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ABSTRACT
....................................................................................................................................................

Introduction Automatically identifying specific phenotypes in free-text clinical notes is critically important for the reuse of clinical data. In this
study, the authors combine expert-guided feature (text) selection with one-class classification for text processing.
Objectives To compare the performance of one-class classification to traditional binary classification; to evaluate the utility of feature selection
based on expert-selected salient text (snippets); and to determine the robustness of these models with respects to irrelevant surrounding text.
Methods The authors trained one-class support vector machines (1C-SVMs) and two-class SVMs (2C-SVMs) to identify notes discussing breast
cancer. Manually annotated visit summary notes (88 positive and 88 negative for breast cancer) were used to compare the performance of models
trained on whole notes labeled as positive or negative to models trained on expert-selected text sections (snippets) relevant to breast cancer sta-
tus. Model performance was evaluated using a 70:30 split for 20 iterations and on a realistic dataset of 10 000 records with a breast cancer preva-
lence of 1.4%.
Results When tested on a balanced experimental dataset, 1C-SVMs trained on snippets had comparable results to 2C-SVMs trained on whole notes
(F¼ 0.92 for both approaches). When evaluated on a realistic imbalanced dataset, 1C-SVMs had a considerably superior performance (F¼ 0.61 vs.
F¼ 0.17 for the best performing model) attributable mainly to improved precision (p¼ .88 vs. p¼ .09 for the best performing model).
Conclusions 1C-SVMs trained on expert-selected relevant text sections perform better than 2C-SVMs classifiers trained on either snippets or
whole notes when applied to realistically imbalanced data with low prevalence of the positive class.

....................................................................................................................................................
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INTRODUCTION
Automatically identifying specific phenotypes in free-text clinical notes
is difficult, yet critically important for the reuse of clinical data. For ex-
ample, a researcher may want to identify all patients with an unusually
good response to treatment, or a physician may want to retrieve notes
relevant to breast cancer from a large patient record. Natural
Language Processing (NLP) methods usually train classifiers on sets of
whole notes labeled as positive or negative (for a phenotype) by do-
main experts (supervised binary classification). However, often much
of the text in the notes is irrelevant to the studied phenotype (e.g., dis-
cussions of unrelated conditions or normal findings). This is particu-
larly true for negative notes which may negate the studied condition
(e.g., “breast cancer was ruled-out” ), but more commonly are entirely
irrelevant (e.g., discuss diabetes). Thus, note classification is actually
a multiclass classification task which tries to distinguish between the
positive, negative, and irrelevant classes.

Building classifiers on noisy data and using irrelevant notes as ex-
amples of the negative class results in poor performance and over-fit-
ting.1,2 However, previous attempts to reduce noise by text selection
(feature selection) has had limited success.3 Further, it is difficult to gen-
erate a representative training set of negative and irrelevant classes.
Truly negative notes are rare (e.g., there are few notes that explicitly dis-
cuss the absence of breast cancer), and representing the irrelevant class
uniformly is practically impossible (e.g., it is difficult to represent all the
text that “is not” related to breast cancer). A possible solution is to limit
the text analysis to the well-characterized positive class, and to train a
one-class classification (1-CC) model on examples of that class.1

One-class classifiers analyze only positive examples of data to
learn a classification boundary that excludes negative outlier values.1

When dealing with heavily imbalanced datasets characteristic of text
classification, this approach has been demonstrated to outperform
conventional two-class classification.4,5 However, since models are
trained only on positive examples, they are very sensitive to irrelevant
text. In other words, the presence of “noise” makes it difficult to iden-
tify text that is unique to the positive class.6,7

One way to mitigate this problem is to perform some type of dimen-
sionality reduction (feature selection) to remove as much irrelevant text
as possible. For 1-CC this is difficult because most feature selection
methods rely on evaluating performance on counter examples from a
negative class (i.e., assume that positive and negative examples can be
identified). There has been little prior work on automatic feature selec-
tion for 1-CC. The few studies that have been done demonstrated only a
modest improvement in performance.7–9 An alternative to automatic
approaches could be to have experts select features.

An expert annotating a clinical note could, with only a little additional
effort, highlight the sections (or snippets) of relevant text on which s/he
based their decision.10 Subsequently these snippets could be used for
expert-guided feature selection (text selection) in the construction of
NLP classifiers, particularly for 1-CC. Following this rationale, Zaidan
et al. assigned higher weights to text selected in snippets to augment
training of a support vector machine (SVM) classifier, demonstrating im-
proved accuracy in the classification of movie reviews.10 Yu et al.,11

used a similar approach for classifying passages of clinical text.
However, both Zaidan and Yu evaluated their methods using an
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experimental dataset that was limited to concise positive and nega-
tive passages (i.e., short sections of text without an irrelevant class)
using 2-CC. To extend expert-guided feature selection to 1-CC we con-
structed models solely on snippets (as opposed to assigning higher
weights to expert-selected text). Intuitively, such an approach comple-
ments 1-CC as noise is manually excluded from the positive training
examples.

This study aimed to evaluate a novel methodology for facilitating
machine learning applied to text classification. Our specific objectives
were to: 1) evaluate the utility of expert-selected features for NLP, by
comparing the performance of classifiers trained on relevant phrases
(snippets) to that of classifiers trained on whole notes for note classifi-
cation; 2) evaluate the combination of 1C-SVM and expert-selected
features; and 3) determine how much of the irrelevant surrounding
text can a snippet contain without compromising performance (i.e.,
the required accuracy of snippets).

METHODS
Sample notes and annotation
We built classifiers for identifying notes pertaining to breast cancer us-
ing one- and two-class classification systems (see Figure 1 for an
overview of the methodology). We used 176 notes of the visit-sum-
mary type. Of these, 88 notes discussed breast cancer and 88 notes
were from age- and sex-matched patients without breast cancer.
Positive notes were derived from a manually annotated corpus of 95
medical records of patients positive for breast cancer (identified by
ICD-9-CM code and validated during manual annotation). Annotation
was performed by two physicians who were asked to determine
whether each of the notes in the record indicated that the patient had
breast cancer, and to highlight all the sections of text (from few words
to whole sentences) containing information relevant for making that
assertion (snippets). Annotation was performed with a simple
Graphical User Interface (GUI) using the computer mouse to highlight
relevant text. To estimate inter-annotator agreement physicians
were asked to annotate a shared set of five additional records.

Inter-annotator agreement was calculated based on the overlap in the
words annotated by both physicians. Inter-annotator agreement was
calculated based on the overlap in the words annotated by both physi-
cians and averaged 56% across the five documents. Notably, one of
the reviewers highlighted almost twice as many words in the five
shared documents compared to the other reviewer (3303 vs. 1869).
Of the 95 annotated records, we extracted 88 visit summaries that
discussed breast cancer. We then extracted 88 visit summaries from
randomly selected age- and sex-matched patients without breast can-
cer (negative notes). Each note was preprocessed to remove system
generated text such as electronic signatures and headers. We re-
moved stop-words and stemmed the remaining words with a Porter
stemmer.12 We used the 176 notes to generate two datasets. The
first, Whole Note dataset, included notes labeled as positive or nega-
tive. In the second, the Snippets dataset, all highlighted snippets from
the record were concatenated to create a single positive note. We
chose to concatenate all highlighted snippets into a single positive
note because records contained a variable number of snippets and
snippet length was also highly variable. The set of negative notes
remained the same.

Feature representation for one and two class SVMs
For each dataset, we trained a one-class support vector machine (1C-
SVM) and a two-class SVM (2C-SVM), both with a linear kernel. We
chose the linear kernel for simplicity and applicability to a binary rep-
resentation of text features.5 Both SVMs were implemented using
LibSVM and the SciKit-learn Python module. In the case of the 1-CC
we used Scholkopf’s implementation of a 1C-SVM classifier which has
been demonstrated to outperform other methods of 1-CC.1,6,13 For the
2C-SVM, we represented each note as a bag-of-words, annotating
each word with either its presence/absence (binary) or its frequency in
the data set. For the 1C-SVM we first used a binary bag-of-words rep-
resentation because cropping the snippets distorts the word frequen-
cies in the notes (i.e., the training set which was constructed of
snippets had different word frequencies compared to the test-set

Figure 1: Overview of study methodology.
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which contained whole notes). However, when employing a binary
bag-of-words representation, common and rare words receive the
same value (i.e., 0 or 1). To give a higher ranking to words with a
stronger association with snippets in the 1C-SVM we further evaluated
two weighting schemes.5 In the first, we weighted words by their fre-
quency in all members of the positive class (whole notes or snippets
depending on the training dataset). For example, there were 39 735
words in the 88 positive notes (with stop words removed), and the
word “final” appears 5 times, so the feature “final” had the weight 5/
39 735¼0.0001258 when the 1C-SVM using this representation was
trained. In the second weighting scheme, we weighted each word by
its correlation-coefficient, a variant of the v2 test, which looks only at
words from the positive class. We defined the coefficient v2 as:

v2 ¼ ðNrþ þ Nn� � Nr� � NnþÞ
ffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNrþ þ Nr�ÞðNnþ þ Nn�ÞðNrþ þ NnþÞðNr� þ Nn�Þ

p

where Nrþ/Nr� is the number of snippets in which the word occurs/
does not occur, and Nnþ/Nn� is the number of nonsnippet section of
positive notes in which the word occurs/does not occur (for a detailed
explanation see14).

Finally, we evaluated the use of 2C-SVM with snippet-based fea-
ture selection, v2/frequency weighting of whole notes, and v2/fre-
quency weighting of snippets. The rationale of this analysis was to
establish the independent effect on performance of 1-CC, snippets,
and weighting. The parameters of the classifiers were set using a 3-
fold cross validation, once to optimize F score and once to optimize
precision. We trained classifiers on a random 70% split of the dataset,
and tested on the remaining 30%. We repeated the process 20 times
and report the average precision, recall, and F score (Experiment 1).

Evaluation of generalizability on a 10 000 record set
In the second part of the experiment we evaluated the generalizability
of classifiers. Best performing classifiers were trained on the entire
dataset and tested on notes from 10 000 medical records with a 1.4%
prevalence of breast cancer. Records for the test set were randomly
sampled from all records belonging to females 40–80 years old that
contained at least one visit note produced by a primary care physician.
Positive and negative records were defined based on the presence or
absence of an ICD-9-CM code corresponding to breast cancer. The
classifier was run against all notes in the record. A record was defined
as positive if it contained one or more notes flagged by the classifier
as positive for breast cancer.

Evaluation of performance with various lengths of snippets
Selecting text for snippets is not precise and experts varied in the
amount of text that they highlighted for inclusion in snippets. For ex-
ample, one could highlight entire paragraphs, entire sentences, or
parts of sentences. Therefore, we determined the effect of varying the
amount of highlighted text on performance. To accomplish this, we
created two more training datasets: the Paragraphs dataset, in which
we replaced snippets with the paragraphs that contained them and
the Surrounding Sentences dataset, in which we replaced snippets
with the sentences that contained them. We repeated the performance
evaluation of classifiers trained on these datasets against the 10 000
record test set (Experiments 2 and 3). Sentence tokenization was per-
formed with the general English tokenizer implemented by the Punkt
module in NLTK. For simplicity a paragraph was defined as the snippet
plus the two sentences preceding and the two sentences following it.
As an additional baseline, we present the performance of exact string
matching for the term “breast cancer.”

RESULTS
The 2C-SVM performed best when trained on whole notes (whole
notes: F¼ 0.92; snippets F¼ 0.45). The 1C-SVMs (frequency and v2

weights) performed best when trained on snippets (snippets and fre-
quency weights F¼ 0.92 vs. whole notes and frequency weights
F¼ 0.83; v2 weights F¼ 0.91 vs. 0.88) and had comparable results
to those of the 2C-SVM. 2C-SVM trained on the snippets performed
poorly (Table 1).

Performance on the 10 000 record set
On the set of 10 000 records, with parameters set to maximize preci-
sion (Table 2), 1C-SVMs trained on snippets out-performed the 2C-
SVM trained on whole notes (1C-SVMs F¼ 0.61 for v2 weights;
F¼ 0.40 for frequency weights; F¼ 0.11–0.17 for 2C-SVM). This was
due to a large difference in precision (1C-SVMs trained on snippets
p¼ .53 for v2 weights; P¼ 0.88 for frequency weights; p¼ .06–.09
for 2C-SVM). Use of 2C-SVMs with weighting, snippets-based feature
selection, or the combination of the two did not improve performance
(2C-SVMþ snippetsþweighting data not presented).

Performance on varying lengths of snippets
On this set, 1C-SVMs trained on the Paragraphs database and on the
Surrounding Sentences database also outperformed the 2C-SVM
trained on whole notes (F¼ 0.36 and 0.35 for frequency representa-
tions, and F¼ 0.59 and 0.62 for v2 weights, for Paragraphs and
Sentences, respectively).

DISCUSSION
When tested on a balanced experimental datasets, 1C-SVMs trained
on snippets performed comparably to traditional 2C-SVMs trained on
whole notes. However, when evaluated on a realistic imbalanced

Table 1: Classifier performance on the experimental
test set maximizing F-score

Precision

(SEM)

Recall

(SEM)

F-score

(SEM)

2C-SVM Whole Notes 0.93 (0.05) 0.92 (0.05) 0.92 (0.03)

2C-SVM Whole Notes (f ) 0.94 (0.05) 0.91 (0.06) 0.92 (0.05)

2C-SVM Whole Notes (v2) 0.93 (0.06) 0.9 (0.05) 0.91 (0.05)

2C-SVM Snippets FS* 0.94 (0.03) 0.93 (0.04) 0.93 (0.04)

2C-SVM Snippets* 0.47 (0.17) 0.59 (0.40) 0.45 (0.21)

1C-SVM Whole Notes (f) 0.79 (0.08) 0.88 (0.05) 0.83 (0.04)

1C-SVM Whole Notes (v2) 0.87 (0.06) 0.91 (0.07) 0.88 (0.04)

1C-SVM Snippets (f) 0.91 (0.07) 0.93 (0.05) 0.92 (0.04)

1C-SVM Snippets (v2) 0.92 (0.03) 0.91 (0.06) 0.91 (0.02)

String match “breast cancer” 0.93† 0.75† 0.83†

In bold, results of best performing classifiers that were also tested on
the 10 000 record realistic test-set.
SEM - standard error of mean.
*2C-SVM Snippets FS – maintained the structure of positive notes but
limited the bag-of-words vector to words appearing in snippets. 2C-
SVM Snippets – used as positive notes the snippets sections only thus
distorting frequency measures.
†No SEM as string matching was evaluated once on the entire dataset
(n¼ 176).
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dataset, 2C-SVMs performed poorly. On these data, 1C-SVMs per-
formed considerably better (i.e., these models are generalizable), due
mainly to greatly improved precision. Superior performance was noted
even with overly broad identification of snippets (i.e., including sur-
rounding sentences or paragraph as well as the relevant text), sug-
gesting that the approach is robust to variation in expert annotation.

Identifying specific phenotypes in large clinical datasets is an in-
creasingly important task. However, even common diseases have rela-
tively low population prevalence. Therefore, large clinical datasets are
very imbalanced with respect to most phenotypes (e.g., diseases). The
novelty of this work is in adapting supervised methods of feature se-
lection on imbalanced datasets to 1-CC.

This study has several limitations. First, data were derived from a
single institution. Therefore, we can only conclude that 1C-SVM had
superior generalizability from the experimental dataset to the dataset
at our institution. However, the training dataset was very small (88
positive notes) compared to the 10 000 records in the (realistic, imbal-
anced) test set. Therefore, this approach is likely to work well on other
datasets. Second, performance on the realistic dataset was imperfect
with maximal F measure of 0.6. This is because the study was de-
signed to compare the performance of the 1C-SVM to that of the 2C-
SVM rather than to identify an optimal solution to the problem of note
classification. Performance could be improved with the combination of
other NLP techniques such as collocation (e.g., “breast cancer” as a
single feature as opposed to “breast” and “cancer”), negation identifi-
cation (e.g., “no evidence of breast cancer”), section tagging (e.g.,
“breast cancer in mother” under the family-history section), and map-
ping to the Unified Medical Language System (e.g., identification of
“infiltrative ductal carcinoma” as indicating that the patient has
“breast cancer”). Third, it might be argued that this study addresses
the problem of concept-level identification that could have been more
simply handled by asking experts to specify all the relevant concepts
or using an existing ontology. We picked the task of identifying
“breast-cancer” for its simplicity, but the methodology could be used
to identify conditions for which an ontology does not exist (e.g., identi-
fying “unusual responders” to chemotherapy). Alternatively, if a tumor
registry is available for the population, it could be used to identify
patients with breast cancer with much less effort than our approach.

Finally, it is possible that a multi-class approach, whereby experts
would annotate all possible classes (i.e., positive, negative, neutral,
and irrelevant) could outperform 1-CC. However, identifying negative
cases and uniformly representing the irrelevant class is a challenging
task which was beyond the scope of this study.

The reduction in performance of 2C-SVM between the experi-
mental dataset and the realistic dataset suggests that for rare-class
classification binary models tend to over-fit.5,15 Previous research has
demonstrated the advantage of 1-CC in such settings.4,5 However, all
these studies focused on classifying very short passages (as opposed
to our task of using whole notes) thus avoiding 1-CC susceptibility to
“noise.”6,7

Few studies evaluated feature selection specifically devised for
1-CC; mostly using unsupervised methods. These demonstrated only
a limited improvement in performance.7,8 Other studies have evalu-
ated supervised feature selection methods for 2C-SVMs which we
adapted here to 1-CC. Liu et al. used weights based on a probability
metric calculated only for text from the positive class to augment
2C-SVMs; an approach similar to our use of weighting based on corre-
lation coefficients. They demonstrated improved performance com-
pared to other methods of feature selection on imbalanced datasets.2

We found that weighting did not improve 2C-SVM performance;
possibly due to the relatively high baseline performance. However,
weighting was essential for 1C-SVM. The intuition is that in the context
of 1-CC, weighting provides an indication of how unique a feature is to
the positive class. Ng et al. suggested limiting the feature vector only
to words appearing in the positive class while training on both positive
and negative notes. This approach is similar to 2C-SVM with a feature
vector limited to words from snippets and was found to outperform
other methods of feature selection.14 Again, in our experiment this ap-
proach did not improve the performance of 2C-SVM but had a consid-
erable effect on the performance of 1C-SVMs (F¼ 0.83 vs. F¼ 0.92
for 1C-SVM trained on Whole notes vs. Snippets, respectively). In this
study, we expand on this method through a “semi-explicit” feature se-
lection by having expert(s) select relevant sections of text. A similar
approach was used by Zaidan et al. and by Yu et al. who demon-
strated a modest improvement over traditional 2-CC (i.e., without fea-
ture selection). The modest results of these studies are in-line with
our observation that expert guided feature selection does not signifi-
cantly improve performance on a balanced experimental dataset.
However, neither study evaluated this form of feature selection for im-
balanced datasets or in combination with 1-CC. We found that in text
classification, model evaluation on balanced experimental datasets
gives an overly optimistic estimation of performance. Subsequently,
when evaluating models on realistic imbalanced dataset the advantage
of the combination of expert-guided feature selection and 1-CC over
traditional 2-CC becomes apparent.

Manually identifying key concepts using expert annotation is labor-
intensive, requires extensive training and is hard to maintain over
time.16–18 Snippet annotation could, at least in part, reduce the required
human effort. To this end, it is particularly relevant to note that NLP per-
formance was improved even when using an imprecise identification of
snippets within the surrounding sentences or paragraphs. Theoretically
in future systems relevant sections of text could be selected implicitly
as part of the routine interaction of experts with the electronic health
record; for example, by eye tracking or mouse tracking to identify which
sections of the text experts read more attentively.19

CONCLUSIONS
Using expert-selected text of interest (snippets) combined with one
class classification results in a considerably improved performance on

Table 2: Classifier performance on a realistic (imbal-
anced) test set maximizing precision

Precision Recall F score

2C-SVM Whole Notes 0.06 0.84 0.11

2C-SVM Whole Notes (f ) 0.09 0.9 0.17

2C-SVM Whole Notes (v2) 0.09 0.9 0.16

2C-SVM Snippets FS 0.07 0.89 0.13

1C-SVM Snippets (f ) 0.88 0.26 0.40

1C-SVM Snippets (v2) 0.53 0.73 0.61

1C-SVM sentences (f ) 0.30 0.40 0.35

1C-SVM sentences (v2) 0.63 0.60 0.62

1C-SVM paragraphs (f ) 0.84 0.23 0.36

1C-SVM paragraphs (v2) 0.88 0.45 0.59

String match “breast cancer” 0.24 0.90 0.32

In bold, results of best performing classifiers.
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realistically imbalanced datasets. Performance improves even with an
overly broad identification of snippets (i.e., within surrounding sen-
tences or paragraph).
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