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Abstract

BACKGROUND—Inherited mutations in DNA-repair genes such as BRCAZ are associated with
increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-
repair genes among men with localized prostate cancer who are unselected for family
predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients
with metastatic prostate cancer has not been established.

METHODS—We recruited 692 men with documented metastatic prostate cancer who were
unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used
multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with
autosomal dominant cancer-predisposition syndromes.

RESULTS—A total of 84 germline DNA-repair gene mutations that were presumed to be
deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including
BRCAZ2 (37 men [5.3%]), ATM (11 [1.6%]), CHEKZ2 (10 [1.9% of 534 men with data]), BRCAI
(6 [0.9%]), RAD51D (3 [0.4%]), and PALBZ (3 [0.4%]). Mutation frequencies did not differ
according to whether a family history of prostate cancer was present or according to age at
diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with
metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with
localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of
2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known
cancer diagnosis (P<0.001).

CONCLUSIONS—In our multicenter study, the incidence of germline mutations in genes
mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which
was significantly higher than the incidence among men with localized prostate cancer. The
frequencies of germline mutations in DNA-repair genes among men with metastatic disease did
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not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded
by Stand Up To Cancer and others.)

Carcinoma of the prostate is a common cancer with a wide spectrum of clinical behavior that
ranges from decades of indolence to rapid metastatic progression and lethality.12 Prostate
cancer is also among the most heritable of human cancers, with 57% (95% confidence
interval [Cl], 51 to 63) of the interindividual variation in risk attributed to genetic factors.3
Thus far, genomewide association studies have identified more than 100 common variants
that account for approximately 33% of the excess familial prostate cancer risk.4~" Mutations
in other genes, including BRCA1, BRCA2, M5HZ2,810 and HOXB1311 account for a small
proportion of familial cases, with BRCAZ2 mutations associated with 1.2 to 1.8% of prostate
cancer overall.912

Thus far, only mutations that disrupt the function of genes involved in repairing DNA
damage through homologous recombination have been shown to be associated with the
aggressive clinical behavior of localized prostate cancer and with cancer-specific
mortality.>12-14 The need for genetic prognostic markers is critical, because the
clinicopathological diversity of prostate cancer has confounded efforts to develop effective
screening strategies that avoid overdetection and overtreatment yet capture cancers that are
destined to affect survival.1> Persons who are shown to have cancer-predisposition mutations
in the germline may serve as sentinels for the identification of families at high risk. It should
be noted that men with metastatic prostate cancer and DNA-repair gene mutations have been
reported to have sustained responses to poly-ADP ribose polymerase (PARP) inhibitors and
platinum-based chemotherapy.16:17

Although the prevalence of germline DNA-repair gene mutations is low among men with
localized prostate cancer who are unselected for family predisposition, the frequency of such
mutations among men with metastatic prostate cancer has not been established. We recently
reported an analysis of the spectrum of somatic aberrations that occur in metastatic prostate
cancer, using whole-exome sequencing of metastatic tumors.18 For comparison purposes, we
also sequenced germline DNA exomes from these men and unexpectedly found that 8%
carried pathogenic germline mutations in DNA-repair genes. This finding suggested that
men with metastatic prostate cancer represent a population that is enriched for heritable
defects in DNA repair. To confirm this finding and to further ascertain the spectrum and
prevalence of germline DNA-repair gene mutations in metastatic prostate cancer, we
recruited 542 additional men with a confirmed prostate cancer metastasis and used next-
generation sequencing to analyze DNA-repair genes associated with autosomal dominant
cancer-predisposition syndromes.

METHODS
STUDY POPULATIONS

Seven case series of men with metastatic prostate cancer across multiple institutions in the
United States and United Kingdom, including a total of 692 patients, were analyzed. All the
patients had a diagnosis of metastatic prostate cancer and were not selected on the basis of
family history, age, or any knowledge of genetic background. The demographic
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characteristics of the men in each series are summarized in Table 1. Detailed information on
the specific germline mutations and on clinical features of mutation carriers in each series is
provided in Tables S1, S2, and S3 in the Supplementary Appendix, available with the full
text of this article at NEJM.org.

Case Series 1, the Stand Up to Cancer—Prostate Cancer Foundation (SU2C-PCF)
International Prostate Cancer Dream Team discovery series, was made up of 150 patients for
whom data were previously reported in the SU2C-PCF study of molecular stratification of
metastatic prostate cancer.18 Case Series 2, the SU2C-PCF validation series, was made up of
84 patients who were newly enrolled in the SU2C-PCF study and for whom data had not
been reported previously. Case Series 3, Royal Marsden Prostate Cancer Genomics series,
included 131 patients who were considered for enrollment in clinical trials at the Royal
Marsden Hospital from January 2013 through July 2015. Case Series 4 consisted of 91
consecutive patients included in the University of Washington rapid autopsy program from
1997 through 2013. Case Series 5 included 69 consecutive patients who were enrolled in the
Weill Cornell Medical College precision medicine program. Case Series 6 was made up of
43 consecutive patients from the University of Michigan rapid autopsy program. Case Series
7, from the Memorial Sloan Kettering Cancer Center, included 124 consecutive patients who
were enrolled through the Memorial Sloan Kettering Integrated Mutation Profiling of
Actionable Cancer Targets (MSK-IMPACT) study.

The protocols for these case series were approved by the local institutional review boards,
and written informed consent was obtained from all patients at the local sites before
enrollment. Correlative clinical data were collected at each site with the use of electronic
patient records and were entered into deidentified databases. The study was designed by the
Stand Up To Cancer—Prostate Cancer Foundation International Prostate Cancer Dream Team
investigators. The study sponsors had no role in the design of the study, the collection or
analysis of the data, or the preparation of the manuscript. The manuscript was written by
four of the authors. All authors reviewed the manuscript, agreed to submit the manuscript for
publication, and vouch for the accuracy and completeness of the data and for the fidelity of
the study to the protocol.

SEQUENCING AND BIOINFORMATICS ANALYSIS

For the analysis involving Case Series 1, 2, and 6, whole-exome sequencing of germline and
tumor DNA was performed as described previously.18 Germline DNA from buccal swabs,
buffy coats, or whole blood was isolated with the use of the QIAGEN DNeasy Blood and
Tissue Kit. Whole-exome sequencing was performed on the lllumina HiSeq 2500 in paired-
end mode.

For the analysis of Case Series 3, germline DNA was extracted from saliva or buccal swab
samples with the use of the Oragene kit (DNA Genotek). Libraries for targeted sequencing
were constructed with a customized GeneRead DNaseq Panel (Qiagen) covering 53 genes
and run on the Illumina MiSeq sequencer, as described previously.16

For the analyses of Case Series 4 and 5, germline DNA was extracted from peripheral blood
or nontumor tissue and from matched tumor DNA, as described previously.19 Targeted deep
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sequencing was performed with the BROCA panel of 53 DNA-repair pathway genes. The
bioinformatics pipeline has been described previously.2%-21 For tumors from Case Series 5,
analyses were performed by means of exome sequencing, as described previously.?2 For
Case Series 7, tumor and germline genomic sequencing was performed as described
previously, with the use of the MSK-IMPACT hybrid capture-based next-generation
sequencing assay.23:24

The mean sequencing depth of coverage was more than 100x for all case series, with the
exception of sequencing of BAP1, BARDI1, BRIPI1, and FAM175A, which were not
included on the Royal Marsden Hospital panel, and GENZ, which was not included on the
Royal Marsden Hospital or Memorial Sloan Kettering panel. Data from the Royal Marsden
Hospital and Memorial Sloan Kettering cases were censored for analyses of these genes. In
addition, data were censored for CHEKZ in 158 cases for which exon sequencing coverage
was incomplete. The depth of coverage for each gene according to site is provided in Table
S4 in the Supplementary Appendix.

To compare our results with data from a large series of patients with localized prostate
cancer, we analyzed public data from the Cancer Genome Atlas prostate cancer study.2>
Paired-end reads (100 bp) were aligned to the hg19 reference human genome with the use of
the Burrows—Wheeler Aligner. Annotations were defined with ANNOVAR (http://
annovar.openbioinformatics.org/en/latest). Population allele frequencies were extracted from
the Exome Aggregation Consortium EXAC Browser (http://exac.broadinstitute.org/), 1000
Genomes (www.1000genomes.org), and the single-nucleotide polymorphism database of the
National Center for Biotechnology Information (dbSNP), version 138
(www.ncbi.nlm.nih.gov/projects/SNP).

INTERPRETATION OF VARIANTS

Our analysis focused on variants identified among 20 genes associated with autosomal
dominant cancer-predisposition syndromes that involve maintenance of DNA integrity
(Table 2). The pathogenicity of germline variants was determined according to established
American College of Medical Genetics and Genomics and Association for Molecular
Pathology consensus criteria and International Agency for Research on Cancer
guidelines.?426 At least two independent expert reviewers evaluated all variants against
published literature and public databases, including ClinVar and variant-specific databases,
in addition to population frequency databases, including 1000 Genomes and the Exome
Aggregation Consortium. Expected high-penetrance or moderate-penetrance variants
classified as mutations that are pathogenic or likely to be pathogenic are reported here. Low-
penetrance variants, such as CHEKZ2 p.1157T, were excluded.

STATISTICAL ANALYSIS

Associations between DNA-repair gene mutation status and age, race, or Gleason score
strata were evaluated with the use of two-sided Fisher’s exact tests. The frequencies of
DNA-repair gene mutations among the 692 patients with metastatic prostate cancer were
evaluated relative to the expected frequencies from the Exome Aggregation Consortium
(53,105 persons) or the Cancer Genome Atlas cohort (499 persons) with the use of two-
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sided exact binomial tests. We also performed analyses in which the 150 men from the
previously reported Case Series 1 were excluded!® (Table S5 in the Supplementary
Appendix). No adjustments were made for multiple comparisons; P values of less than 0.05
were considered to indicate statistical significance.

PATIENT CHARACTERISTICS

All 692 men in our analysis had documented metastatic prostate cancer, as determined by
histologic evaluation of a tumor-biopsy specimen or surgical-resection specimen. The
demographic characteristics of the men from each case series are shown in Table 1.

GERMLINE DNA-REPAIR GENE MUTATIONS

We assessed 20 genes that maintain DNA integrity and have been associated with autosomal
dominant cancer-predisposition syndromes (Table 2), using whole-exome sequencing or
targeted next-generation sequencing assays designed to interrogate the status of DNA-repair
genes.2” Of the 692 men evaluated, 82 (11.8%) had at least one presumed pathogenic
germline mutation in a gene involved in DNA-repair processes (Table 2). Mutation
frequencies were similar across independent case series (Table 3). The 84 germline
mutations that were presumed to be pathogenic (2 men had mutations in 2 genes) included
79 truncating mutations and 5 known deleterious missense mutations (Fig. 1, and Table S1
in the Supplementary Appendix). Mutations were identified in 16 different genes, including
BRCAZ (37 mutations [44% of total mutations]), A7M (11 [13%]), CHEKZ (10 [12%)]),
BRCAI (6 [T%]), RAD51D (3 [4%]), and PALBZ2 (3 [4%]) (Fig. 2). Four genes had no
clearly detrimental aberrations. One man had mutations in ATMand CHEKZ, and one man
had mutations in BRCAZand CHEKZ. The majority of men with DNA-repair gene
mutations for whom the Gleason score was available (73 men) had primary tumors with high
scores (Gleason scores range from 2 to 10, with higher scores associated with worse clinical
outcomes): 56 men (77%) had a Gleason score of 8 through 10, 15 men (21%) had a score of
7, and 2 men (3%) had a score of 6. We found no association between the presence of a
germline DNA-repair gene mutation and an age at diagnosis of younger than 60 years versus
60 years or older (P = 0.90) or non-Hispanic white versus other race (P = 0.84). There was
marginal evidence that the presence of a germline DNA-repair gene mutation was associated
with a Gleason score of 8 through 10 versus 7 or lower (odds ratio, 1.8; 95% confidence
interval [CI], 1.0 to 3.5; P = 0.04).

FAMILY CANCER HISTORY

Information regarding family history was available for 72 of 82 men (88%) with presumed
pathogenic mutations in DNA-repair genes and for 537 of 610 men (88%) without DNA-
repair gene mutations. In both groups, 22% of the men (16 of 72 men with DNA-repair gene
mutations and 117 of 537 men without such mutations) had a first-degree relative with
prostate cancer (P = 1.0). However, 51 of the 72 patients with DNA-repair gene mutations
(71%) had a first-degree relative with cancer other than prostate cancer, whereas 270 of the
537 patients without DNA-repair gene mutations (50%) had a first-degree relative with
cancer other than prostate cancer (odds ratio, 2.4; 95% Cl, 1.4 to 4.3; P = 0.001). Inspection
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of extended pedigree information of probands with DNA-repair gene mutations revealed
affected relatives with breast cancer (24 probands), ovarian cancer (10), leukemia and
lymphoma (6), pancreatic cancer (7), or other gastrointestinal cancers (18).

SOMATIC MUTATIONS IN DNA-REPAIR GENES

Tumor sequencing data were available for 61 of the men with germline DNA-repair gene
mutations. For 36 (59%) of these men, the second allele was clearly aberrant, in that either a
second loss-of-function mutation or a gene-copy loss was present (Table S1 in the
Supplementary Appendix). A study of cancer-predisposition genes in children with cancer
showed that 66% of children with a presumed pathogenic gene mutation had a second “hit”
somatic aberration within the tumor genome,28 and a study involving patients with advanced
cancer showed that 21.4% of patients with a presumed pathogenic gene mutation had a
somatic second-allele aberration.23 Although a subset of germline loss-of-function mutations
may not represent the causal event in the genesis of a given tumor, inactivation of the
remaining allele may occur through epigenetic mechanisms or other processes.2?

GERMLINE MUTATIONS IN DNA-REPAIR GENES IN LOCALIZED PROSTATE CARCINOMAS

We compared the frequency of germline DNA-repair gene mutations among men with
metastatic prostate cancer with the frequency of such mutations among men with localized
prostate cancer. In the Cancer Genome Atlas prostate cancer study,2> which included 499
men for whom germline whole-exome sequencing data were available, 23 men (4.6%) had
germline mutations in DNA-repair genes (P<0.001 for the comparison with metastatic
disease). In addition, 6 men harbored the BRCA2 K3326+ polymorphism, a C-terminal
truncating variant that is unlikely to be associated with a predisposition to prostate cancer.3°
It should be noted that to accommodate Cancer Genome Atlas requirements, the majority of
tumors had high-risk characteristics: 90% were clinical stage T2c or greater, and 91% of the
carcinomas had a Gleason score higher than 6, which far exceeds the approximately 30% of
cancers with a Gleason score higher than 6 that was reported among men whose cancer was
diagnosed by screening.31-33 Presumed pathogenic mutations in DNA-repair genes were
identified in 2 of 45 men (4%) who had cancer with a Gleason score of 6, in 9 of 249 men
(4%) who had cancer with a Gleason score of 7, and in 12 of 205 men (6%) who had cancer
with a Gleason score of 8, 9, or 10 (P = 0.37 for trend). Four of 162 men (2%) with localized
low-to-intermediate—risk tumors and 19 of 337 men (6%) with localized high-risk tumors, as
categorized according to National Comprehensive Cancer Network risk criteria,3* had
germline DNA-repair gene mutations (Table 1). The odds of DNA-repair gene mutations
being present among men with metastatic prostate cancer differed significantly from the
odds among men with localized low-to-intermediate—risk tumors (odds ratio, 5.3; 95% ClI,
1.9 to 20.2; P<0.001) or among those with high-risk tumors (odds ratio, 2.2; 95% ClI, 1.3 to
4.0; P = 0.002) (Table S6 in the Supplementary Appendix). As observed in men with
metastatic prostate cancer, there was no association between the presence of a germline
mutation in a DNA-repair gene and an age at diagnosis of younger than 60 versus 60 years
of age or older (P = 0.28) or non-Hispanic white versus other race (P = 0.39).
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GERMLINE MUTATIONS IN DNA-REPAIR GENES IN THE POPULATION

To estimate the population frequencies of germline mutations in DNA-repair genes, we
analyzed exome data compiled from 53,105 persons included in the Exome Aggregation
Consortium. We excluded data from persons with cancer who had been included in the
Cancer Genome Atlas studies, the inclusion of which could have biased the comparisons
with men with prostate cancer. The odds of any deleterious DNA-repair gene mutation being
present in men with metastatic prostate cancer differed significantly from the odds in the
Exome Aggregation Consortium population (odds ratio, 5.0; 95% ClI, 3.9 to 6.3; P<0.001); a
similar result was obtained when men from the previously reported Case Series 1 were
excluded (odds ratio, 5.2; 95% ClI, 4.0 to 6.8; P<0.001) (Table S5 in the Supplementary
Appendix). The relative risk of mutations in individual DNA-repair genes among men with
metastatic prostate cancer, as compared with men in the Exome Aggregation Consortium
population, was substantial, ranging from 18.6 (95% CI, 13.2 to 25.3; P<0.001) for BRCAZ2
t0 3.1 (95% Cl, 1.5 t0 5.6; P = 0.002) for CHEKZ (Table 2).

DISCUSSION

Inherited and acquired defects in DNA damage repair are key mechanisms in the genesis of
malignant tumors. The detection of mutations in DNA-repair genes identifies persons and
families who have a predisposition to cancer and defines cancer subtypes that have distinct
vulnerabilities to specific therapeutics.3® The ascertainment of germline mutations in DNA-
repair genes in men with prostate cancer has several important clinical implications. First,
the recent finding that pharmacologic inhibitors of PARP1 induce substantial objective
responses in patients with metastatic prostate cancer expressing homologous recombination
DNA-repair defects provides a clear treatment pathway in accordance with precision
medicine strategies.1® These tumors also appear to be responsive to platinumbased
chemotherapy,1’ as has been documented for cancers of the ovary and breast in carriers of
BRCA1 and BRCA2 mutations.36:37 Second, the identification of a germline mutation in a
DNA-repair gene provides information that is key to relatives, both male and female, and
that can prompt “cascade” counseling to identify cancer predisposition and deploy risk-
reduction strategies. Prospective studies assessing the prognostic and predictive significance
of mutations in DNA-repair genes with regard to clinical outcomes are now needed to
inform personalized care.

The significant family history of nonprostate cancers among men with mutations in DNA-
repair genes was largely accounted for by breast, ovarian, and pancreatic cancers, in which
mutations in DNA-repair pathways are known. The possible association between mutations
in DNA-repair genes and familial hematologic and gastrointestinal cancers requires further
analysis of cosegregation in affected kindreds. As observed for BRCA1and BRCAZin
breast cancer, mutations may be found in persons who do not have a known syndromic
history.38:39 Thus, broader testing of patients with metastatic prostate cancer without regard
to family history will increase the yield of actionable mutations identified, in a manner
parallel to the recent inclusion of all patients with epithelial ovarian cancers for germline
testing regardless of family history.40
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This study has several limitations. First, although efforts were made to standardize DNA-
sequencing analyses, direct comparability across institutions and with public data is not
guaranteed. Second, we focused on clearly deleterious mutations in a selected set of DNA-
repair genes; consequently, our findings may underestimate the true frequency of pathogenic
events that influence the development of metastatic prostate cancer. Third, although patients
across institutions and in the control populations were unselected for family history, possible
bias cannot be ruled out. Finally, our case series and the Cancer Genome Atlas study include
few persons who were older than 70 years of age at diagnosis, and the incidence of germline
DNA-repair gene mutations may differ in this older age group.

In conclusion, the 11.8% overall frequency of germline aberrations in genes responsible for
maintaining DNA integrity in men with metastatic prostate cancer is substantially higher
than the 1.2 to 1.8% incidence of BRCAZ mutations alone in localized prostate cancer®12 or
the 7.3% incidence of mutations in 22 tumor-suppressor genes in familial prostate cancer.14
Because the high frequency of DNA-repair gene mutations is not exclusive to an early-onset
phenotype and is associated with clinically and histologically aggressive disease, with
compelling evidence for therapeutic relevance, it may be of interest to routinely examine all
men with metastatic prostate cancer for the presence of germline mutations in DNA-repair
genes.
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Figure 1. Presumed Pathogenic Germline M utations
Locations of mutations and domains in proteins encoded by 16 predisposition genes are

shown by lollipop structures, with the mutation type indicated by color. Protein domains are
also distinguished by color. On the graph of each gene, the x axis reflects the number of
amino acid residues, and the y axis represents the total number of mutations identified. Of
the 20 genes analyzed, 4 (BAPI, BARDI, MLH1, and XRCC2) had no presumed
pathogenic germline mutations.
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Figure 2. Distribution of Presumed Pathogenic Ger mline M utations
Shown are mutations involving 16 DNA-repair genes. Four genes did not have any

pathogenic mutations identified and are not included in the distribution.
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Germline DNA-Repair Gene Mutations in Seven Metastatic Prostate Cancer Case Series.

Table 3

Case Patientswith
Series  Description Patients Mutations
no. no. (%)

1 Stand Up To Cancer—Prostate Cancer 150 15 (10.0)
Foundation discovery series

2 Stand Up To Cancer—Prostate Cancer 84 9(10.7)
Foundation validation series

3 Royal Marsden Hospital 131 16 (12.2)

4 University of Washington 91 8(8.8)

5 Weill Cornell Medical College 69 7(10.1)

6 University of Michigan 43 4(9.3)

7 Memorial Sloan Kettering Cancer 124 23 (18.5)
Center

Total 692 82 (11.8)
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