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Abstract

Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules 

in tissues. The measurement of DTI indices within the spinal cord provides a quantitative 

assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of 

spinal cord injury indicate that DTI is a reliable imaging technique with important histological and 

functional correlates. These studies demonstrate that DTI is a non-invasive marker of 

microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite 

changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic 

myelopathy. Interestingly, changes in DTI indices are visualized in regions of the cord, which 

appear normal on conventional MRI and are remote from the site of cord compression. Spinal cord 

DTI provides data that can help us understand underlying microstructural changes within the cord, 

and assist in prognostication and planning of therapies. In this article, we review the use of DTI to 

investigate spinal cord pathology in animals and humans, and describe advances in this technique 

that establish DTI as a promising biomarker for spinal cord disorders.
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Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance technique capable of measuring the 

magnitude and direction of diffusion of water molecules in various tissues. DTI developed 

from a technique known as diffusion weighted imaging, which measures the attenuation of 

MR signals due to diffusion, and was initially used for brain imaging.1 DTI was formally 

introduced by Basser et al2, and subsequent improvements in this technique have led to the 

development of DTI as a tool to delineate white matter tracts in the brain.
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DTI of the spinal cord in humans was initially inadequate due to the small area of the cord, 

susceptibility artifacts, as well as cardiac and respiratory motion artifacts.3, 4 Improvements 

in scanning protocols have allowed for useable diffusion images of the spinal cord. Spinal 

cord DTI, initially performed in animals, is now used to evaluate spinal cord disorders in 

humans. Investigators have shown that DTI is able to detect cord damage in regions of the 

cord that appear normal on T2W images.5, 6 Spinal cord DTI, therefore, represents an 

important advancement in the field of neuroimaging, and its use is being expanded both for 

prognostication as well as for guiding therapy.

In this paper, we review the literature on spinal cord DTI in both animal models and humans. 

We provide a summary for the clinical use of spinal cord DTI in a few neurosurgical 

conditions. We hope that by providing a review on the current status of spinal cord DTI, we 

may be able to better direct future efforts in this field.

Principles of Diffusion Tensor Imaging

Diffusion MRI provides a measure of the displacement of water molecules in tissues. 

Displaced water molecules produce an attenuated signal during diffusion MR scanning. By 

its nature, the axonal architecture in the white matter of the central nervous system promotes 

diffusion of water molecules in a direction predominantly parallel, rather than perpendicular, 

to axon fibers.2, 7, 8 Diffusion perpendicular to the fibers seems to be limited by cell 

membranes more than myelin sheaths.9, 10 This direction-dependent diffusion, described as 

‘anisotropy’, is used by DTI to infer the orientation of surrounding axonal fibers and to 

delineate anatomical boundaries. DTI uses a tensor framework to characterize molecular 

motion in multiple directions in a three-dimensional space. The diffusivities along the three 

principle axes are used to calculate DTI indices. The commonly used indices for spinal cord 

DTI include fractional anisotropy (FA), apparent diffusion co-efficient (ADC), longitudinal 

apparent diffusion co-efficient (lADC), and transverse apparent diffusion co-efficient 

(tADC). Investigators determine specific regions of interest on axial or sagittal diffusion 

images, and DTI indices for these regions are calculated from individual vectors using 

dedicated software tools. FA, which ranges from 0 to 1, defines the degree of anisotropy, and 

tissues with high anisotropy, such as white matter tracts, have a value closer to 1. Injured 

spinal cords show a decrease in anisotropy due to disruption of longitudinally aligned axons, 

and exhibit a decrease in FA. The ADC or mean diffusivity (MD) is the mathematical 

average of the diffusivities in the three principal axes, and its value may increase or decrease 

based on the histopathological progression of the lesion. The lADC represents rostro-caudal 

diffusivity along white matter fibers, and is often decreased in the presence of axonal 

injury.11 tADC measures radial diffusivity and is characteristically increased in the presence 

of demyelination.11, 12 Overall, DTI indices are affected by microstructural alterations that 

affect the diffusion of water molecules, and this forms the basis for using DTI indices to 

identify spinal cord pathology.
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DTI studies in rat models

DTI measurements of rat spinal cord

DTI measurements of the rat spinal cord were initially performed either ex vivo,13–15 or in 
vivo using implantable coils.16, 17 The majority of these studies used scanners with field 

strengths from 4.7 T to 7 T. With improved technology, in vivo measurements were possible 

with higher field strength scanners,18, 19 and without implantable coils.18, 19 Studies with 

animal spinal cords indicate that DTI values clearly differentiate white (WM) and gray 

matter (GM) (Figure 1).13, 17, 18, 20 Since diffusion occurs preferentially along axonal 

bundles, WM is significantly more anisotropic as compared to GM.10, 20 Significant 

differences in DTI indices are described between spinal levels (cervical, thoracic, and 

caudal) in rat studies.18 This is probably a result of microstructural variations in the gray and 

white matter along the spinal cord.21 These results indicate that diffusion properties are not 

uniform throughout the length of the cord, and vary according to the level being studied. 

These results further establish the usefulness of DTI to delineate neural structures in the 

spinal cord.

DTI measurements after spinal cord injury (SCI)

One of the important applications of DTI is the evaluation of SCI in animal models. DTI 

demonstrates a significant decrease in anisotropy and increase in radial diffusivity at the 

level of injury16, 22, 23 as well as in areas of the cord that are apparently normal on 

conventional T2-weighted images.24 In hyperacute SCI (0–6 hours), diffusion measurements 

are able to distinguish SCI based on severity.25 However, the unique feature of DTI is its 

ability to detect changes in diffusion metrics at regions rostral and caudal to the 

lesion.16, 26–28 A decrease in diffusivity remote from the lesion is observed during recovery 

from SCI (Figure 2).27 These findings are possibly related to cytotoxic edema, axonal loss or 

chronic atrophy.29–31 Interestingly, changes in DTI indices away from the lesion correlate 

with the injury severity, indicating that they may be used as surrogate markers of neural 

injury (Figure 2). Moreover, these changes are not limited to the white matter tracts only. At 

our center, we find that motor neurons rostral to the lesion are enlarged after SCI and this is 

associated with an increase in the FA of the rostral gray matter (unpublished data). Studies 

show that spinal cord gray matter is affected by ischemia due to impaired microvascular 

perfusion32 and is characterized by astrogliosis during recovery.33 Using DTI to track these 

remote changes will help us better understand the pathophysiology of SCI. Since there are 

changes in diffusivities throughout the cord after SCI, it is apparent that microstructural 

recovery from SCI is not limited to the epicenter alone.

Several animal studies show correlations between DTI indices and histological changes 

during recovery from SCI.25, 34–37 The hyperacute phase following SCI is associated with 

edema, hemorrhage and inflammation. Following this, there is an intermediate phase 

characterized by a robust glial response and revascularization process. The chronic phase of 

SCI shows wallerian degeneration, astroglial scar formation and progressive cavitation of the 

cord with rostral-caudal spreading.34, 38 Identifying specific changes in DTI metrics to 

characterize particular histological events during recovery from SCI remains a challenge. 

While an increase in MD after injury can map the extent of degeneration, a decrease in FA is 
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sensitive to cavity formation within the cord.34 DTI is also able to characterize the 

orientation of the glial scar as well as the degree of axonal dieback and preservation.14, 15 

Changes in DTI measurements possibly reflect a combination of histopathological 

changes.28, 39, 40 DTI values have been shown to be more affected by axonal injury than 

demyelination,28, 40 suggesting that the diverse tissue damage as a result of SCI may not be 

completely captured by diffusion measurements.

DTI and functional correlates in SCI

DTI metrics correlate with electophysiological measures, indicating that specific diffusion 

measures could be used as predictors of neurological function. The use of cortical sensory 

evoked potentials (SEPs) to assess cord integrity in SCI models has been limited by its 

sensitivity to anesthetic agents41, 42 and changes in body temperature43. Spinal SEPs 

(SpSEPs) represent a reliable technique to obtain repeated recordings,44, 45 and these 

correlate well with the Basso, Beattie, and Bresnahan (BBB) score.46 DTI measurements of 

the medial spinothalamic tracts and dorsal columns correlate with very early and early 

components of the SpSEPs, while diffusion measures of the lateral spinothalamic tracts are 

linked to the late components (Figure 3).47 Other studies show that the lADC of the rostral 

white matter correlates with the BBB score,16 while the radial diffusivity caudal to the lesion 

correlates with the grid walk test.28 The lADC of the spared ventrolateral white matter can 

also predict hindlimb motor recovery using the Basso mouse scale.48 Since axonal structure 

and integrity are closely linked to MR diffusion measurements21, 23 the above correlations 

emphasize the utility of DTI to measure both the structural and functional properties of 

axons.

The role of DTI in therapeutic interventions for SCI is the focus of a few animal studies. The 

radial diffusivity around the injured site correlates with behavioral recovery in rats that are 

transplanted with fibroblasts following SCI.26 At our center, we find significantly increased 

diffusivity rostral to the injury site in rat SCI models following stem cell transplants, as 

compared to rats that received placebo. In the future, it is expected that spinal cord DTI will 

be used to monitor transplants and other therapeutic interventions for SCI.

DTI studies in humans

DTI in the intact human spinal cord

Spinal cord DTI studies in healthy human subjects show feasibility and reliability of this 

procedure.49–54 Good contrast is observed between gray and white regions, with the highly 

anisotropic white matter showing much higher FA values than the central gray matter 

(Figure 4). While the magnitude of FA of the whole cord decreases in the rostral-caudal 

direction, the MD is relatively constant throughout the cord. DTI indices are age-dependent, 

and reflect microstructural changes in the spinal cord associated with ageing.55–59 These 

results show that DTI is sensitive to degenerative changes within the spinal cord that are not 

visualized on conventional MRI. Moreover, they also emphasize the need to compare DTI 

measurements in patients with age-matched controls.
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DTI in human SCI

In acute human SCI, DTI shows a reduction in diffusivity, particularly FA and lADC, around 

the injury site.60, 61 Choosing a DTI parameter that best characterizes SCI remains a 

challenge and authors suggest that diffusivity along the individual axes are more useful than 

DTI indices in representing microstructural changes.13 Similar to animal studies, human SCI 

is characterized by changes in diffusivity rostral to the injury site, in regions of the cord that 

appear normal on conventional MRI,61, 62 and possibly reflect retrograde neural injury. 

Axial FA maps and tractography are also sensitive to asymmetric cord damage in acute SCI, 

and can supplement conventional MR imaging in this setting.63, 64

The prognostic value of DTI indices in acute SCI is still unclear. Higher ADC values at the 

injured site is shown to be associated with better postoperative neurosurgical cervical spine 

scale (NCSS) scores but not Frankel scale measures.65 Another report shows that the DTI 

indices are correlated with the ASIA motor score in patients with non-hemorrhagic 

contusions.62 Correlations between DTI parameters and other outcome scales such as the 

functional independence measure (FIM), walking index for spinal cord injury (WISCI), and 

spinal cord injury measure (SCIM) have not been explored. There is a need to use a 

standardized functional outcome score in order to define the prognostic value of DTI 

indices. Moreover, if diffusivities of individual white matter tracts within the spinal cord are 

measured, it becomes essential to correlate the diffusion indices to scales that measure 

sensory and motor function separately. Chronic SCI is associated with a number of 

microstructural neural changes including demyelination,66, 67 remyelination,68, 69 axonal 

loss68 and atrophy70 that affect the diffusion of water molecules. As opposed to acute SCI, 

the injury site is characterized by increased diffusivity in patients with chronic SCI. FA at 

the injury site, however, is greatly reduced and appears to depend on both the level of injury 

and the completeness of the injury.71 FA values and connection rates of fiber tracking have 

also been shown to correlate with motor score in patients with chronic cervical cord injury.72 

Similar to acute SCI, diffusivity within the high cervical spinal cord, rostral to the chronic 

injury site, is significantly altered.71, 73, 74 Importantly, rostral DTI indices correlate with 

functional measures in this group of patients,73, 74 thereby demonstrating that these indices 

may be non-invasive imaging biomarker for spinal cord injury. Additionally, spinal cord DTI 

indices rostral to the injury site correlate with DTI indices within cranial white matter tracts, 

and could be utilized as a marker of neural reorganization and plasticity.74 Since spinal 

fixation hardware around the injury site creates artifacts on diffusion images, DTI of the 

spinal cord, rostral to the injury site, allows us to evaluate neural injury without directly 

imaging the injury site. This may be a useful approach for future studies that investigate 

longitudinal changes in diffusivity during recovery from SCI.

DTI applications in cervical spondylotic myelopathy (CSM)

The complex pathophysiology of CSM includes mechanical spinal cord compression due to 

disc protrusion, osteophytes or ossified posterior longitudinal ligament as well as secondary 

cord ischemia.75, 76 Histopathological changes within the cervical cord in CSM include 

cavitation, demyelination and regions of cord infarction.77 Diffusion MRI is able to detect 

cord changes in patients with narrow cervical canals, in spite of normal T1W and T2W 

images.5, 49, 78–80 Across studies, FA is shown to be lower at the affected level in patients 
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compared to corresponding levels in controls. DTI indices in CSM patients appear to depend 

on the degree of cord damage. Symptomatic CSM patients have lower FA values and higher 

ADC measures at the compressed level, as compared to asymptomatic patients with 

radiological features of cord compression.81 However, DTI measurements do not have 

consistent correlations with clinical scores of patients with CSM.80, 82–84 It therefore 

appears that DTI has a role to play in the preoperative planning of CSM patients, but the use 

of DTI to decide on surgical intervention or monitor recovery is yet to be investigated in 

detail.

DTI for spinal cord tumors

Diffusion tensor tractography is presently used to describe the orientation and location of 

white matter fibers around brain tumors.85–87 Recent studies have employed tractography 

for intradural spinal cord tumors.88, 89 The use of fiber tracking to delineate displaced white 

matter tracts seems to be particularly useful in solid tumors. In cystic tumors and tumors 

with considerable vasogenic edema, the increased diffusion of water molecular can lead to 

erroneous fiber tracking. A recent study showed that diffusion tensor tractography has a 

sensitivity of 87.5% and a specificity of 100% for predicting tumor resectability 

preoperatively.90 Measurement of diffusion indices within spinal cord tumors suggests that 

higher tumor mass is characterized by a decrease in FA and increase in ADC. However, 

studies have yet to evaluate the utility of DTI indices as predictors of tumor histology. In this 

regard, DTI indices may be able to differentiate spinal cord lesions on conventional MR 

images, and provide surgeons with an idea as to the possible pathology. Overall, the use of 

DTI shows much promise in planning surgical approaches for spinal cord tumors, as it has in 

brain tumor resection.

DTI has been used in a variety of other spinal cord disorders including multiple 

sclerosis,91, 92 syringomyelia,93, 94, and transverse myelitis.95 Although many of these 

studies are able to characterize DTI parameters in diseased states, the routine use of spinal 

cord DTI in the clinical setting is yet to be realized.

Limitations of DTI

Spinal cord DTI in humans still has a number of limitations. Adequate spatial resolution 

remains a problem and it is difficult to visualize the individual funiculi on diffusion-

weighted images, particularly in the lower thoracic cord.54 DTI of these segments is affected 

more by artifacts arising from cardiac and respiratory motion as well as CSF pulsation.96 

The use of faster imaging techniques such as parallel imaging, single shot echo-planar 

imaging as well as the use of cardiac pulse-gating have helped to reduce these artifacts. 

However, scan acquisition time is still a limitation for patients with acute SCI since these 

patients often cannot withstand additional scanning time in the MRI suite. Also, the signal to 

noise ratio is not uniform throughout the cervical spinal cord and is significantly decreased 

in caudal segments.59, 97 A low signal to noise ratio can lead to overestimation of anisotropy 

measures, particularly in low-anisotropic tissues such as the central gray matter.98 The use of 

3T MR scanners does improve the SNR,99 but is still not used universally. The use of DTI 

postoperatively is hampered significantly by the use of spinal instrumentation, which creates 
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numerous artifacts. Additionally, standardized software to process tensor images is essential 

to make this a feasible option for routine clinical use.

Conclusion

DTI provides a unique insight into the pathophysiology and microstructural alterations 

associated with spinal cord disorders. While initial studies in rat models have primed this 

modality for human research, more data are required on the accuracy and reliability of DTI 

indices in defining cord pathology. DTI of the spinal cord does show promise in certain 

neurosurgical conditions such as traumatic SCI, CSM and spinal cord tumors. However, 

scanning protocols and image processing need to be refined and standardized. Once these 

challenges are overcome, we can expect the use of DTI in mainstream clinical practice, both 

to prognosticate as well as monitor patients with spinal cord disease.
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Abbreviations

DTI diffusion tensor imaging

FA fractional anisotropy

ADC apparent diffusion co-efficient

lADC longitudinal apparent diffusion co-efficient

tADC transverse apparent diffusion co-efficient
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Figure 1. 
A: Schematic diagram of a cross-section of a rat cervical spinal cord showing location of 

white matter funiculi and gray matter; B: Corresponding structure is shown on an axial FA 

map of the ex vivo rat cervical spinal cord obtained with a 9.4 T MR scanner. (vf- ventral 

funiculus, lf- lateral funiculus, dc- dorsal columns, gm- gray matter)
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Figure 2. 
Axial DTI images obtained from ex vivo rat spinal cord specimens at the injury site (thoracic 

cord), and at a rostral site in the cervical spinal cord, 10 weeks after contusive SCI of 

varying severity. Fractional anisotropy (FA) maps demonstrate loss of anisotropy at the 

injury site. Sham spinal cords showed intact cord structure with normal central gray matter 

morphology. Bar graph showing significant differences between severity groups in mean 

diffusivity of the cervical spinal cord sections. * P<0.05
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Figure 3. 
Scatter plots showing correlations between spinal sensory evoked potentials (SpSEPs) 

amplitude and longitudinal apparent diffusion co-efficient (lADC) of the spinal cord rostral 

to the injury site in a rat SCI model. Significant correlations were observed for the medial 

(A) and lateral (B) spinothalamic tracts as well as the dorsal columns (C). MSTT- medial 

spinothalamic tract, LSTT- lateral spinothalamic tract.
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Figure 4. 
Axial fractional anisotropy (FA) maps and T2-weighted images at individual levels of the 

cervical spinal cord in a healthy subject. Images were obtained using a standard 1.5 T 

clinical MR scanner. FA maps show higher anisotropy in the white matter funiculi and lower 

anisotropy in the central gray matter. (from 59, published with permission from Journal of 

Magnetic Resonance Imaging, John Wiley & Sons Inc.)
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