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Abstract

Purpose of review—The purpose of this article is to describe the function of the vascular cell 

adhesion and signaling molecule, PECAM-1, in endothelial cells, with special emphasis on its role 

in maintaining and restoring the vascular permeability barrier following disruption of the 

endothelial cell junction.

Recent findings—In addition to its role as an inhibitory receptor in circulating platelets and 

leukocytes, PECAM-1 is highly expressed at endothelial cell-cell junctions, where it functions as 

an adhesive stress-response protein to both maintain endothelial cell junctional integrity and speed 

restoration of the vascular permeability barrier following inflammatory or thrombotic challenge.

Summary—Due to the unique ability of antibodies that bind the membrane-proximal region of 

the extracellular domain to trigger conformational changes leading to affinity modulation and 

homophilic adhesion strengthening, PECAM-1 might be an attractive target for treating vascular 

permeability disorders.
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INTRODUCTION

Platelet/endothelial cell adhesion molecule-1 (PECAM-1) was originally described in the 

mid-1980’s as the CD31 differentiation antigen expressed on the surface of human 

granulocytes, monocytes and platelets [1–4]. At the same, several other groups 
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independently reported the presence of an endothelial cell surface antigen - variously known 

as glycoprotein (GP) IIa [5], GPIIa’ [6], hec7 antigen [7], and EndoCAM [8] - that became 

highly enriched at cell-cell junctions. Screening of an endothelial cell cDNA expression 

library with an antibody specific for platelet integral membrane proteins led to the cloning of 

a 130 kDa protein having homology with recently cloned cell adhesion molecule members 

of the immunoglobulin gene (Ig) superfamily, and the protein was named platelet/endothelial 

cell adhesion molecule-1 (PECAM-1) to denote its cloning origins, its family membership, 

and its likely function [9]. Immunochemical and biochemical characterization, together with 

its subsequent cloning from two different leukocyte libraries [10,11] established that the 

endothelial cell junctional protein, the CD31 hematopoietic differentiation antigen, and 

platelet PECAM-1 were identical entities, facilitating investigation of the role that this cell 

adhesion and signaling molecule plays in the biology of blood and vascular cells. A number 

of excellent reviews exist on the function of PECAM-1 in platelet biology [12], in signal 

transduction [13,14], and on its role in leukocyte transendothelial migration and 

inflammation [15,16]. In contrast, this chapter will focus primarily on the role that 

PECAM-1 plays in endothelial cell biology, with a special emphasis on the homophilic 

adhesive properties of the PECAM-1 extracellular domain and how it functions to regulate 

the endothelial cell vascular permeability barrier.

STRUCTURAL FEATURES OF THE EXTRACELLULAR AND CYTOPLASMIC 

DOMAINS, AND TISSUE DISTRIBUTION

PECAM-1 (Figure 1) has a molecular mass of 130 kDa, approximately 40% of which is 

carbohydrate [9,19]. The 574 amino acid extracellular domain is comprised of six Ig 

homology domains of approximately 100 amino acids each, the amino terminal two of 

which belong to the I2 set of Ig-superfamily folds [17]. Extensive mutagenesis studies, 

coupled with both functional and structural information, have shown that IgD1 and IgD2 

function in (1) mediating homophilic PECAM-1/PECAM-1 interactions between leukocytes 

and endothelial cells, and (2) concentrating PECAM-1 at endothelial cell-cell borders, where 

it functions as both a major endothelial mechanosensor [20–23], and as regulator of vascular 

permeability. The former will be covered extensively in an accompanying article by Tzima 
in this volume, while the role of PECAM-1 in maintaining endothelial cell barrier function 

will be described in detail below. Further down the molecule, membrane-proximal Ig 

domains 5 and 6 each contain calcium coordination sites [24], and antibodies that bind IgD6 

have the interesting property of increasing the homophilic binding affinity of the receptor 

[25,26], a property with potential translational applications that will be examined in more 

detail below.

The cytoplasmic domain of PECAM-1 is comprised of eight separate exons that are subject 

to alternative splicing [27], yielding isoforms that are expressed in a tissue- and 

differentiation-specific manner [28,29], and that have the potential to differ in their 

functional properties [30–32]. Though largely unstructured, the cytoplasmic domain 

contains a single lipid-associated segment that is susceptible, upon cellular activation, to 

inducible, sequential phosphorylation [18,33]; first of serine residues that release a 

membrane-associated control region from the inner face of the plasma membrane (see 
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Figure 1), and then of tyrosines 663 and 686, each of which exist within immunoreceptor 

tyrosine-based inhibitory motifs (ITIMs). PECAM-1 ITIMs, when phosphorylated, recruit 

the protein-tyrosine phosphatase, SHP-2 [34], resulting in formation of a PECAM-1/SHP-2 

complex that functions in circulating blood cells to inhibit a plethora of tyrosine kinase-

initiated cellular activation events [35]. Endothelial PECAM-1 is able to recruit cytosolic 

SHP-2 to the inner face of the plasma membrane in a phospho-ITIM-specific manner [36,37] 

to form a complex that functions to increase endothelial cell motility and migration in a 

process that will be discussed in Section 5 below.

THE CONTRIBUTION OF IgD1 AND IgD2 TO HOMOPHILIC INTERACTIONS

The adhesive properties of PECAM-1 largely depend on its ability to form PECAM-1/

PECAM-1 homophilic interactions. Such interactions are essential for concentrating 

PECAM-1 at endothelial cell-cell borders [38] where it functions both to regulate the 

vascular permeability barrier (see below) and leukocyte trafficking [39]. Sun et al. were the 

first to demonstrate that PECAM-1 homophilic interactions require PECAM-1 IgD1 and 

IgD2 [25], however this interaction is species-specific, as substituting human PECAM-1 

with murine IgD1, abrogates PECAM-1 homophilic interactions [25,40]. Studies by Newton 

et al. demonstrated that five residues (D11, D33, K50, D51, and K89) are required for 

homophilic binding [41]. Disruption of at least one of these, K89, results in loss of both 

endothelial cell border localization [38] and the ability of PECAM-1 to contribute to 

endothelial cell junctional integrity [42,43]. The structure of the homophilic binding domain 

of PECAM-1 has been recently been solved [17], and reveals that both IgD1 and IgD2 

participate importantly in the formation of the trans homophilic binding interface, with a 

total buried interface area of more than 2300 Å2. Such extensive contacts likely enable 

PECAM-1 to maintain vascular integrity and to resist mechanical force under conditions of 

fluid shear stress. A space-filling model of IgD1/D2 based on the crystal structure is shown 

in Figure 1, while select residues participating in formation of the homophilic binding 

interface are listed in Table 1.

LECTIN-LIKE PROPERTIES OF PECAM-1

PECAM-1 is heavily glycosylated [19], with nine N-glycosylation sites within the 

extracellular domain, three of which are in IgD1 and IgD2 [9,17]. Kitazume et al. were the 

first to demonstrate a role for carbohydrate residues in mediating PECAM-1 homophilic 

interactions [44], and proposed that PECAM-1 possess lectin-like properties similar to the 

Siglec family of cell adhesion receptors [45]. Interestingly, homophilic binding ability was 

linked to the presence of α2,6-sialic acid modified glycan residues, which appeared to be 

necessary for the ability of PECAM-1 to traffic normally to the cell surface and confer a cell 

survival advantage to endothelial cells in culture [46]. α2,6-linked sialic acids were also 

shown to be necessary for endothelial cells to form tube-like structures in vitro [47]. An 

important caveat of each of these studies is that they were performed using primarily murine 

cells and murine PECAM-1, More recent studies [48] have identified important species-

specific requirements for PECAM-1-mediated homophilic binding, as α2,3- but not α2,6-, 

sialylated glycans, appear to participate in PECAM-1/PECAM-1 interactions in humans. 

Structural and functional studies aimed at identifying and characterizing the specific role of 
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glycans in human PECAM-1/PECAM-1 interactions are the subject of an ongoing 

investigation in our laboratory.

PECAM-1 AND ENDOTHELIAL MIGRATION AND CELL SURVIVAL

Cell migration

The first hint that PECAM-1 might be involved in cell migration and angiogenesis came 

from findings that anti-PECAM-1 antibodies inhibit the ability of endothelial cells grown on 

Matrigel to form tube-like structures [49–52]. This concept was supported shortly thereafter 

by the observation that antibodies specific for PECAM-1 inhibit tumor-induced angiogenesis 

in vivo in mice [53,54], and later by the observation that tumor angiogenesis is impaired in 

PECAM-1-null mice [55]. The mechanism by which PECAM-1 promotes cell migration 

appears to be due to the ability of the PECAM-1/SHP-2 complex to alter the cytoskeleton, 

both by dephosphorylating focal adhesion kinase [56,57], as well as by altering the activity 

of the small G-protein, RhoA [58,59]. Taken together, these findings provide strong rationale 

for targeting PECAM-1 in endothelialopathies such as tumor angiogenesis and the growth 

and development of hemangiomas.

Cell survival

Exposure of endothelial cells to a variety of apoptotic and/or inflammatory stimuli results in 

endothelial injury and dysfunction (reviewed in [60]), and their ability to resist programmed 

cell death is crucial for endothelial cells to maintain vascular homeostasis. PECAM-1 

homophilic binding [61,62] and subsequent signaling through the PECAM-1 cytoplasmic 

domain [63,64] play important roles in endothelial cell cytoprotection. Interestingly, 

although PECAM-1 ITIMs are required to inhibit the intrinsic pathway of Bax-induced 

apoptosis [64], they appear to do so independent of their ability to recruit and activate SHP-2 

[65] – at least in endothelial cells exposed to genotoxic chemotherapeutic drugs. PECAM-1 

has also recently been reported to endow the vascular endothelium with the ability to 

maintain vascular integrity during inflammation-induced activation of the extrinsic pathway 

of apoptosis [66]. As in chemotherapy-induced endothelial cell death, PECAM-1 ITIM 

tyrosines appear to be required for cytoprotection. The distinct signaling pathways employed 

downstream from PECAM-1 ITIM tyrosine phosphorylation leading to protection of 

endothelial from pro-apoptotic stimuli remain to be fully elucidated.

ORGANIZATION OF THE ENDOTHELIAL CELL JUNCTION

The vascular endothelium regulates the flow of fluids and cells via a number of mechanisms. 

Cell surface negatively-charged glycans located on the luminal surface of the endothelium 

form a charged repulsive surface that prevents platelets, red cells, and leukocytes from 

adhering to the endothelium under normal conditions [67], while membrane compartments 

like caveolae regulate transendothelial transport of soluble macromolecules [68]. Most 

trafficking, however, takes place at the endothelial cell-cell junction, the integrity of which is 

tightly regulated by the coordinated action of a series of cell surface receptors and 

cytoskeletal elements that work together to regulate fluid exchange with the underlying 

tissue while retaining blood cells within the vessel [69]. There are two types of junctional 
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adhesive structures (Figure 2); Tight Junctions (TJ) and Adherens Junctions (AJ). Tight 

junctional components, comprised of claudins, occludins, and JAMs, are present to various 

degrees in different endothelial cell beds – especially those that require tight regulation of 

vascular permeability such as in the blood-brain barrier [70]. Adherens Junctions, on the 

other hand, are made up of the vascular-specific cadherin, VE cadherin, linked to the actin 

cytoskeleton via members of the catenin family, and play probably the most important role 

in regulating vascular permeability [71,72]. Finally, the most abundant component of the 

endothelial cell junction, PECAM-1, is present in neither tight nor adherens junctions [73], 

rather becoming concentrated deep within the junction as a consequence of “diffusion-

trapping [38] – a process in which N-terminal IgD1 and IgD2 mediate trans homophilic 

interactions between PECAM-1 molecules on adjacent cells.

PECAM-1 AND THE MAINTANENCE OF THE ENDOTHELIAL CELL 

PERMEABILITY BARRIER

A plethora of studies support the concept that PECAM-1 contributes importantly to the 

maintenance of the endothelial cell permeability barrier. Ferrero demonstrated twenty years 

ago that addition of anti-PECAM-1 antibodies to endothelial cell monolayers in culture 

increases the rate of albumin transit in transwells, that transfection of PECAM-1 into 

cultured fibroblasts reduces albumin transit, and that injection of the PECAM-1 mAbs into 

mice results in fluid leak into the hepatic and renal vasculature [74]. Though PECAM-1-

deficient mice exhibit no vascular abnormalities while sitting quietly in a cage in an animal 

facility, they have a profound, easily observable phenotype when subjected to inflammatory 

[75–77] or hemostatic [78] challenge.

While signal transduction events initiated by phosphorylation of PECAM-1 cytoplasmic 

domain ITIM tyrosines dominate the function of PECAM-1 in circulating platelets and 

leukocytes, the homophilic binding properties of PECAM-1 appear to be critical for its 

“firewall” role supporting endothelial cell junctional integrity. Recent mechanistic studies 

employing Electric Cell-substrate Impedance Sensing technology found that, compared with 

PECAM-1-deficient endothelial cells, PECAM-1-expressing endothelial cell monolayers 

exhibit increased steady-state barrier function, as well as more rapid restoration of barrier 

integrity following thrombin-induced perturbation of the endothelial cell monolayer integrity 

[42]. This effect was found to be dependent upon the ability of PECAM-1 to interact 

homophilically and become localized to cell–cell junctions, because a homophilic binding-

crippled mutant form of PECAM-1 that could not localize to cell-cell borders was unable to 

support efficient barrier function. In contrast, cells expressing ITIM-less forms of PECAM-1 

exhibited normal to near-normal barrier integrity. Whether non-ITIM sequences with the 

cytoplasmic domain play a role in stabilizing endothelial cell-cell junctions is not known, 

nor is the role that PECAM-1-linked carbohydrate residues play in this process understood. 

Both are the subject of ongoing investigations.

Perhaps most intriguing from a translational point of view is the observation that the 

adhesive properties of PECAM-1 are subject to affinity modulation [25,26] – a property well 

known for members of the integrin family of adhesion receptors, but relatively rare for 
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members of the Ig superfamily. In a process that is not yet understood mechanistically, 

addition of antibodies that bind membrane-proximal IgD6 are able not only to increase the 

homophilic binding affinity of PECAM-1, but are able to actually enhance the rate of 

endothelial cell migration and barrier restoration in endothelial cell monolayers subjected to 

physical or inflammatory challenge. The finding that the adhesive properties of PECAM-1 

are regulatable may allow for the development of novel approaches and reagents that can 

enhance endothelial cell migration and restore barrier function in a wide variety of vascular 

permeability disorders.

CONCLUSION

There is growing appreciation that the fields of thrombosis and inflammation are 

inextricably and mechanistically linked. PECAM-1, via its ability to inhibit the activation of 

circulating platelets and leukocytes, while at the same time supporting the integrity of 

endothelial cell-cell junctions and providing protection of the vascular bed to apoptotic 

stimuli, appears to play a significant role in each of these interrelated processes. PECAM-1 

has predictably been implicated in a number of clinically-relevant disorders, ranging from 

thrombosis and cardiovascular disease to inflammation and cancer. It is hoped that this brief 

review will spur additional efforts to improve our understanding of the structure and function 

of this novel cell adhesion and signaling molecule in the vascular cells in which it is 

expressed, and allow for translational opportunities to be exploited.
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KEY POINTS

• PECAM-1 is enriched at endothelial cell intercellular junctions, where 

it regulates leukocyte trafficking, mechanotransduction, and vascular 

permeability.

• Extensive homophilic contacts between amino acids located in amino 

terminal Ig homology domains 1 and 2 of the molecule enable 

PECAM-1 to maintain vascular integrity and to resist mechanical force 

under conditions of fluid shear stress.

• The adhesive properties of PECAM-1 are subject to affinity modulation 

– a rather unique property for a member of the Ig-superfamily – and 

may be physiologically important in thrombosis, inflammation and the 

immune response.
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Figure 1. 
Schematic diagram of PECAM-1. The extracellular domain is comprised of six Ig-like 

domains, the first two of which are shown as a space-filling model of the recently 

determined homophilic binding domain (reference 17) that is involved in cell adhesion. The 

structure of the cytoplasmic domain was determined by 2D NMR (reference 18), and is 

characterized by two lipid-associated regions separated by a large unstructured region. 

PECAM-1-mediated signaling is initiated by phosphorylation of serine 702, which releases 

ITIM tyrosine 686 from its association with the plasma membrane, facilitating its 

phosphorylation by the Src-family kinase, Lyn. Sequential phosphorylation of ITIM tyrosine 

663 completes the process, and allows PECAM-1 to now recruit SH2 domain-containing 

proteins, the most notable of which is the protein-tyrosine phosphatase, SHP-2.
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Figure 2. 
Adhesive molecules of the endothelial cell-cell junction. The vascular permeability barrier is 

maintained by tight junctions comprised of claudins, occludins, and JAMs, followed by 

adherens junctions comprised primarily of vascular endothelial cadherin (VE-cadherin) 

associated with the actin cytoskeleton via members of the catenin family. Underneath these 

specialized compartments lies the most abundant endothelial cell surface receptor, 

PECAM-1, which is expressed at 1–2 x 106 molecules per cell. Figure adapted from E. 

Dejana, Nature Reviews Molecular Biology 5:261, 2004 (69).
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Table 1

Amino acid interacting * pairs on the IgD1 and IgD2 inter-chain interfaces present in the crystal structure of 

the homophilic binding domain of human PECAM-1

Interacting interfaces Amino acid pairs

IgD1-IgD1 V34-K13, T37-K24/P16, T36-P16, S38-P16/L15, K62-T64/A32/S63/F31, T64-F31, V40-L15, P42-L15, H39-
L15/F68/T27/N25, F3-D11, K41-S66/Q29, F68-S35, T27-S35/N8, L15-N8, Q29-N8/S9/D33, S66-D33

IgD1-IgD2 Y49-R122/E165, D51-K154, D51-K154, D52-R122, K81-E165

IgD2-IgD2 R157-K131, D158-K131, A132-R157

*
Multiple amino acids interacting with a single amino acid are separated by a “/”
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