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ABSTRACT
....................................................................................................................................................

Objective The Health Insurance Portability and Accountability Act Privacy Rule enables healthcare organizations to share de-identified data via two
routes. They can either 1) show re-identification risk is small (e.g., via a formal model, such as k-anonymity) with respect to an anticipated recipi-
ent or 2) apply a rule-based policy (i.e., Safe Harbor) that enumerates attributes to be altered (e.g., dates to years). The latter is often invoked be-
cause it is interpretable, but it fails to tailor protections to the capabilities of the recipient. The paper shows rule-based policies can be mapped to
a utility (U) and re-identification risk (R) space, which can be searched for a collection, or frontier, of policies that systematically trade off between
these goals.
Methods We extend an algorithm to efficiently compose an R-U frontier using a lattice of policy options. Risk is proportional to the number of pa-
tients to which a record corresponds, while utility is proportional to similarity of the original and de-identified distribution. We allow our method to
search 20 000 rule-based policies (out of 2700) and compare the resulting frontier with k-anonymous solutions and Safe Harbor using the demo-
graphics of 10 U.S. states.
Results The results demonstrate the rule-based frontier 1) consists, on average, of 5000 policies, 2% of which enable better utility with less risk
than Safe Harbor and 2) the policies cover a broader spectrum of utility and risk than k-anonymity frontiers.
Conclusions R-U frontiers of de-identification policies can be discovered efficiently, allowing healthcare organizations to tailor protections to antici-
pated needs and trustworthiness of recipients.

....................................................................................................................................................
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INTRODUCTION
In the age of big data, healthcare organizations will accumulate a sub-
stantial quantity of detailed personal data.1,2 These large-scale re-
sources can support the development of novel healthcare applications
and innovative services.3,4 For instance, the data in electronic medical
record systems can enable predictive modeling,5,6 novel association
studies,7–9 as well as the discovery of personalized treatment regi-
mens.10,11 At the same time, there are many requests to share pa-
tient-level data to support information reuse (e.g.,12), learning health
systems (e.g.,13), transparency (e.g.,14,15), and to adhere to federal
grant policies (e.g.,16). In other words, there is a belief that sharing
data derived from the clinical domain provides utility (U) to society.
While publication can enable broad access, there is a risk (R) of
violating the privacy rights of the patients to whom the data
corresponds.17–20

The myriad definitions of privacy21 are evolving in the context of
big data,22,23 and it should be clear that the goal of this paper is not to
suggest which is best, but rather to provide technical mechanisms to
support a certain definition that continues to receive a substantial
amount of attention. Specifically, various laws state that data are suffi-
ciently protected when it is “difficult” to ascertain an individual’s iden-
tity.24 For example, the European Union’s Data Protection Directive
refers to such data as “anonymized”25 and the U.S. Health Insurance
Portability and Accountability Act (HIPAA) calls that data “de-identi-
fied”26 (the convention we use henceforth). In so doing, these laws
aim to prevent identity disclosure, which transpires when a recipient
of the data links it with some resource containing explicit identifiers
(e.g., a voter registration list27,28).

To achieve de-identification, laws often provide publishers with
several options. First, they may invoke a set of rules, or a policy, to
transform data into a de-identified state. The Safe Harbor model de-
fined by HIPAA is a clear example of such a policy, which specifies 18
rules, including suppression of explicit identifiers (e.g., personal
names) and generalization of “quasi-identifiers” which could enable
linkage (e.g., dates of events, such as birth, are replaced with time pe-
riods no more specific than one year and ages over 89 years-old are
recoded as 90þ). Yet, the rigidity of such rule-based policies is
not ideal for sharing every data set, such as studies with the elderly
(e.g., dementia patients).29

Thus, the law enables publishers to use an alternative, which
permits data to be shared in any format, provided the risk of re-identifi-
cation is appropriately measured and mitigated. Various formal anonym-
ization models (i.e., k-anonymity30) have been proposed to ensure that a
certain mathematical property of the dataset holds true. However, these
models tend to be overly rigid for a number of practical purposes.
Notably, HIPAA states that publishers can ensure the “risk is very small
that the information could be used, alone or in combination with other
reasonably available information, by an anticipated recipient to identify
an individual who is a subject of the information.”26 This implies that
risk is proportional to the trustworthiness of the recipient and suggests
there are many different policies that could be invoked to de-identify the
data. For example, if health data are published on the Internet, via a
Centers for Medicare and Medicaid Services dataset, the threat is high
because the recipients are unknown and the system is completely open.
As such, a data manager could select a policy that heavily favors risk
mitigation over utility. By contrast, if health data are published to a more
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trusted party (e.g., a health services researcher with strong information
security practices who agrees to sign a data use agreement), then the
threat is much lower and one could apply a policy that favors utility
over risk.

This paper shows that an efficient and effective mechanism can be
applied to discover rule-based de-identification policy alternatives for
patient-level datasets. To do so, we extend an algorithm31 designed to
search a collection of de-identification policies that compose a frontier
that optimally balances risk (R) and utility (U). We show this approach
allows for guidance, interpretation, and justification of rule-based poli-
cies, as opposed to relying on a predefined standard in terms of the
re-identification risk and data utility or formal models. As a concrete
example, Figure 1 depicts how a record from a dataset investigated in
our experimental analysis is transformed by one of the frontier policies
in comparison with its Safe Harbor and 10-anonymous (i.e., the record
is part of a group of no less than 10 records with the same values)
versions. In this example, R is defined as inversely proportional to the
size of this demographic group defined by the record in a population
set, while U is in terms of an information loss metric which represents
the discrepancy between the probability density of the record in the
original dataset and the transformed dataset. Safe Harbor transforms
this record into a group with a large set of ZIP code areas, while 10-
anonymization and a policy on the R-U frontier transform it into two
different age groups and small ZIP code groups. Based on the popula-
tion size in these different groups, the record transformed via the fron-
tier policy has slightly higher risk than its 10-anonymous counterpart,
while Safe Harbor has the highest risk. On the other hand, the record
in the dataset transformed via a frontier policy has lower information
loss than its counterparts of both Safe Harbor and 10-anonymous.

To demonstrate the effectiveness of this approach, we apply it to
demographic data from the U.S. Census Bureau (i.e., the “Adult” data-
set)32 in combination with geographic information from nine states
with medical facilities involved in the Electronic Medical Records

and Genomics (eMERGE)33 network, as well as the state of Hawaii,
which has a unique demographic distribution. The results show the
de-identification frontier can recommend policies with less risk and
more utility than Safe Harbor and cover a broader spectrum of utility
and risk than formal protection models in the form of k-anonymity.30

BACKGROUND AND RELATED RESEARCH
A re-identification occurs when a data recipient matches a published
record with the identifiers (e.g., personal name) of the corresponding
individual. This is often accomplished by a quasi-identifier (e.g., gen-
der, date of birth, and residential 5-digit ZIP code).34 While various
methods have been developed for mitigating re-identification risk
while preserving data utility in the area of privacy-preserving data pub-
lishing,35 in this section, we focus on two topics in this area which are
highly related to our work: 1) disclosure control, with particular atten-
tion to generalization and suppression strategies and 2) R-U frontier
analysis.

Disclosure Control
De-identification policies are rules that guide the processing of the
quasi-identifiers to reduce re-identification risk. Many operations can
be applied to process quasi-identifiers in medical records, such as
generalization, suppression, and randomization.36 Safe Harbor focuses
on a certain set of rules for generalization and, thus, to directly relate
our method, we represent the policy space as the set of possible gen-
eralizations. Focusing on the protection of only quasi-identifiers has
certain vulnerabilities (e.g., homogeneity attacks where most, or all,
patients have the same diagnosis,37,38), but it is often used in
practice.39,40,41

Generalization has been invoked by many formal privacy protection
models, such as k-anonymity,30 which itself is a specific case of de-
identification (where each record must to be equivalent to least k � 1
other records over the set of quasi-identifiers). As a result, a

Figure 1: De-identification of a record in the Adult-TN dataset and the corresponding risk and utility (in terms of information
loss). De-identification is performed according to Safe Harbor, 10-anonymization, and a de-identification policy on the R-U
frontier.
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significant number of variations on the generalization space have been
proposed.42 In this work, we focus on two in particular because they
have the strongest relationship with solutions deemed to be useful by
the medical research community.40 The first is full-domain generaliza-
tion43 which relies upon a domain generalization hierarchy (DGH) for
each quasi-identifier (e.g., age intervals of 1 year, then 5 years, then
10 years, etc.) where the policy space is the cross-product of the level
set of each DGH. The second is full-subtree generalization,44 which
extends the policy space to allow for arbitrary partitions of a quasi-
identifier’s domain. It should be recognized that such a space is large
and searching for the optimal solution (even for the restricted case of
k-anonymity) is NP-hard.45 As such, heuristic-driven strategies,46 in-
cluding genetic algorithms44 and cost-bounding on subsections of the
lattice,47 have been invoked.

R-U Frontier of Data Publishing
The notion of an R-U analysis was proposed to support disclosure con-
trol decision making. First, the R-U confidentiality map48 was intro-
duced to characterize the tradeoff between the level of perturbation
(e.g., randomization) applied to a dataset and its predictive accuracy.
This concept was then utilized to design algorithms to search for a
frontier of k-anonymization solutions with minimum utility loss over a
range of k.49,50 The frontier method has further been extended for set-
valued data anonymization, where a record contains more than one
value per attribute; for example, a set of diagnosis codes.51

The policy space was structured as a lattice of binary strings.44,52

However, the algorithm proposed to search the space considered util-
ity only from a syntactic (e.g., level in the DGH), as opposed to a se-
mantic (e.g., the difference between the distribution of the original and
de-identified datasets), perspective. Moreover, the algorithm only
searched for policies with risk no worse than HIPAA Safe Harbor and,
thus, does not guarantee composition of an R-U frontier. This problem
is extended into R-U frontier discovery by introducing a semantic utility
loss measure which captures the amount of distortion introduced to
the dataset by the de-identification process, and proposed a heuristic
algorithm based on a random walk to search the policy lattice.31 Yet,
as the experiments in the Supplementary Appendix show, the random
process is limited in its ability to compose a high-performing frontier
in an efficient manner.

METHODS
De-identification Policy Frontier Search Framework
The Sublattice Heuristic Search (SHS) algorithm31 was introduced to
search a lattice of policies for a frontier in the R-U space. Formally, a
frontier is a set of policies that are not strictly dominated by other poli-
cies. Intuitively, a policy pA strictly dominates a policy pB when both
risk and utility loss values of pA are no greater than the corresponding
values of pB and at least one value is strictly less that of pB.

SHS is composed mainly of two functions: i) initialize and ii) im-
prove. Figure 2 provides an illustration of how SHS searches for a
frontier. Basic versions for these functions in the SHS algorithm relied
heavily on randomized processes. For this investigation, we devised
functions that used more intelligent heuristics based on patient demo-
graphics for frontier composition. Here, we briefly review the basic
functions and the new heuristics with the full details in the
Supplementary Appendix online. We report on an empirical compari-
son to prove the improved performance of the heuristics in the results.

SHS Initialization: In the basic algorithm, the frontier is initialized
by selecting a random path from the most general to the most specific
policy in the lattice. An example of random path initialization (or
RandPath) is illustrated in Figure 2 (a), where p1, p2, p3, p4, and p5 are

selected. As an extension, we developed the full domain initialization
(FullDom) strategy. FullDom samples a full-domain generalization
space to compose the initial frontier and refines it through interpola-
tion. A balanced DGH for each attribute is built in a top-down fashion.
Starting from the most generalized value (i.e., generalize every value
to the entire domain; e.g., age as [0–120]), in each level, the construc-
tion process splits each generalized interval into two equal size inter-
vals. For example, if a level in the age DGH generalizes to 10-year
bins, then its immediate children generalize into 5-year bins. This pol-
icy space thus corresponds to a cross-product of the level set of the
DGH of each attribute. It covers a more diverse set of policies than a
random path because i) the full-domain space contains policies
from different paths while the random path does not and ii) the full-
domain space tends to sample a policy that is multiple levels away
from the previous one while a random path samples a child of a previ-
ous one.

SHS Improvement: Following initialization, SHS iteratively selects a
sublattice to improve the frontier. A sublattice is a subgraph in the lat-
tice containing all policies between a top and a bottom policy (where
the latter is a descendent of the former). Figure 2 (b) provides an illus-
tration of such a structure. Assuming the re-identification risk and util-
ity functions are monotonic over the order defined by the policy lattice,
the R-U mappings of policies in a sublattice are contained within a
bounding region in the R-U space as the rectangle in Figure 2 (b). The
basic algorithm relied on a random sublattice generation (RandSub)
strategy to iteratively select a sublattice. For each sublattice, RandSub
computes the proportion of the bounding region not dominated by the
frontier (Figure 2 (b), yellow area), to estimate the probability that a
randomly selected policy could improve the frontier. When the com-
puted value is below a predefined threshold, the algorithm skips this
sublattice. Otherwise, it searches a random path in an effort to im-
prove the frontier. As illustrated in Figure 2 (c), the newly searched
policies (i.e., pa, pi, and pb) will be on the new frontier, while policy p4

in the old frontier is dominated and is removed from further
consideration.

To mitigate randomization effects, we introduce a sublattice chain
generation (SubChain) strategy for the SHS improvement function.
SubChain generates a sequence of sublattices between the most gen-
eralized and the most specific policies of the lattice by using the bot-
tom policy of the sublattice in the current iteration as the top policy of
the sublattice in the following iteration. To limit convergence to local
optima, SubChain randomly restarts from the most generalized policy
when the chain reaches the most specific policy in the lattice. This
strategy is based upon the expectation that when a sublattice updates
the current frontier, the top and bottom policies are likely to be useful
starting points for the subsequent sublattice.

RESULTS
Materials
We evaluated the R-U frontier discovery process using two publicly
available datasets. The first is the Adult dataset,32 which consists of
32 561 records without missing values. For comparison with Safe
Harbor, we restrict the quasi-identifiers to the demographics of {Age,
Gender, Race}. To enable a comparison with respect to geography, we
combine the available demographics data from Adult with state-level
demographic information obtained from the US Census Bureau’s 2010
Census Tables PCT12A-G53 to provide each tuple with a 5-digit ZIP
code. To mitigate the bias that can be introduced through analysis
over a single population, we simulated the Adult dataset for 10 US
states: Illinois (IL), Hawaii (HI), Massachusetts (MA), Minnesota (MN),
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New York (NY), Ohio (OH), Pennsylvania (PA), Tennessee (TN),
Washington (WA), and Wisconsin (WI). Following the strategy set forth
in a previous study,52 the Census data of the corresponding states are
used as the population statistics to compute the re-identification risk
of these synthesized datasets.

All of these states, with the exception of HI, correspond to regions
that contain academic medical centers participating in the eMERGE
network.33 These centers are collecting and sharing de-identified data

on patients to the public and are actively using the Safe Harbor de-
identification policy, but are open to alternatives.29 HI is selected as an
additional state because of its unique demographic distribution (e.g., it
has the highest percentage of Asians and the lowest percentage of
whites in the United States).

To provide analysis on nonsynthetic data, we also conducted ex-
periments on the North Carolina voter registration (NCVR) database,54

which contains 6 150 562 records without missing values, each record

Figure 2: An example of a policy lattice for five quasi-identifying values and an illustration of the main functions of the SHS
algorithm. (a) depicts a random path initialization of the frontier composed of five policies (p1, p2, p3, p4, and p5). (b) depicts
a sublattice structure sublattice (pa, pb) in the policy space and its corresponding bounding region in the R-U space, the yel-
low area of which is not dominated by the frontier. The proportion of the yellow area is used as the heuristic of the proba-
bility that a randomly selected policy in the sublattice can update current frontier. (c) depicts the updates to the frontier:
pa, pb, and pi from the sublattice (pa, pb) will be on the frontier while policy p4 is removed.
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consists of 18 fields. For this study, we restricted the dataset to a set
of four quasi-identifying attributes {Age, Race, Gender, 5-Digit ZIP
Code}. We use the entire dataset as the population and randomly sam-
ple datasets to publish.

The policy lattice, based on the selected quasi-identifier, contains
on the order of 2700 policies, which would take a significant length of
time to search exhaustively.

Experimental Design
Our experiments were split into two primary sections. First, we evalu-
ated the performance of the frontier initialization and improvement
strategies by comparing the resulting frontiers after searching the
same quantity of policies. We used the area under the frontier in the
R-U space, denoted as AU, as the criteria of the frontier given the ori-
entation of risk and utility loss. We reported the results after every
1000 policies while searching the first 5000 policies. Second, we
compared the R-U tradeoffs made by the policies on the frontier dis-
covered by the best SHS configuration to those of two related methods
i) a rule-based single policy in the form of HIPAA Safe Harbor and ii) a
popular k-anonymization algorithm. In this setting, we allowed SHS to
search 20 000 policies.

The details of the generalization rules defined by Safe Harbor (which
is a policy in the lattice) are provided in the Supplementary Appendix on-
line. For k-anonymization, we utilized the Incognito55 algorithm to find
solutions on the frontier for k¼ 5 and 10, which are commonly adopted
protection levels.56 We utilized Incognito because it generates all k-
anonymous solutions from which the set of nondominated solutions
can be selected to create a frontier, which is not the case in many
other methods and would lead to an incomplete frontier.

To compute risk, we adopted the marketer risk-based disclosure
measure52 using the Census data as population statistics, which
is based on the distinguishability metric.57 Informally, this means that
the recipient of the data attacks every record in the dataset and risk
is proportional to the average likelihood of successfully re-identifying
a record to the population from which it was derived. We used
the Kullback–Leibler divergence to measure the utility loss incurred
by a generalized dataset with respect to its original form. Informally,
the Kullback–Leibler divergence is the difference between the
probability distributions of the quasi-identifying values in the
original and de-identified datasets. The mathematical definitions for
the risk and utility computation can be found in the Supplementary
Appendix.

The algorithms were implemented in Python and all experi-
ments were run on an Ubuntu server with 24 Intel(R) Xeon(R)
CPUs at 2.4 GHz and 64 GB of RAM. Further details of the parameteri-
zation of the algorithms are documented in the Supplementary
Appendix.

Performance of SHS strategies
We assessed the performance of SHS using the Adult dataset with TN
ZIP codes and a randomly sampled set of 100 000 records from
NCVR. We herein report on the average performance of the algorithms
over 20 complete runs for each dataset.

Figure 3 provides snapshots of the R-U frontiers after initialization
and the end of the improvement search. The snapshots correspond to
a single run of each algorithm (though other 19 runs were similar).
Figure 3 (a) and (b) show the FullDom-RandSub and FullDom-
SubChain frontiers are closer to the origin than the RandPath-RandSub
and RandPath-SubChain frontiers after the initialization process, which
implies they have less risk and more utility.

Figure 4 (a) and (b) provides the average and standard deviation
the AU of the initial frontiers using different strategies after visiting
1000 polices (i.e., initialization). For orientation, after initialization in
the Adult dataset, the average AU of FullDom-RandSub and FullDom-
SubChain is 0.127 and 0.124, respectively. By contrast, RandPath-
RandSub and RandPath-SubChain exhibited an average AU of 0.172
and 0.195, respectively. The result strongly suggests that FullDom is
the dominant initialization strategy.

To compare the frontier improvement strategies, Figure 3 (c) and
(d) show samples of the frontiers after 5000 policies visited and the
average AU of them is reported in Figure 4 (a) and (b). These results
show that when the initialization approach is FullDom, SubChain con-
verges to a better frontier than RandSub. For instance, for the NCVR fi-
nal frontier, the average AU of FullDom-SubChain is 0.127, while
FullDom-RandSub is 0.138. By contrast, when RandPath is the initiali-
zation process, RandSub outperforms SubChain. For instance, for the
NCVR final frontier, the average is 0.171 for RandPath-SubChain and
0.152 for RandPath-RandSub. The result indicates that the SubChain
strategy is more efficient in improving a frontier that is closer to the
optimal frontier, since FullDom results in a significantly better initial
frontier than the RandPath algorithm.

The running time of the algorithms is shown in Figure 4 (c) and (d).
It should be noted that the running time is significantly longer for the
NCVR dataset than the Adult dataset because the former is approxi-
mately 3 times larger in sample size. The result shows that, given the
same search budget, initialization via RandPath is faster than FullDom.
One possible reason for this is an artifact of our implementation. Our
code was optimized to reduce repetition in the risk and utility compu-
tations.31 And RandPath tends to search policies on the same path,
whereas FullDom tends to have more distinct routes. However, even
though RandPath initialization is faster than FullDom, Figure 4 (e)
and (f) illustrates that FullDom still converges to a better frontier
in less time.

These results suggest that FullDom initialization in combination
with SubChain sublattice generalization is the best strategy for the
SHS algorithm. As such, the remainder of our experiments uses the
FullDom-SubChain procedure.

Frontier Case Studies
The frontier for SHS and 10-anonymization (the result for 5-anonym-
ization (in the Supplementary Appendix)) is similar for Adult-TN is de-
picted in Figure 5 (a), while results for the other states are in Figure 6.
Notably, the results indicate that a region of the frontier discovered by
SHS dominates the Safe Harbor policy in all states. Moreover, the fron-
tier region that dominates Safe Harbor results in both greater utility
and risk than the results of 10-anonymization.

For illustration, two policies that dominate Safe Harbor (i.e.,
less risk and better utility) are highlighted in Figure 5. The discov-
ered policies exhibit notable differences from Safe Harbor. For in-
stance, both policies generalize race and ages below 90 to larger
groups than Safe Harbor (as illustrated in Figure 5 (c)), but retain
more specific geographic information (as illustrated in Figure 5
(d)). Additionally, the second policy generalizes gender to (Male or
Female).

Policies on the Frontier
Table 1 reports the number of policies on each frontier. The SHS frontier
contains an average of 4700 policies while the k-anonymity frontier con-
tains an average of 33 and 26 policies when k¼ 5 and 10, respectively.
This is because SHS can search a significantly larger space than the
Incognito k-anonymization algorithm, due to the construction of their
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respective lattices. Even though the number of policies in the SHS fron-
tier is large, these policies are ordered by their R-U values, so a data
publisher can quickly locate the policies they are interested in.

Policies Dominating Safe Harbor
The ratio of policies on the SHS and k-anonymization frontiers that dom-
inate Safe Harbor is summarized in Table 2. Notice that the SHS frontier
contains policies that dominate Safe Harbor in all states. By contrast,

5-anonymization leads to solutions that dominate Safe Harbor for only
HI, TN, MN, WA, and WI, while 10-anonymization can only find dominant
solution for HI. This is because k-anonymity datasets tend to have more
utility loss than does a dataset de-identified through Safe Harbor.

Frontier Ranges
Table 3 summarizes the result of the comparison of ranges of the k-
anonymity frontier and the SHS frontier. The results indicate k-

Figure 3: Snapshots of the R-U frontiers discovered via a single run of the Sublattice Heuristic Search (SHS) algorithm. The
initialized frontier for the (a) Adult-TN and (c) North Carolina Voter Registration (NCVR) datasets are based on 1000 policies.
The improved frontier for (b) Adult-TN and (d) NCVR datasets are based on an additional 4000 policies.
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Figure 4: Effectiveness versus efficiency for the Sublattice Heuristic Search (SHS) algorithm. The average (6standard devi-
ation) of the area under the frontier (AU) for the frontiers as a function of the number of policies visited is shown for (a)
Adult-TN and (b) North Carolina Voter Registration (NCVR). The average (6 standard deviation) of the runtime as a function
of the number of policies visited is shown for (c) Adult-TN and (d) NCVR. The average (6 standard deviation) of the AU for
the frontiers as a function of the runtime is shown for (e) Adult-TN and (f) NCVR.
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anonymization solutions are constrained in a very small sub-interval of
the SHS frontier. This interval tends to have very small risk and large
utility loss. Thus, SHS may be particularly useful when the data pub-
lisher is interested in solutions with better utility at the cost of an ac-
ceptable increase in risk. For instance, in the state of NY, the
maximum risk of the 5-anonymization frontier is only 0.003 that of the
SHS frontier. On the other hand, the minimum utility loss of the 5-ano-
nymization frontier is between 0.15 and 0.52, while SHS is always at
0. This phenomenon is visualized is in Figure 5 (a), where the 10-ano-
nymization has a much smaller range than that of the SHS frontier.

This finding indicates that the SHS frontier can provide solutions in a
broader range than the k-anonymity frontier.

Improvement of the Frontier R-U Tradeoff
The frontier R-U tradeoff improvement made by SHS over k-anonym-
ization is outlined in Table 4. We use the relative difference of AU of
the k-anonymization frontier Fk and the SHS frontier Fs to represents
the R-U tradeoff improvement rate of the SHS frontier over the k-ano-
nymization frontier: IR¼ (AU(Fk)� AU(Fs))/(AU(Fs)). A positive value in-
dicates Fs improves upon Fk. We truncate the SHS frontier to be in the

Figure 5: Results from the case study for the Adult-TN dataset. (a) A comparison of the 10-anonymization frontier, Safe
Harbor policy, and the Sublattice Heuristic Search (SHS) frontier in the R-U space. The policies between the 215th and the
292nd on the SHS frontier (in the rectangle) dominate Safe Harbor. (b)–(d) provide a comparison of Safe Harbor and two
dominating policies �232 and 292. (b) A comparison of the generalization rules for race and gender attributes. (c) A com-
parison of the age generalization rule. The x-axis corresponds to the original age, while the y-axis corresponds to the me-
dian of the generalized age interval. (d) A comparison of the ZIP generalization rule. The x-axis corresponds to the original
ZIP, while the y-axis corresponds to the median of the ZIP interval. The ZIP codes are represented as an ordinal index, the
translation for which can be found in the Supplementary Appendix online.
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same range of the corresponding k-anonymization frontier for a fair
comparison.

In 9 out of 10 states (OH being the exception), the SHS frontier
dominates the k-anonymization frontier. Recall that a positive value in
this table indicates the corresponding k-anonymization frontier is dom-
inated by the SHS frontier.

DISCUSSION
The present study illustrates that the SHS framework is, under many
conditions, superior to k-anonymization strategies, as well as existing
one-size-fits-all policies often invoked in practice (e.g., HIPAA Safe

Harbor). Specifically, we observed that k-anonymity limits a frontier to
a very small range with extremely low risk and potentially significant
loss in data utility. We emphasize that our empirical analysis was per-
formed over a range of diverse population distributions from 10 U.S.
states to mitigate biases in the results. We believe that the SHS strat-
egy has the potential to be a method that overcomes the limitations of
a single fixed rule-based policy while being interpretable to health
data managers. A healthcare organization, for instance, could present
the policy frontier as a “documented method”26 to an Institutional
Review Board or legal counsel to justify its selection of a certain de-
gree of protection when sharing data in a de-identified manner.

Figure 6: A comparison of the 10-anonymization frontier, the Safe Harbor policy, and the the Sublattice Heuristic Search
(SHS) frontier in the R-U space for the Adult dataset simulated over nine U.S. states.
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At the same time, there are several limitations to this work. First,
the policy lattice was constructed under the assumption that the set of
quasi-identifying attributes is known to the data publisher as a priori.
We believe, however, there are several possible ways by which our
method could be extended to address this problem. One potential
strategy is to construct a policy lattice of the superset of all the possi-
ble quasi-identifier sets of attributes and measure re-identification risk
as a weighted sum of the risk associated with each potential quasi-

identifier. The weight of each quasi-identifier could be dependent on
the availability of the corresponding external data resources. An alter-
native strategy is to construct a policy lattice for every subset with a
size no greater than a threshold of the set of all the possible quasi-
identifying attributes and search for a policy frontier in each space.
Applying the latter would require a strategy to reconcile the de-identifi-
cation policy associated with attributes that are in the overlapping part

Table 2: Proportion of policies that dominate Safe
Harbor for the Adult dataset with ZIP codes simulated
based on 2010 U.S. census data

State Proportion of frontier dominating
Safe Harbor

SHS k¼ 5 k¼ 10

HI 0.01 0.36 0.28

IL 0.04 0 0

MA 0.01 0 0

MN 0.03 0.09 0

NY 0.001 0 0

OH 0.06 0 0

PA 0.003 0 0

TN 0.01 0.13 0

WA 0.01 0.12 0

WI 0.01 0.10 0

Average 0.018 0.08 0.028

St. Dev. 0.018 0.11 0.084

Table 1: Number of policies on the frontier for the
Adult dataset with ZIP codes simulated based on U.S.
census data

State Number of policies on frontier

SHS k¼ 5 k¼ 10

HI 4545 28 25

IL 3999 28 21

MA 3510 29 23

MN 5655 34 25

NY 4374 27 20

OH 3257 39 27

PA 4161 29 23

TN 7766 39 27

WA 5296 33 35

WI 5147 42 34

Average 4771 33 26

St. Dev. 1234 5.5 5.03

Table 3: Maximum risk values (MAX Risk) and minimum utility loss (MIN Utility Loss) of the frontiers for the Adult dataset
with ZIP codes simulated from U.S. census data

State Max. risk Min. utility loss

SHS k¼ 5 k¼ 10 SHS k¼ 5 k¼ 10

HI 0.057 2.6� 10�3 1.8� 10�3 0 0.15 0.18

IL 0.031 2.4� 10�4 4.0� 10�5 0 0.43 0.47

MA 0.032 3.8� 10�4 9.0� 10�5 0 0.36 0.42

MN 0.045 5.2� 10�4 2.1� 10�4 0 0.36 0.42

NY 0.027 9.0� 10�5 4.0� 10�5 0 0.48 0.50

OH 0.037 2.9� 10�4 7.0� 10�5 0 0.45 0.51

PA 0.041 2.9� 10�4 7.0� 10�5 0 0.49 0.52

TN 0.037 4.3� 10�4 1.9� 10�4 0 0.36 0.43

WA 0.033 4.1� 10�4 2.6� 10�4 0 0.35 0.41

WI 0.039 4.6� 10�4 2.0� 10�4 0 0.36 0.43

Average 0.038 5.7� 10�4 3.0� 10�4 0 0.38 0.43

St. Dev. 0.009 7.1� 10�4 5.5� 10�4 0 0.10 0.10

RESEARCH
AND

APPLICATIONS

Xia W, et al. J Am Med Inform Assoc 2015;22:1029–1041. doi:10.1093/jamia/ocv004, Research and Applications

1038



of multiple policy spaces (e.g., age, if [Age, Zip, Gender] and [Age,
Gender, Race] are both possible quasi-identifiers).

Second, our search strategy does not cover the entire policy space.
As such, the frontier is not guaranteed to be optimal. SHS is based on
several heuristics and it is possible that more effective approaches
could be developed. It may also be possible to develop methods to
more systematically and efficiently navigate the space of policies using
advanced pruning strategies, such as cost bounding. Moreover, the
lattice search process should be amenable to parallel computing tech-
niques as has recently been achieved for k-anonymization58 provided
an appropriate master program that minimizes reassessment of sec-
tions of the lattice can be designed.

Third, our investigation is based on specific measures of risk and
utility. In particular, we rely on the marketer risk model, which amor-
tizes the risk over all records in a published dataset. Yet, this is only
one way to define risk. The amortization model itself, for instance, can
be refined to allow for a discounting function that applies greater
weight to individuals in smaller groups. Beyond the risk model, one
could also consider worst-case re-identification scenarios, such as
prosecutor or journalist attacks (which state that the risk of a dataset
is equal to that of the most risky record).39 From the perspective of
utility, it is important to recognize that we adopted a generic informa-
tion loss measure, which was based on the assumption that the spe-
cific usage of the dataset is unknown a priori. The data utility function
is not necessarily consistent with the usage of the dataset in certain
clinical data mining or statistical analysis applications. Nonetheless,
if it is known that the dataset will be used in a certain study, then
the frontier policy search framework can be customized with an
alternative utility function defined by domain experts, provided
that the function satisfies the monotonicity requirements of our
framework.

Finally, while SHS builds a better frontier than other methods, it
can yield a very large number of policies. A data manager would still
need to determine which policy is best and it is clear that they could

not review every policy on the frontier. As such, a strategy to present
the most interesting policy options should be devised.

CONCLUSIONS
Current regulations permit institutions to publish de-identified data ac-
cording to two conceptual routes: 1) fixed rules-based policies and 2)
statistically-informed strategies that appropriately mitigate the risk of
re-identification. While formal privacy models such as k-anonymity
provide guarantees of protection, they can, at times, be too rigorous,
leading to unacceptable levels of data utility in comparison to a rule-
based policy. This paper showed, with evaluation over multiple data-
sets, that a de-identification policy frontier can provide a broader
range of options than a well-known k-anonymization algorithm. In
most cases, the de-identification frontier dominates 5-anonymization
and is always superior to the popular HIPAA Safe Harbor rule-based
policy. There are, however, several opportunities to improve the effi-
ciency and selectivity of the SHS method to ensure it is directly usable
by health data managers.
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