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ABSTRACT
....................................................................................................................................................

Objective Extracting medical knowledge from electronic medical records requires automated approaches to combat scalability limitations and se-
lection biases. However, existing machine learning approaches are often regarded by clinicians as black boxes. Moreover, training data for these
automated approaches at often sparsely annotated at best. The authors target unsupervised learning for modeling clinical narrative text, aiming at
improving both accuracy and interpretability.
Methods The authors introduce a novel framework named subgraph augmented non-negative tensor factorization (SANTF). In addition to relying
on atomic features (e.g., words in clinical narrative text), SANTF automatically mines higher-order features (e.g., relations of lymphoid cells ex-
pressing antigens) from clinical narrative text by converting sentences into a graph representation and identifying important subgraphs. The au-
thors compose a tensor using patients, higher-order features, and atomic features as its respective modes. We then apply non-negative tensor fac-
torization to cluster patients, and simultaneously identify latent groups of higher-order features that link to patient clusters, as in clinical guidelines
where a panel of immunophenotypic features and laboratory results are used to specify diagnostic criteria.
Results and Conclusion SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-
negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-
by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified la-
tent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate
the latent groups of higher-order features.

....................................................................................................................................................
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INTRODUCTION AND RELATED WORK
One primary source of medical knowledge lies in clinical patient cases
that are documented in electronic medical records (EMRs) with in-
creasing detail. The transformation from clinical cases and experi-
ences to knowledge is largely an expert task and faces an ongoing
need for periodic labor-intensive revision. Within oncology, for exam-
ple, the most recent revision of the lymphoma classification guideline
by the World Health Organization (WHO) lasted >1 year, involving an
eight-member steering committee and over 130 pathologists and he-
matologists worldwide.1 Moreover, only around 1400 cases from
Europe and North America were reviewed in the context of this revi-
sion, subjecting this process to substantial selection bias. To assist
with expert review, an automated approach that can cover a much
broader and larger patient population and minimize selection bias is
clearly needed.

Advances in machine learning have opened avenues toward more
effective mining and modeling of EMRs to facilitate translational re-
search.2,3 However, clinicians often regard existing machine learning
models as hard-to-interpret black boxes. In lymphoma pathology re-
port, immunophenotypic features may be expressed in the form of re-
lations among medical concepts such as lymphoid cells and antigens
(e.g., “[large atypical cells] express [CD30]”). We refer to the above re-
lations as higher-order features, and the words (e.g., “large,” “cells”)
as atomic features. When interpreting pathology reports and evaluat-
ing lymphoma subtypes, clinicians usually reason at the level of
higher-order features (e.g., cell-antigen relations) besides atomic fea-
tures (e.g., individual words). Moreover, multiple higher-order features

(such as “[large atypical cells] express [CD30],”“ [large atypical cells]
express [CD15],” and “[large atypical cells] have [Reed-Sternberg ap-
pearance]”) can strengthen the confidence of suspected lymphoma
(Hodgkin lymphoma here). Such a group of higher-order features natu-
rally encodes medical knowledge as in the WHO lymphoma classifica-
tion guideline1 (referred to as WHO guideline later), where a panel of
morphologic and immunophenotypic features are used to specify diag-
nostic criteria. For computational modeling, atomic features can help
correlate higher-order features in order to discover medically mean-
ingful groupings. For example, the above relations all share the words
“large,” “atypical,” and “cells,” which indicates that they all describe
the characteristics of tumor cells. However, extracting higher-order
features is itself a difficult task and often involves manually con-
structed rules and domain knowledge.4–7 In addition, modeling inter-
actions between higher-order features and atomic features are usually
ignored by machine learning algorithms that mostly adopt a flat pa-
tient-by-feature matrix view (patients as rows and features as col-
umns). Although theoretically one can add interactions as additional
features or embed graphical models to account for feature interac-
tions, the problem quickly becomes intractable for large feature
dimensionality.

On the other hand, limited availability of expert annotation leads to
the fact that most clinical data are still either unannotated or sparsely
annotated. Thus unsupervised machine learning approaches have of-
ten been used to analyze biomedical data.8,9 Moreover, the expense of
expert engineered features also argues for unsupervised feature learn-
ing instead of manual feature engineering.10–12 In particular, non-
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negative matrix factorization (NMF) has been a highly effective unsu-
pervised method13 to cluster similar patients14 and sample cell lines,15

to identify subtypes of diseases16 and to learn groups of atomic fea-
tures or expert engineered features such as temporal patterns from
predefined events17 and genetic expression patterns.18–22 As the
multi-dimension extension of NMF, non-negative tensor factorization
(NTF)23–25 has recently been studied to model the genetic associations
with phenotypes26–28 and interaction between cellular activities.29

However, none of these approaches model the correlations among
higher-order features, and some even do not consider higher-order
features. Our work is more closely related to previous works on apply-
ing NMF and NTF in text mining in the general domains such as email
and security surveillance.30–33 In particular, our approach differs from
the NTF based text document analysis30,33 in that we augment the
NTF with subgraphs to capture relation oriented higher-order features
instead of standalone entities. In addition, we adopted the Tucker ten-
sor factorization model instead of the PARAFAC model,34 where the
support for factor matrices with different group numbers better serves
our application purpose.

In this paper, we develop an unsupervised framework that can
generate machine learning models naturally interpretable to clinicians.
The framework adopts NTF to discover groupings of subgraph
encoded higher-order features, hence the name subgraph augmented
non-negative tensor factorization (SANTF).

METHODS
Workflow of SANTF
We first outline SANTF workflow in Figure 1. Narrative text sentences
are first converted to graph representations. The graph representation
is derived from natural language processing (NLP) steps for pathology
reports as shown in Figure 2. We use frequent subgraph mining
(FSM)35 tools to collect important subgraphs, which are relations
among medical concepts mentioned in the sentences. Examples of
higher-order features for clinical narrative text are shown in Figure 2.
With such representations, subgraphs naturally encode higher-order
features, and we use “subgraphs” and “higher-order features” inter-
changeably throughout the paper. We jointly model the higher-order
features and atomic features, and apply NTF to discover groups of fea-
tures and patients, and then perform unsupervised learning to identify
the association between feature groups and patient groups. We next
explain the tensor modeling and factorization in more detail.

Representing text as graphs
Figure 2 shows the steps to convert text to graphs for clinical narrative
text, with an example sentence. We apply several NLP steps, including
sentence breaking, tokenization, part-of-speech tagging, and a two-
phase sentence parsing step that utilizes UMLS Metathesaurus,10 to
convert narrative sentences into graph representation (also described
in the Supplementary data). Our subgraph mining approach10 differs
from previous works (e.g., 36–39) in that we extract subgraphs whose
nodes usually correspond to UMLS (Unified Medical Language System)
concepts instead of individual tokens in the sentence. The highly vari-
able ways of expressing concepts in clinical narrative text favors this
method. In order to generate similar representation for semantically
similar but grammatically different language constructs (e.g., active
voice vs. passive voice), we do not distinguish edge labels and we use
the root form of verbs in the actual graph/subgraph representation.
We then collect frequent subgraphs from the resultant graph corpus.

Frequent subgraph mining
We perform FSM, which is defined on the notion of graph subisomor-
phism. We say one graph is subisomorphic to another if all its nodes

and edges coincide with part of the other one. A subgraph occurs
once in a corpus whenever it is subisomorphic to a graph in that cor-
pus. FSM identifies those subgraphs that occur in a corpus above a
given threshold number of times.40,41 In this work, we use the fre-
quent subgraph miner GASTON35 with the frequency threshold set to
5. Example frequent subgraphs from pathology report narrative text
are shown in Figure 2.

Joint modeling of higher-order features and atomic features using
a tensor
In clinical narrative text, higher-order features are often correlated
with each other in medically meaningful ways. For example, the two
subgraphs in Figure 2 both describe the surface markers expressed
by the “large atypical cells” that are often tumor cells. However, as
pointed out in the introduction, with a flat matrix view and binary fea-
ture representation, such correlations are difficult to account for.
Motivated by the need to explicitly model correlations among the
higher-order features, we compose a three-mode tensor, in which one
mode represents the patients, a second the higher-order features
(subgraphs), and a third the atomic features. Note that in tensor termi-
nology,34 we speak of mode in place of dimension. Figure 3 shows
the schematic view of tensor modeling. We select as atomic features
the words that are covered by or next to a subgraph node (neighbor-
hood window size was set to two for this work). The intuition is that
subgraphs that share affiliated (covered and contextual) words are
likely to be conceptually related. By taking the union over all words
that are affiliated with the nodes of a sentence subgraph, we obtain
the distributional representations of that sentence subgraph. Each en-
try of the tensor is the count of a certain combination of patient,

Figure 1: The workflow of subgraph augmented non-
negative tensor factorization (SANTF). FSM—frequent
subgraph mining; NLP—natural language processing.
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subgraph, and word, and is non-negative (see Figure 3 for an exam-
ple). We then used a generalized tf-idf weighting of co-occurrence
counts of subgraph-word pairs (i.e., counting and weighting sub-
graph-word pairs instead of counting and weighting words), which
leads to better empirical performance.

Patient and feature group discovery using SANTF
The non-negative tensor is then factorized to reduce dimensionality
and obtain groups for each mode. We follow the Tucker factorization
scheme,23 where the data tensor is factorized into a core tensor multi-
plied by factor matrices (one factor matrix for each mode, and is or-
thogonal in our setting). The core tensor specifies the level of
interaction between groups from different modes. The column vectors

in a factor matrix specify the grouping in the corresponding mode.
Such groupings can capture similar patients, similar sentence sub-
graphs and similar words; meanwhile they allow sharing of an element
among different groups as specified by its fractional weights across
groups. In Figure 3, two example subgraph groups are shown. The top
subgraphs in the subgraph group 1 correlate with Hodgkin lymphoma.
The top subgraphs in the subgraph group 2 correlate with diffuse large
B-cell lymphoma (DLBCL). Meaningful groupings will not only improve
the performance of multiple machine learning tasks but also identify
panels of characteristic features of patient subcategories, in the same
form as specified by the diagnostic guidelines.

SANTF differs from previous NTF related works26–28 by introducing
a mode that captures higher-order features. SANTF performs group
discovery over sentence subgraphs based on the intuition that these
higher-order features encode more aggregated information. In addi-
tion, SANTF simultaneously identifies the groups of the atomic fea-
tures, which indirectly helps the group discovery for higher-order
features through the core tensor. This is possible as the core tensor
encodes the interactions among the groups of patients, higher-order
features, and atomic features. We refer the reader to the supplement
for detailed SANTF algorithm.

EXPERIMENTS AND RESULTS
We experimented with SANTF on clustering lymphoma subtypes based
on pathology report narrative text. SANTF itself does not require anno-
tated training data, but in order to verify our algorithms, we use anno-
tated datasets for ground truth. We collected narrative text pathology
reports from the Massachusetts General Hospital. We requested re-
ports from the Research Patient Data Registry (RPDR) and obtained
our patient cases by having two Massachusetts General Hospital medi-
cal oncologists and one hematopathologist review pathology reports of
patients diagnosed between the years 2000 and 2010. Our dataset
consists of 897 patients whose written diagnosis (in the final diagno-
ses section) maps to one of the following three lymphomas: Diffuse
large B-cell lymphoma (DLBCL, the most common lymphoma), follicu-
lar lymphoma (the second most common lymphoma), and Hodgkin
lymphoma (the most common lymphoma in young patients). The writ-
ten diagnoses themselves were excluded from being processed by the
feature extraction steps. The case distribution of the ground truth is
shown in Table 1, where the dataset is partitioned roughly equally,
and stratified by type of lymphoma, into a training set (471 cases) and
a testing set (426 cases).

To study the impact of being able to model the interactions among
multiple types of features, we establish three types of baselines for
non-NMF and two configurations of k-means, a frequently used clus-
tering method. The two configurations of k-means differ in their dis-
tance metrics used: Euclidean distance and cosine distance.42 The
first type of baseline applies NMF or k-means on the hpatient, atomic
featurei matrices. The second baseline applies NMF or k-means on
the hpatient, higher-order featurei matrices. The third baseline applies
NMF or k-means on the hpatient, combined featurei matrices, where
the combined features are generated by adjoining the atomic features
and the higher-order features, because we want to exclude the possi-
bility that the improvements of SANTF only come from simply adding
features. Under orthogonality constraints, NMF is equivalent to simul-
taneous clustering of rows and columns of a matrix,43 and similar ar-
guments can be made for NTF. Thus for each factorization scheme,
we obtain the factor matrix of hpatient, patient groupi, and translate
this matrix into a clustering interpretation in that for each patient case,
we pick the maximum column as its cluster label. For the pathology
reports, recorded texts reflect results from tests and labs that are

Figure 2: Graph generation and subgraph collection in
SANTF. The graph representation for the example
sentence: “Immunostains show the large atypical cells
are positive for OCT2 and BOB1, and negative for
CD10, CD15 and CD30.” Example frequent subgraphs
are shown after the frequent subgraph mining (FSM)
steps.
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performed in order to make differential diagnoses among possible
subtypes of lymphoma. Thus it is reasonable to expect that clustering
based on these data will lead to patient groupings that reflect the lym-
phoma subtypes.

The tensor has 3773 higher-order features and 2841 atomic fea-
tures. The patient group number is set to three, the same as the num-
ber of lymphoma subtypes. Because our method is unsupervised,
there is no a priori mapping from patient groups to lymphoma
subtypes. We therefore consider the label permutation that yields the
best evaluation metrics as a parameter. For SANTF, the ideal group
numbers for the higher-order features and for the atomic features
are also parameters. All parameters are selected using 5-fold

cross-validation on the training data and then applied to the held-out
testing data.

For the evaluation metrics of clustering performance, we use the
commonly adopted metrics of averaged precision, recall, f-measure,
and accuracy that all apply to multi-class clustering.44 Let TP denote
the number of true positives in the contingency table, FP denote the
number of false positives, and FN denote the number of false nega-
tives, the definition of precision is P¼ TP/(TPþ FP), recall is R¼ TP/
(TPþ FN), F-measure is F ¼ 2� P � R=ðP þ RÞ. Averaging com-
putes a direct arithmetic average over classes. The accuracy com-
putes the proportions of the sum of diagonal entries out of all entries
from the multi-class contingency table. Because neither the NMF nor

Figure 3: Tensor modeling and factorization with distributional representations of the sentence subgraphs. In the figure,
we show some higher-order features (the sentence subgraphs), as well as some atomic features (the words). The higher-
order features are numbered with the first subgraph being “[large cells] – [negative] – [BCL2].” This subgraph matches the
sentence “The large cells are negative for BCL2,” where the word “cells” is one of the neighboring contextual words for
the node “[negative].” If the pathology report of patient 1 has a sentence “The large cells are negative for BCL2,” then
subgraph 1 is associated with this patient. As the subgraph covers the word “large,” the first atomic feature, the tensor
entry (1,1,1) is increased by 1. The factor matrix A is the hpatient, patient groupi matrix, B the hsubgraph, subgraph groupi
matrix, C the hatomic feature, atomic feature groupi matrix. The core tensor G captures the interactions between the
patient groups, subgraph groups, and atomic feature groups. We also show example subgraph group 1 and subgraph
group 2. It is desirable that some subgraph groups correspond to panels of characteristic features for lymphoma subtypes.
For example, subgraph group 1 includes mentions of CD30 staining and Reed-Sternberg appearance of cells, and suggests
Hodgkin lymphoma; subgraph group 2 includes mentions of diffuse infiltration of large cells, moderately high Ki67
expression, and no CD10 staining, and suggests diffuse large B-cell lymphoma.
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the NTF has a global convergence guarantee,34,45,46 we use random
initialization for all factorization schemes and average the clustering
evaluation metrics from 100 runs. We show the results in Table 2 for
the lymphoma subtype clustering. We also perform significance test-
ing based on the student t-test witha ¼ 0:05. We see that SANTF sig-
nificantly outperforms all nine baselines, and in particular, by over
10% margins in average F-measure to all baselines. Given that the
classes are highly imbalanced, the results seem to suggest that im-
provements by SANTF come not only from the fact that more patient
cases are correctly grouped (better accuracy), but also from more bal-
anced clustering among multiple classes (better averaged precision,
recall and F-measure). We refer the reader to the supplement Table 2
for detailed per-class evaluations.

FEATURE ANALYSIS
We performed feature analysis to identify groups of higher-order fea-
ture contributing to lymphoma subtype clustering. The analyzed sub-
graph groups correspond to the core tensor size of 3� 180� 60
selected by cross-validation. We follow the standard approach of ana-
lyzing groups in factorization models,47 and make necessary adapta-
tion to SANTF output. Based on the core tensor after factorization, we
associate subgraph groups with patient clusters using the following
calculation. Adopting the standard notation,34 for each slice Gi : :

(i ¼ 1; 2; 3) corresponding to a particular patient clusteri , we sum
over its word mode (mode 3) to get a vector whose elements corre-
spond to the subgraph groups. We then sort the vector and investigate

the top 10 subgraph groups for each patient clusteri . For each sub-
graph group, we sort the subgraphs according to their weights in the
subgraph factor matrix and display the top subgraphs, where the
weight is the entry value in the matrix indexed by the corresponding
subgraph and subgraph group. For each patient cluster, we select its
top four subgraph groups and list them in Tables 3–5. For readability,
we translated each subgraph into a partial sentence. Note that in the
first DLBCL-associated subgraph group, although we have listed “cells
are CD30þ , MUM1þ” in order in the partial sentence, the subgraph
does not distinguish the order between “CD30þ” and “MUM1þ” as
they are both linked to “cells.” We analyze each cluster and relate
them in the context of the WHO guideline,1 which reflects the current
consensus knowledge.

For the DLBCL cluster as shown in Table 3, the first associated
subgraph group recognizes the following histologic (light microscope-
visible) facts: the cells are atypical in appearance and are large lym-
phoid cells with vesicular nuclei (the critical visual hallmarks of
DLBCL). Immunohistochemically the group appropriately identifies
staining for the B cell markers CD79a and CD20. Although the staining
for CD79a, CD20 can also be seen in the scattered large lymphocyte-
predominant (LP) cells in nodular LP Hodgkin lymphoma (NLPHL) (see
p. 324 of the WHO guideline1), these LP cells generally lack CD30
staining. Also, the predominance of large cells helps to rule out
NLPHL. Thus these features all together offer insights into the differen-
tial diagnosis of DLBCL (see Chapter 10 of the WHO guideline1). The
second DLBCL associated subgraph group is again highly consistent
with the current pathologic definition of DLBCL and in this group the
additional feature of monotypic light chain expression is identified.
This group appears to be directed toward the identification of the acti-
vated B cell-like subtype of DLBCL which is CD10 negative. The third
DLBCL associated subgraph group echoes the characteristic features
of DLBCL: diffuse infiltrate of neoplastic cells, expression of common
B-cell lineage antibodies, and monotypic immunoglobulin expression.
The second and third groups also reflect the mixed expression levels
of BCL2 in DLBCL. The fourth DLBCL associated subgraph group
states the following interesting facts: Ki67 proliferation index is moder-
ately high. Note that when discretizing percentages, we choose multi-
ple dichotomy thresholds with a step size of 10%. Thus collectively
the subgraphs on Ki67 proliferation index point out that the index is

Table 1: Statistics of the lymphoma subtype distribu-
tion in the pathology narrative text corpus

Clinical Narrative Text

Lymphoma All Train Test

DLBCL 589 305 284

Follicular 184 101 83

Hodgkin 124 65 59

Table 2: Clustering performances for Massachusetts General Hospital lymphoma dataset

Methods Avg. Precision Avg. Recall Avg. F-measure Accuracy

(1) NMF pt � wd 0.492 0.495 0.428 0.626

(2) NMF pt � sg 0.621 0.765 0.601 0.605

(3) NMF pt � [sg wd] 0.637 0.787 0.615 0.614

(4) k-means (Euclidean) pt � wd 0.483 0.420 0.398 0.664

(5) k-means (Euclidean) pt � sg 0.700 0.602 0.584 0.708

(6) k-means (Euclidean) pt � [sg wd] 0.690 0.593 0.573 0.726

(7) k-means (Cosine) pt � wd 0.620 0.694 0.618 0.617

(8) k-means (Cosine) pt � sg 0.647 0.762 0.624 0.615

(9) k-means (Cosine) pt � [sg wd] 0.648 0.759 0.626 0.617

(10) SANTF pt � sg � wd 0.7201–9 0.8491–9 0.7431–9 0.7511–9

Each factorization and clustering scheme is numbered in the “methods” column. Significant improvements (p< 05) are in bold-face and marked
with superscripts indicating the baselines against which they were significantly improved from. SANTF chose by cross-validation 3� 180� 60 as
the core tensor size for the lymphoma dataset.
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moderately high in DLBCL. This in addition to the positivity of CD20
and CD79a, and the monoclonality of immunoglobulin light chains col-
lectively associate with the differential diagnosis of DLBCL (see
Chapter 10 of the WHO guideline1).

For the follicular lymphoma cluster as shown in Table 4, the first
associated subgraph group is consistent with the fact that follicular
lymphoma is typically composed of both centrocytes (small cells)
and centroblasts, and in bone marrow biopsies the lymphoma char-
acteristically localizes to the paratrabecular region in bone marrow
and may spread into the interstitial area (see p. 222 of the WHO
guideline1). The second follicular lymphoma associated subgraph

group is consistent with frequent BCL2 overexpression, accompanied
sclerosis, and enlargement and effacement in the architecture of
lymph nodes in the setting of follicular lymphoma. The third follicular
lymphoma associated subgraph group summarizes typical immuno-
phenotypic features such as lack of expression for the cell surface
marker CD5, and mixed expression levels of CD10 (together with the
first and second follicular lymphoma associated subgraph groups)
and CD23, all of which are consistent with Table 8.01 in the WHO
guideline.1 The fourth follicular lymphoma associated subgraph
group reveals characteristic morphological features including dense
infiltration of small lymphoid cells, the presence of cleaved

Table 3: Top higher-order feature groups associated with diffuse large B-cell lymphoma

DLBCL First Subgraph Group DLBCL Second Subgraph Group

0.6640 atypical cells 0.0530 atypical cells

0.0929 large lymphoid cells 0.0293 large lymphoid cells

0.0057 show . . . positive cells 0.0240 large cells

0.0040 large lymphoid cell with vesicular nuclei 0.0070 monotypic staining of immunoglobulin
light chains

0.0025 show the cells are . . . B-cells co-expressing 0.0059 show large atypical cells with . . . vesicular
nuclei

0.0019 large cells predominate 0.0051 B-lineage antibody PAX5 . . . stain . . . large
cells

0.0010 cells are CD30þ, MUM1þ 0.0049 associated cells

0.0005 large cells stain for CD79a 0.0047 a few large cells

0.0005 admixed small lymphocytes 0.0037 atypical cells are CD10�, BCL2� . . .

0.0004 large cells stain positively for CD20 0.0034 infiltrate of large . . . cells with . . . scant
cytoplasm

0.0002 large atypical cell with vesicular nuclei 0.0034 sheet of . . . cells

DLBCL Third Subgraph Group DLBCL Fourth Subgraph Group

0.0385 diffuse infiltrate of large . . . cells 0.0144 negative for cytokeratin

0.0329 large lymphoid cells 0.0111 stain positively for CD20

0.0312 large atypical cells 0.0104 in-situ hybridization show

0.0137 diffuse infiltrate of large . . . cells
with . . . vesicular nuclei

0.0103 positive for immunoglobulin kappa chains

0.0082 B-lineage antibody
PAX5 . . . stain . . . large cells

0.0101 cells show . . . stain

0.0077 infiltrate of large . . . cells with . . . scant
cytoplasm

0.0094 Ki67 proliferation index is greater than 70%

0.0051 sections show . . . tissue with . . . infiltrate
of . . . cells

0.0086 Ki67 proliferation index is >60%

0.0041 positive for CD20, BCL2 0.0075 positive for CD79a

0.0028 cells . . . form 0.0060 stain for Ki67

0.0014 atypical large cells . . . positive for CD20 0.0053 large cells stain positively for CD20

0.0009 monotypic staining with immunoglobulin
lambda chains

0.0044 positive for cytokeratin

Subgraphs are translated to partial sentences. In each list item, e.g., “0.0010, . . . cells are CD30þ, MUM1þ . . . ”, 0.0010 indicates its weight in
the group. The “ . . . cells are CD30þ, MUM1þ . . . ” is the partial sentence translated from the corresponding subgraph. Partial sentences that
are not mentioned in feature analysis are grayed out. For brevity, we omit the leading and trailing “ . . . ” for partial sentences in the table.
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centrocytes, and the staining of cells in follicular dendritic pattern
(see p. 220 of the WHO guideline1).

For the Hodgkin lymphoma cluster as shown in Table 5, the first
associated subgraph group correctly identifies the morphological fea-
ture of the large neoplastic Reed-Sternberg cells that are usually
multilobated and stain positively for CD15 (see p. 327 of the WHO
guideline1). The second Hodgkin lymphoma associated subgraph
group extracts additional essential hematopathologic features for the
malignant cells of Hodgkin lymphoma: CD30 positivity, CD15 positiv-
ity, CD20 negativity, and the appearance suggestive of Reed-
Sternberg cells, which often express PAX5 and occur with histiocytes
(see p. 328 of the WHO guideline1). The third Hodgkin lymphoma as-
sociated subgraph group is mostly consistent with the nodular scle-
rosis subtype of classical Hodgkin lymphoma, where the lymphoma
contains Reed-Sternberg cells as well as a microenvironment of
non-neoplastic inflammatory cells, the lymph nodes show a nodular
growth pattern, collagen bands often surround nodules, and necrosis
may occur (see p. 330 of the WHO guideline1). The fourth Hodgkin
lymphoma associated subgraph group is mostly consistent with the
subtype of NLPHL, in that large neoplastic cells (LP cells) are positive
for CD45, OCT2, PAX5, and immunoglobulin light (kappa and/or

lambda) chains. The subgraph group is also consistent with the co-
occurrence of LP cells and CD3 positive T-cells (see p. 324 of the
WHO guideline1).

We note the advantage of using subgraph groups as features com-
pared to using individual subgraphs as features. For example, in the
third follicular lymphoma associated subgraph group, standalone posi-
tivity or negativity on CD5, CD10, and CD23 may not be discriminative
enough, but collectively they offer medically important information fa-
voring follicular lymphoma.

We next look into why the atomic feature groups as jointly discov-
ered by SANTF help to better group individual subgraphs, in order to
validate our intuition that exploiting interactions between both feature
types is beneficial. Continuing from the analysis of important higher-
order feature groups, we give an analysis on word group distributions
associated with individual subgraphs. In the first DLBCL associated
subgraph group in Table 3, the following subgraphs (partial sentences)
are together ranked among the top subgraphs: “ . . . large cells pre-
dominate . . . ,” “ . . . large cells stain for CD79a . . . ,” “ . . . large
cells stain positively for CD20 . . . ,” “ . . . large lymphoid cells . . . ,”
“ . . . cells are CD30þ, MUM1þ . . . ,” “ . . . atypical cells . . . ” By con-
trast, we did not find a similar grouping in patterns generated by those

Table 4: Top higher-order feature groups associated with follicular lymphoma

Follicular First Subgraph Group Follicular Second Subgraph Group

0.0308 interstitial lymphoid aggregates 0.0583 nodal architecture . . . effaced

0.0196 predominantly small . . . cell 0.0213 B-cells co-expressing BCL2, CD10

0.0171 paratrabecular lymphoid aggregates 0.0201 biopsy of lymph node

0.0149 focal 0.0091 sclerotic tissue

0.0127 cells in the follicles 0.0063 lymph node architecture effaced by . . . follicular proliferation

0.0117 large paratrabecular lymphoid aggregates 0.0061 sections show enlarged lymph nodes

0.0107 diffuse infiltrate of small lymphoid cells 0.0059 cell with reduced size

0.0093 infiltrate consisting of . . . lymphoid cells 0.0055 sections show . . . lymph nodes

0.0080 CD10þ/� B-cell population 0.0045 residual . . . follicle center cells

0.0062 core needle biopsy 0.0043 cells stain positively for . . . BCL2

0.0050 follicles contain . . . centroblasts 0.0021 flow cytometry demonstrate . . . population

Follicular Third Subgraph Group Follicular Fourth Subgraph Group

0.0829 B-cells are negative for CD5 0.0642 lymphoid infiltration

0.0466 B-cells express 0.0269 atypical infiltration

0.0405 CD5�, . . . , CD23� 0.0267 dense lymphoid infiltration

0.0315 negative for CD10 0.0133 mucosa infiltration

0.0271 positive for CD23 0.0102 small lymphoid cells

0.0251 positive for CD10 0.0095 small lymphocytes

0.0148 positive for CD19, CD20, CD23 0.0084 cleaved centrocytes

0.0060 containing . . . large atypical cells . . . 0.0082 diffuse infiltrate of small lymphoid cells

0.0041 positive for CD3 0.0060 cells . . . in follicular dendritic pattern

0.0024 show B-cells are positive for CD3, CD20 0.0059 fibroadipose tissue

0.0018 CD5�, CD10� . . . B-cells 0.0044 dense infiltrate containing lymphoid cells

Subgraphs are translated to partial sentences. Partial sentences that are not mentioned in feature analysis are grayed out.
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baselines that have subgraphs as features (baselines 2 and 3 in Table
2, k-means clustering does not produce subgraph groups). The posi-
tivity for the antigens CD79a and CD20 may associate with the scat-
tered large LP cells in NLPHL, but the group includes additional
positive staining for MUM1 and CD30, which favors the differential di-
agnosis of DLBCL. We look into the above six subgraphs and identify
word groups associated with each subgraph. Intuitively, such associa-
tions are expressed in the core tensor and one can sum out the patient
mode to explicitly associate a subgraph with the word groups (see
SANTF algorithm section in the supplement on how to identify word
groups associated with a specific subgraph from the tensor factoriza-
tion results). The associated word group distribution for each subgraph
is shown in Figure 4, and their correlation coefficients are shown in
Figure 5. It becomes evident from Figure 5 that each of the subgraphs
is correlated with at least one other subgraph with a correlation coeffi-
cient above 0.5, indicating relatively strong correlation. Figure 4 gives
details on which word groups help to correlate subgraphs. For exam-
ple, the word groups 10, 13, 16, 17, 26, 28, 33, and 52 help correlate
subgraphs “ . . . large cells stain positively for CD20 . . . ” and
“ . . . large cells stain for CD79a . . . .” This illustrates the benefits of
using word group distribution to correlate subgraphs. In summary,

analysis of word groups suggests that adding the word mode (includ-
ing covered and contextual words) to the tensor and jointly learning
the subgraph groups and the word groups help to better capture the
correlations between subgraph features.

DISCUSSION AND FUTURE WORK
Currently the selection of SANTF parameters such as core tensor size
relies on cross validation. We recognize the potential of using a non-
parametric Bayesian approach to discover such parameters directly
from data. For example, in the nonparametric Bayesian setting, each
patient in a dataset can be associated with hidden variables describing
groups (causes) that are responsible for generating the patient’s data.
Although there can be an infinite number of possible groups to choose
from, under proper prior distributions (e.g., specified using the Indian
buffet process48), only a finite number of groups would be selected.
Care needs to be taken when defining generative processes for multi-
ple types of features to account for the fact that atomic features aggre-
gate into higher-order features and to allow for an efficient inference
algorithm. Clearly, the performance of SANTF depends on the nature
of the relationships among the various modes of the tensor. We sus-
pect that there is an information-theoretic analysis that can shed light

Table 5: Top higher-order feature groups associated with Hodgkin lymphoma

Hodgkin First Subgraph Group Hodgkin Second Subgraph Group

0.0362 large cells 0.0143 positive for CD30

0.0312 atypical cells 0.0083 large cells are negative

0.0303 large cells stain 0.0065 positive for CD15, CD30

0.0263 positive for CD15 0.0063 expressing PAX5

0.0196 scattered large . . . cells 0.0063 large atypical cells

0.0117 infiltrate of large . . . cells with
lobated nuclei

0.0060 large cells are negative for CD20

0.0103 many large cells 0.0058 inflammatory cells

0.0064 large neoplastic cells 0.0058 large cells are Reed-Sternberg like

0.0046 stain positively for CD15 0.0049 rare cells are . . . positive

0.0042 multilobated . . . cells 0.0040 histiocytes

0.0027 background contain . . . lymphocytes 0.0034 irregular nuclei

Hodgkin Third Subgraph Group Hodgkin Fourth Subgraph Group

0.0233 necrosis 0.0237 positive for CD3

0.0142 dense sclerosis 0.0209 B-cells positive for immunoglobulin lambda chains

0.0106 vaguely nodular pattern 0.0179 small CD3 positive lymphocytes

0.0099 collagen fibrosis 0.0169 CD3 positive T-cells

0.0098 mixed inflammatory cells 0.0140 B-cells expressing . . . kappa and lambda light chains

0.0073 nodular pattern 0.0100 expression of B-cell antigens

0.0053 atypical infiltration 0.0053 number of . . . B-cells

0.0043 collagen bands 0.0048 large atypical cells

0.0042 nodular lymphoid proliferation 0.0047 expressing CD45

0.0018 areas of vague nodularity 0.0025 positive for OCT2, PAX5

0.0017 cells . . . with Reed-Sternberg forms 0.0020 many scattered . . . T-cells

Subgraphs are translated to partial sentences. Partial sentences that are not mentioned in feature analysis are grayed out.
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on quantifying these relationships, where the suggested generative
model could provide a basis for such an analysis.

SANTF applies to any medical subdomain where information can
be represented as higher-order features and atomic features. For
example, we recognize the potential benefits of applying SANTF to
physiologic time series. Recent studies49,50 called for learning risk
stratification models automatically from patient physiologic times se-
ries, for example, laboratory test values and vital measurements of
patients monitored in the intensive care units. Progression of multi-
ple physiologic variables can be summarized into temporal patterns
(higher-order features) using graph representation and mining.
Intuitively, similar numerical values (atomic features) of various
physiologic measurements are helpful in identifying groupings of
physiologic temporal trends by indicating similar states through
which the patients have passed. Thus it is reasonable to expect that
SANTF is also likely to improve modeling of physiologic time series
in predictive tasks such as mortality risk stratification.

SANTF is currently computationally intensive. The tensor factoriza-
tion on average takes 22 min on a computer with Intel Core 2 Duo
P8600 and 8 GB RAM. The steps of document preprocessing including
parsing, UMLS concept identification and graph/subgraph construction
also take considerable amount of time. We parallel the computations
into batches of 50 patients and run them on the pHPC clusters
at Partners Health Care which has 600 processing cores in total
and a maximum 100 core concurrency per user. The paralleled
pre-processing time is within 30 min, which could be improved

by parallelization into smaller batches on a larger cluster. We also plan
to explore parallelization and approximation techniques such as sto-
chastic gradient descent to speed up tensor factorization in future
work.

Parsing challenges may arise with less formal clinical notes such
as discharge summaries. For example, many connecting parts of
speech (conjunctions, articles, prepositions) may be elided, which
makes parsing dependency difficult for even statistical parsers. For
less formal clinical notes, we expect a hybrid form of NLP may work
better. Namely, for longer sentences, graph construction can be
based on dependency parsing, while for shorter sentences, graph
construction can be based on co-occurrence of concepts. Choosing
the threshold of longer versus shorter sentences is non-trivial and
may depend on the characteristics of clinical notes, we intend to ex-
plore such trade-offs in future work. On the other hand, different in-
stitutions may have different clinical documentation systems and
styles. Such generalizability challenges are partly addressed by our
clinical text subgraph mining approaches10 such as using UMLS
concepts as subgraph nodes and ignoring dependency types, which
can mitigate the impact of the terminology and style differences
between institutions. Using atomic features to correlate higher-order
features as done by SANTF also helps connect higher-order features
whose differences are mainly in writing style. We are expanding
the lymphoma classification project across institutions and across
nations, and systematic generalizability analysis is part of our future
work.

Figure 4: Word group distribution for six of the top subgraphs in the first DLBCL associated subgraph group. For example,
the word groups 10, 13, 16, 17, 26, 28, 33, and 52 help correlate subgraphs “ . . . large cells stain positively for
CD20 . . . ” and “ . . . large cells stain for CD79a . . . ”, as highlighted in light gray.
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CONCLUSIONS
We proposed a novel unsupervised framework of subgraph augmented
non-negative tensor factorization (SANTF), which can automatically
generate machine learning models that are naturally interpretable to
clinicians. SANTF can jointly model the interactions among different
types of features by integrating them into the learning objective. We
applied SANTF to unsupervised learning tasks on clustering lymphoma
subtypes based on narrative text from pathology reports. We estab-
lished nine baselines with widely used non-negative matrix factoriza-
tion (NMF) and k-means clustering methods. For each of NMF or
k-means configuration, the first baseline explores the atomic features.
The second baseline explores the higher-order subgraph features. The
third baseline explores both types of features but not their correlations.
Experimental evaluation demonstrated that SANTF significantly outper-
forms all nine baselines, in particular, by over 10% margins in average
F-measure to all baselines. A closer look at the subgraph groups that
are generated by SANTF offers more clinical insights about lymphoma
subtypes than atomic features or even standalone subgraphs. We also
found that the atomic feature groups as jointly discovered by SANTF
help to better correlate individual subgraphs, validating our intuition that
exploiting interactions between different feature types is beneficial.

COMPETING FINANCIAL INTERESTS
None.

ETHICS APPROVAL
The Institutional Review Boards governing oncology care at the Massachusetts

General Hospital approved this study. A waiver of informed consent was obtained.

The intensive care data are from a dataset distributed under a limited data use

agreement, which was approved by the Beth Israel Deaconess Hospital’s IRB.

FUNDING
The work described was supported in part by Grant Number U54LM008748

from the National Library of Medicine and by the Scullen Center for Cancer

Data Analysis.

CONTRIBUTORS
YL is the primary author and was instrumental in developing the subgraph and

tensor modeling, and performed data analysis. YX contributed to tensor model-

ing and analysis. EH provided expertise on lymphoma pathology. RJ provided

input to feature analysis. OU contributed to the subgraph modeling and evalua-

tion. PS provided expertise in machine learning and data analysis. EH and PS

are the principal investigator for the grants involving the secondary use of clini-

cal data. All co-authors reviewed and edited the manuscript. The content is

solely the responsibility of the authors and does not necessarily represent the

official views of the National Library of Medicine or the National Institutes of

Health.

SUPPLEMENTARY MATERIAL
Supplementary material is available online at http://jamia.oxfordjournals.org/.

REFERENCES
1. Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of

Tumours of Haematopoietic and Lymphoid Tissues. IARC Press; 2008.
2. Winslow RL, Trayanova N, Geman D, Miller MI. Computational medicine:

translating models to clinical care. Sci Transl Med. 2012;4:158rv11.
3. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma out-

come prediction by gene-expression profiling and supervised machine
learning. Nat Med. 2002;8:68–74.

4. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG. A simple
algorithm for identifying negated findings and diseases in discharge sum-
maries. J Biomed Informat. 2001;34:301–310.

5. Hristovski D, Friedman C, Rindflesch TC, Peterlin B. Exploiting semantic re-
lations for literature-based discovery. AMIA Ann Symp Proc. 2006;2006:
349–353.

6. Xu H, et al. MedEx: a medication information extraction system for clinical
narratives. J Am Med Inform Assoc. 2010;17:19–24.

7. Irwin JY, Harkema H, Christensen LM, et al. Methodology to develop and
evaluate a semantic representation for NLP. AMIA Ann Symp Proc. 2009;
2009:271.

Figure 5: Correlation between six of the top subgraphs (partial sentences) in the first DLBCL associated subgraph group,
only upper triangular matrix is shown due to symmetry.

RESEARCH
AND

APPLICATIONS

Luo, Y et al. J Am Med Inform Assoc 2015;22:1009–1019. doi:10.1093/jamia/ocv016, Research and Applications

1018

http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocv016/-/DC1
http://jamia.oxfordjournals.org/


8. Gordon MM, Moser AM, Rubin E. Unsupervised analysis of classical biomed-
ical markers: robustness and medical relevance of patient clustering using
bioinformatics tools. PloS One. 2012;7:e29578.

9. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci. 1998;95:
14863–14868.

10. Luo Y, Szolovits P, Sohani A, Hochberg E. Automatic lymphoma classifica-
tion with sentence subgraph mining from pathology reports. JAMIA. 2014;
21:824–832.

11. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using
unsupervised feature learning over noisy, sparse, and irregular clinical data.
PloS One. 2013;8:e66341.

12. Norén GN, Hopstadius J, Bate A, Star K, Edwards IR. Temporal pattern dis-
covery in longitudinal electronic patient records. Data Min Knowl Disc.
2010;20:361–387.

13. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix fac-
torization. Nature. 1999;401:788–791.

14. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification
of tumor mutations. Nat Methods. 2013;10:1108–1115.

15. Müller F-J, Laurent LC, Kostka D, et al. Regulatory networks define phenotypic
classes of human stem cell lines. Nature. 2008;455:401–405.

16. Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal
adenocarcinoma and their differing responses to therapy. Nat Med. 2011;
17:500–503.

17. Wang F, Lee N, Hu J, Sun J, Ebadollahi S. Towards heterogeneous temporal
clinical event pattern discovery: a convolutional approach. In: proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, Beijing, China; 2012:453–461.

18. Kim H, Park H. Sparse non-negative matrix factorizations via alternating
non-negativity-constrained least squares for microarray data analysis.
Bioinformatics. 2007;23:1495–1502.

19. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pat-
tern discovery using matrix factorization. Proc Natl Acad Sci USA. 2004;
101:4164–4169.

20. Gao Y, Church G. Improving molecular cancer class discovery through sparse
non-negative matrix factorization. Bioinformatics. 2005;21:3970–3975.

21. Nik-Zainal S, Wedge DC, Alexandrov LB, et al. Association of a germline copy
number polymorphism of APOBEC3A and APOBEC3B with burden of putative
APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46:
487–491.

22. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational pro-
cesses in human cancer. Nature. 2013.

23. Tucker LR. Some mathematical notes on three-mode factor analysis.
Psychometrika. 1996;31:279–311.

24. Sun J, Tao D, Papadimitriou S, Yu PS, Faloutsos C. Incremental tensor
analysis: theory and applications. ACM Trans Knowl Discov Data (TKDD)
2008;2:11.

25. Harshman RA, Lundy ME. Uniqueness proof for a family of models sharing
features of Tucker’s three-mode factor analysis and PARAFAC/
CANDECOMP. Psychometrika. 1996;61:133–154.

26. Omberg L, Golub GH, Alter O. A tensor higher-order singular value decom-
position for integrative analysis of DNA microarray data from different stud-
ies. Proc Natl Acad Sci USA. 2007;104:18371–18376.

27. Omberg L, Golub GH, Alter O. Global effects of DNA replication and DNA
replication origin activity on eukaryotic gene expression. Mol Syst Biol.
2009;5:1–8.

28. Ozcaglar C, Shabbeer A, Vandenberg S, Yener B, Bennett KP. Sublineage
structure analysis of Mycobacterium tuberculosis complex strains using
multiple-biomarker tensors. BMC Genomics. 2011;12:S1.

29. Yener B, Acar E, Aguis P, et al. Multiway modeling and analysis in stem cell
systems biology. BMC Syst Biol. 2008;2:63.

30. Bader BW, Puretskiy AA, Berry MW. Scenario discovery using nonnegative
tensor factorization. Progress in Pattern Recognit, Image Anal Appl. 2008;
5197:791–805.

31. Berry MW, Browne M. Email surveillance using non-negative matrix factori-
zation. Comput Math Organ Th. 2005;11:249–264.

32. Shahnaz F, Berry MW, Pauca VP, Plemmons RJ. Document clustering
using nonnegative matrix factorization. Inform Process Manag. 2006;42:
373–386.

33. Bader BW, Berry MW, Browne M. Discussion tracking in Enron email using
PARAFAC. Survey of Text Mining II. 2008;147–163.

34. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.
2009;51:455–500.

35. Nijssen S, Kok JN. The gaston tool for frequent subgraph mining. Electron
Notes Theor Comput Sci. 2005;127:77–87.
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