92.64 90.18 479 90.00 90.00 71 88.24 87.06 197

92.64 90.80 446 92.50 92.50 32 90.59 88.24 134

92.64 91.41 373 100.00 95.00 2 91.76 89.41 96

93.25 92.02 255 97.50 97.50 1 90.59 90.59 54

93.25 92.64 120 92.94 91.76 32

93.25 93.25 22 95.29 92.94 20

94.12 94.12 10

95.29 95.29 6

96.47 96.47 1
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FIG. 2. IgVH classification in CLL: (A) Considering all the genes of the microarray, the classification problem is

nonlinear. (B) Using the most discriminatory genes (13 probes) the classification problem becomes linearly separable.
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making a protein that plays a critical role in the immune system. HLA-B is part of a family of genes called

the human leukocyte antigen (HLA) complex. The HLA complex helps the immune system distinguish the

body’s own proteins from proteins made by foreign invaders such as viruses and bacteria.’’

Table 2 shows the results using the biomedical robots methodology. In this case we are able to hit 100%

of the samples with two robots, improving the results of the best robot. The analysis of biological pathways

has revealed the importance of viral infections, mainly in IBM patients: allograft rejection, influenza A,

class I MHC mediated antigen processing and presentation, Staphylococcus aureus infection, interferon

signaling, immune response IFN alpha/beta signaling pathway, phagosome, tuberculosis, cell adhesion

molecules (CAMs), Epstein-Barr virus infection, and TNF signaling. Several viral infections appeared in

this list. Interestingly, it has been found that 75% of the cases of viral myosytis are due to Staphylococcus

aureus infection (Fayad et al., 2007).

Figure 4 shows the correlation network of the most discriminatory genes found in this analysis. It can be

observed as the presence of one main dense network involving different HLA-X genes. Among its related

pathways are ERK signaling and apoptosis pathway. GO annotations related to this gene include calcium

ion binding and cysteine-type peptidase activity.

Figure 5A shows the PCA projection for the IBM+PM versus control samples using the optimum

reduced base. It can be observed that the separability is almost perfect and only one PM sample that is close

to the control samples might be misclassified. This graphic also explains that this basis set is not optimum

to perform the classification of IBM vs. PM. This separability can be achieved with 100% accuracy using a

reduced base composed by the following genes: RHOBTB2, MT1P2, FBXL8, HIF3A, C17orf101, RPL12,

RBM19, MT1G, WT1-AS, HEXIM1, NQO2, ENOSF1, ADRM1, EIF5A, CSF2RA, CPLX3 /// LMAN1L,

C10orf95, NFIC, and POLR2J2. The main pathways involved in the IBM vs. PM phenotype differentiation

is: FOXA1 transcription factor network, O2/CO2 exchange in erythrocytes, methotrexate pathway, drug

induction of bile acid pathway, bile secretion, and statin pathway. Figure 5B shows the PCA graphic of the

IBM vs. PM classification, and how this separability can be achieved.

3.4. Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that’s characterized by stiff muscles,

muscle twitching, and gradually worsening weakness. Between 5 and 10% of the cases are inherited from a

relative, and for the rest of the cases, the cause is still unknown (NINDS, 2013). It is a progressive disease

in which the average survival from onset to death is 3 to 4 years, and most of the deaths are caused by

respiratory failure. There is no cure yet.

We reinterpreted the dataset published by Lincecum et al. (2010) consisting of 57 ALS cases and 28

healthy controls. The best result yields an accuracy of 96.5% with small-scale signature involving the

following genes: CASP1, ZNF787, and SETD7. Table 2 shows the results of applying this methodology to

this problem. The biomedical robots in this case did not improve this prediction. The pathway analysis has

revealed the importance of the GPCR pathway, RhoA signaling pathway, EPHB forward signaling,

ephrinA-EphR signaling, EBV LMP1 signaling, and regulation of microtubule cytoskeleton. These path-

ways have different important signaling roles and suggest a possible link to the Epstein-Barr virus (EBV).

Figure 6 shows the correlation network of the most discriminatory genes found in this analysis. The head

of the network is the CASP1 that is connected to MAP2K5 through ZNF3 and LUC7. MAP2K5 acts as a

scaffold for the formation of a pathway that seems to play a critical role in protecting cells from stress-

induced apoptosis, neuronal survival, cardiac development, and angiogenesis. Also DCAF8 has been

associated with neuropathies.

Figure 7 shows the PCA graphic for the ALS vs. control samples. It can be observed that the accuracy of

the classification could be easily improved by discarding 5–6 control samples that lie very close to the

border defined by the ALS samples. Also it can be observed that one ALS sample is clearly a behavioral

outlier.

4. CONCLUSION

In this article we have introduced the concept of biomedical robots, performing its sensitivity analysis to

different kinds of noises, and showing its application to the analysis of cancer, as well as rare and
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FIG. 5. Classification of IBM, PM, and Control: (A) PCA graphic for IBM+PM versus control samples. (B) PCA

graphic for IBM versus PM.
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neurodegenerative diseases. The concept of the biomedical robot is based on exploring the uncertainty

space of the phenotype classification problem involved and using the structure of the uncertainty space to

adopt decisions and inferring knowledge. The synthetic dataset modeling has shown the robustness and

stability of this methodology, particularly to class assignment noise. The presence of high noise levels in

expressions might falsify the biological pathways that are inferred. Nevertheless, the predictive accuracy

remains very high. Finally, we have shown the application of this novel concept to three different illnesses:

CLL, IBM-PM, and ALS, proving that it is possible to infer at the same time both high discriminatory

small-scale signatures and the description of the biological pathways involved. We have shown that

referring to the set of most discriminatory genes these classification problems become linearly separable.

Generally speaking in the three cases no high class assignment errors have been detected, being CLL the

case where more samples (11) have been found to be behavioral outliers. The pathway analyses revealed in

the three cases a possible link to viral infections and served to identify actionable genes and drug targets.

The methodology shown in this article is not computationally very expensive, since all the simulations

shown in this article were done with a personal computer in real time (several minutes).
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