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Abstract

Background

There are insufficient system-wide transcriptomic (or other) data that help explain the
observed inter-individual variability in antibody titers after measles vaccination in otherwise
healthy individuals.

Methods

We performed a transcriptome(mRNA-Seq)-profiling study after in vitro viral stimulation of
PBMCs from 30 measles vaccine recipients, selected from a cohort of 764 schoolchildren,
based on the highest and lowest antibody titers. We used regression and network biology
modeling to define markers associated with neutralizing antibody response.

Results

We identified 39 differentially expressed genes that demonstrate significant differences
between the high and low antibody responder groups (p-value<0.0002, g-value<0.092),
including the top gene CD93 (p<1.0E™'3, q<1.0E™°), encoding a receptor required for anti-
gen-driven B-cell differentiation, maintenance of immunoglobulin production and preserva-
tion of plasma cells in the bone marrow. Network biology modeling highlighted plasma cell
survival (CD93, IL6, CXCL12), chemokine/cytokine activity and cell-cell communication/
adhesion/migration as biological processes associated with the observed differential
response in the two responder groups.

Conclusion

We identified genes and pathways that explain in part, and are associated with, neutralizing
antibody titers after measles vaccination. This new knowledge could assist in the
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identification of biomarkers and predictive signatures of protective immunity that may be
useful in the design of new vaccine candidates and in clinical studies.

Introduction

Despite the widespread use of measles vaccines (especially the two-dose immunization schedule
introduced in 1989) and the dramatic decrease in the occurrence of measles in the U.S., annual
outbreaks involving hundreds of cases continue to occur.[1] In 2014 alone, the U.S. experienced
23 measles outbreaks with 644 cases (the highest number of cases since measles elimination was
declared a priority in 2000).[2] In 2015, 189 people from 24 states and the District of Columbia
were reported to have measles.[2] Recent outbreaks among highly vaccinated populations in
North America and in Europe are an indication that, even with the two-dose schedule, vaccine
failure still accounts for a small to sizeable percentage (1%-24%) of measles cases.[3,4] A signifi-
cant portion of these cases involve recipients of two doses of measles-containing vaccine.[1,3]

There are insufficient data on the immunologic, genetic and genomic basis of inter-individ-
ual immune response variations after measles vaccination to help uncover the molecular mech-
anisms underlying vaccine failure. Comprehensive omics-level information on measles vaccine
immune responses and waning immunity has not been previously generated. To fill these
knowledge gaps, we developed a new vaccinomics paradigm that utilizes unbiased, high-
dimensional omics data and advanced statistical/bioinformatics approaches for deep immune
profiling of viral vaccine responses.[5,6,7] The ultimate goal is to apply these approaches to
identify signatures (containing both individual variables and their interactions) that can dis-
criminate among measles vaccine immune phenotypes, serve as biomarkers of protective
immunity, and inform the development of novel vaccine candidates.

In this study, we assessed gene expression in 30 measles-mumps-rubella (MMR) vaccine
recipients following two vaccine doses using a whole transcriptome sequencing approach
(mRNA-Seq), and evaluated how high or low neutralizing antibody response impacts and/or is
associated with observed transcriptional changes after in vitro measles virus stimulation. Our
study was designed to better understand the genetic factors, mechanisms and pathways under-
lying the biological spectrum of immune responses to measles vaccination.

Methods

The methods described herein are similar or identical to those we have previously published.
(8,9,10,11,12,13,14]

2.1. Study subjects

A total of 30 subjects were selected for an mRNA-Seq transcriptome-profiling study based on
their plaque reduction microneutralization assay (PRMN) antibody titers (15 highest and 15
lowest antibody responders) from a combined cohort of 764 randomly selected healthy school-
children and young adults (age 11-22 years) from Olmsted County, MN, who received two
doses of MMR-II vaccine (Merck) that contained the Edmonston strain of measles virus
(TCIDsg >1,000). Details on the recruitment, demographic and immune characteristics of the
study population have been previously described.[10,11,12] The Institutional Review Board
(IRB) of the Mayo Clinic approved the study, and written, informed consent was obtained
from subjects’ parents/guardians, as well as written assent from age-appropriate subjects at the
time of enrollment.
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2.2. Plaque reduction microneutralization assay (PRMN)

Anti-measles neutralizing antibody titers were quantified using a high throughput fluores-
cence-based PRMN, as previously published.[10,11,12] Estimates of 50% end point titer (Neu-
tralizing Dose, ND50) were calculated using Karber’s formula and ND50 values were
converted to mIU/ml values using the 3rd WHO anti-measles antibody standard (NIBSC code
no. 97/648), as previously published. [12] The coefficient of variation for this assay in our labo-
ratory, based on the third WHO standard runs was 5.7%.[12]

2.3. mMRNA-Seq transcriptome profiling

The sequencing methods are similar to those previously published.[13,14] In brief, subjects’
cryopreserved peripheral blood mononuclear cells (PBMCs) were thawed and stimulated with
live Edmonston measles virus at a multiplicity of infection of 0.5 for 24 hours (for each subject,
an aliquot of the cells was left unstimulated). Cells were stabilized with RN Aprotect cell reagent
(Qiagen) and total RNA was extracted using RNeasy Plus mini kit (Qiagen). Quality and quan-
tity of RNA was determined by Nanodrop spectrophotometry (Thermo Fisher Scientific).
Poly-A RNA was isolated using magnetic beads coated with olido-dT, then reverse transcribed
after fragmentation into cDNA, and combined with Illumina adaptor sequences. Libraries
were generated using Illumina’s mRNA TruSeq (v1) kit. After validation, cDNA libraries were
sequenced (paired end sequencing) on an Illumina HiSeq 2000 (Illumina;San Diego, CA) with
[Mlumina’s TruSeq Cluster kit (v3-cBot-HS) and 51 Cycle Illumina TruSeq SBS Sequencing Kit
(v3). The sequencing reads were aligned to the human genome build 37.1 using TopHat (1.3.3)
and Bowtie (0.12.7). Gene counts were performed using HTSeq (0.5.3p3), while BEDTools
software (2.7.1) was used to map normalized read count to individual exons.[15,16,17]

2.4. Statistical analysis

The analysis consisted of complementary gene-to-biology (an inductive, data-driven approach
performed at the gene level) and biology-to-gene (a deductive knowledge-driven approach per-
formed at the geneset level) analytical strategies, as previously described.[18]

The samples (n = 60, 30 measles virus-stimulated and 30 unstimulated samples) were ran-
domized to ensure balance of important characteristics over assay run order: immune response
group (high or low antibody responder), stimulation status (virus stimulated or unstimulated
sample), and sex (male or female) for the cell culture setup, preparation of libraries, and
sequencing (flow cell and lane run).

Quality control methods used were similar to those reported in our previous studies. [13,14]
Conditional Quantile Normalization (CQN) was used to normalize the mRNA-sequence data
adjusting for the differences in library size, GC content and gene length.[19,20] Differential
expression analysis comparing statistical “interaction” of the high vs low responders’ response
to viral stimulation; viral stimulation relative to the unstimulated samples (regardless of neu-
tralizing antibody status) was performed using generalized estimating equations.[21] Specifi-
cally, the raw counts were modeled in a generalized linear negative binomial model [22],
utilizing the offset from the CQN normalization, estimating the variance for each gene with the
edgeR tagwise dispersion option, and estimating the within subject correlation structure to pro-
vide a robust estimate of the variance.[23] Results for the differential expression analysis are
reported as the interaction comparing the fold change (FC) for the difference in high antibody
responders’ response to viral stimulation, relative to the response of low antibody responders’
to viral stimulation, and the response to viral stimulation for the high and low responder sub-
jects combined. All reported fold-change values (including the interaction fold change) for
gene expression are for virus-stimulated PBMCs relative to the unstimulated PBMCs, and thus
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take into account resting differences in gene expression. False discovery rates (FDR) were cal-
culated using standard methods and are reported as q-values.[24] Pathway analysis was con-
ducted using Ingenuity® software, (Ingenuity® Systems; Redwood City, CA). Geneset
analysis was done using the gamma method with 1,000 permutations of the high and low anti-
body response of the subjects permuting the stimulated status within each subject.[25]

2.5. Network biology

To comprehensively identify high-confidence interactions, we combined multiple resources:
HPRD [26]; CCSB [27]; the 7.8% of STRING [28] with highest confidence (score > 70%); and
the 12.9% of HumanNet [29] with highest confidence (score > 2). Networks were visualized
using Cytoscape [30] version 3.2.1 and layouts refined using AllegroLayout v.2.2.1.[31] Path-
way enrichment was performed using 138 pathway definitions downloaded from MSigDB’s
index of KEGG canonical pathways [32,33] after removing those that are disease-associated
(e.g., type-II diabetes and leishmania infection), or derived from other pathways (e.g., pathways
in cancer). The biologic functions of genesets were assessed using GO term enrichment [34]
and evaluated using hypergeometric tests. Genes considered in our network biology approach
are all those exhibiting stimulation and interaction fold changes (|log,(FC)| of > 0.5)and an
interaction p-value < 0.01 (n = 115), or a stimulation p-value of < 0.001 (n = 207 additional
genes). One-hundred forty (43%) of these 322 genes share connections within the high-confi-
dence network used. We also generated an inclusive network where the score-based filters were
not employed, and where 282 (88%) genes share connections (data not shown).

Results
3.1. Characteristics of the study subjects

The enrolled study subjects were primarily white (67% for the high-responders group and 73%
for the low-responders group); African-Americans comprised 27% and 20% of the high- and
low-responders group, respectively. Sixty percent of the participants were males and forty per-
cent were females. The median age of subjects at study enrollment was 16 (IQR 12, 17) and 15
(IQR 13, 17) years (for the high and low responders group, respectively); the median age at
first measles immunization was 16 (IQR 15, 32) and 15 (IQR 15, 65) months; the median age at
second immunization was 6 (IQR 4, 12) and 8 (IQR 5, 11) years; and the median time since sec-
ond immunization to enrollment was 7.1 (5.7, 9.5) and 7.0 (IQR 4.6, 8.7) years (for the high
and low responders group, respectively). Thus, it is important to note that gene expression in
PBMCs and all immune measures (neutralizing antibody and cytokine measures after in vitro
viral stimulation) were quantified in samples approximately seven years after the last/second
measles (MMR) vaccination. None of the above mentioned demographic variable differences
reached statistical significance (data not shown). The study subjects were selected for mRNA-
Seq profiling based on their neutralizing antibody titer. The median antibody titer for the high
responders group was 5,188 mIU/mL (which suggests protection against infection/disease),
while the titer for the low responders group was 88 mIU/mL (which suggests lack of protection
against measles). All other immune response variables were not statistically significant between
the two groups and are shown in S1 Table.

3.2. Gene expression after in vitro stimulation with measles virus in high
and low antibody responders (interaction analysis)

Our overall analysis (differential gene expression in response to viral stimulation in all sam-
ples/subjects) identified 1,761 significantly expressed genes (FC>2 or FC<0.5, FDR<0.004),

PLOS ONE | DOI:10.1371/journal.pone.0160970 August 16,2016 4/14



@’PLOS ‘ ONE

mRNA-Seq and Measles Vaccine Response

including chemokine and chemokine receptor genes, cytokine and cytokine receptor genes,
and genes encoding innate receptors, antiviral proteins and HLA (S2 Table).

Importantly, we identified 39 differentially expressed genes (FDR<0.1, Table 1) that dem-
onstrated significant gene expression differences between the two antibody responder groups
to measles vaccination (p-value range 1.0E™"* to 0.0002, q-values range 1.0E™ to 0.092,

Table 1). An additional 11 differentially expressed genes demonstrated suggestive gene expres-
sion differences (as per our gene-to-biology approach) between the two study groups
(FDR<0.15, Table 1).

3.3. Pathway and geneset analysis

Among the Ingenuity pathways that were significantly enriched in high vs. low antibody
responders (enrichment p<1.0E™), the top three pathways (consisting of highly overlapping
genes) are related to immune adhesion and function, chemotaxis/inflammatory response, and
cytokine regulation (Table 2). To augment Ingenuity-based analysis, we used other indepen-
dent annotation sources, including GO and a filtered set of canonical pathways (see Methods).
The top results from each comparison are listed in Table 3, with most sources highlighting che-
mokine/cytokine activity, inflammatory response, and cell-cell communication/adhesion as
biological processes significantly involved in differential response to viral stimulation in high
vs. low measles vaccine antibody responders.

We also performed a geneset analysis using genesets/modules downloaded from MSigDB to
identify associations of groups of genes (genesets) with neutralizing antibody response follow-
ing vaccination. [35] The results identified 112 significant genesets (p < 0.05) with different
expression (response to viral stimulation) in high vs. low antibody responders that comprise
genes/pathways integral to innate and adaptive immune response, cell adhesion, metabolism
and cell signaling. The top 7 significant genesets with p<0.003 are listed in S3 Table.

In search of consistency between our gene-to-biology and biology-to-gene approach
results, we compared the top 69 genes from the gene-to-biology results (with an interaction
p-value < = 0.001) with the genes from 1,213 genesets (with p-value < 0.002) resulting from
our biology-to-gene approach. The intersection (overlap) between the results from the two
approaches resulted in six common genes of high interest (i.e., CD93, CD33, IL10, VEGFA,
VNNI, CADMI).

3.4. Network biology

To display molecular interactions, we performed simultaneous gene mapping/visualization of:
1.) genes with significant induction/suppression upon viral stimulation (overall response to
viral stimulation in all study subjects, regardless of their antibody response); and 2.) genes that
show significant differences in gene expression between the two antibody responder groups in
response to viral stimulation (i.e., statistical interaction). The result of gene mapping using
only high-confidence molecular interactions is shown in Fig 1.

Discussion

We and others have pointed out the value of using a systems-level vaccinomics approach
leveraging unbiased large-scale gene expression profiling (e.g., mRNA-Seq) to delineate molec-
ular signatures of efficient immune response after vaccination. Such approaches have provided
important insights into immunity to influenza [36], yellow fever [37], smallpox [14], rubella
[13], polysaccharide pneumococcal [38], and other vaccines. Our motivation for performing
this study was that despite the continuing measles outbreaks in populations that have received
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Table 1. Differential response to measles virus stimulation in high vs. low antibody vaccine responders (genes with g-value <0.15).

Gene symbol FC low? FC low log2° FC high® FC high log2® FC interaction® FCint. log2’ p-value? g-value
CD93 0.06 -3.99 0.41 -1.28 6.55 2.71 <1.0E"® <1.0E™°
IL24 0.75 -0.42 1.52 0.6 2.02 1.02 5.80E7'3 4.55E°0°
PID1 0.01 6.5 0.14 -2.83 12.78 3.68 3.34™M 1,757
CCL20 1.4 0.48 0.73 -0.45 0.52 -0.93 1.85E°° 7.24E706
ITGB8 3.73 1.9 1.71 0.77 0.46 -1.13 3.78E8 0.0001
EHD2 0.96 -0.05 0.61 -0.72 0.63 -0.67 5.96E°7 0.0016
IL6 3.1 1.63 1.53 0.61 0.49 -1.02 8.77E°7 0.0017
GPR124 0.26 -1.93 0.7 -0.51 2.68 1.42 9.17E°7 0.0017
S1PR3 1.61 0.68 1.03 0.04 0.64 -0.64 9.69E°7 0.0017
TFPI2 1.94 0.95 0.77 -0.37 0.4 -1.33 1.89E706 0.0027
C9orf6 0.76 0.4 0.85 -0.24 1.12 0.17 1.91E06 0.0027
RFX8 3.26 1.7 0.75 -0.42 0.23 213 3.80E7°° 0.005
VNN1 0.04 -4.56 0.34 -1.54 8.09 3.02 6.01E7°° 0.007
CYP3A5 0.88 -0.19 0.49 -1.03 0.56 -0.85 6.41E7° 0.007
BCL2A1 2.12 1.08 1.04 0.06 0.49 -1.02 8.04E° 0.008
SLC35B3 1.02 0.03 0.96 -0.06 0.93 -0.1 9.33E%° 0.009
SMPDL3A 1.27 0.34 0.51 -0.98 0.4 -1.32 1.25E7% 0.012
NAMPT 2.3 1.2 1.04 0.05 0.45 -1.15 1.90E° 0.017
CHST7 3.42 1.78 2.08 1.05 0.61 -0.72 2.35E0% 0.019
LIF 5.23 2.39 1.37 0.45 0.26 -1.93 3.41E° 0.027
FLT? 1.03 0.04 0.64 -0.65 0.62 -0.69 3.73E%° 0.028
HTR7 0.14 -2.88 0.36 -1.48 2.64 1.4 4,095 0.029
VEGFA 0.82 -0.29 0.46 -1.12 0.56 -0.83 4.91E°° 0.033
MAP1LC3A 1.99 0.99 1.12 0.16 0.56 -0.83 5.52E°° 0.036
FAM149B1 1.11 0.15 1.03 0.05 0.93 -0.1 6.13E7°° 0.038
AK4 6.65 2.73 1.98 0.98 0.3 -1.75 6.24E7°° 0.038
FPR2 1.96 0.97 0.37 -1.43 0.19 2.4 8.03E°° 0.047
SIGLEC15 0.14 -2.87 0.83 -0.27 6.09 2.61 9.11E® 0.051
Msc 8.36 3.06 3.18 1.67 0.38 -1.39 0.0001 0.054
HES1 1.34 0.42 0.82 -0.29 0.61 -0.72 0.0001 0.054
SGCD 0.33 -1.62 0.46 -1.12 1.42 0.5 0.0001 0.06
CYP1A1 46 2.2 1.65 0.72 0.36 -1.48 0.0001 0.066
MET 2.41 1.27 1 0 0.42 -1.27 0.0001 0.066
IL36RN 78.19 6.29 12.19 3.61 0.16 -2.68 0.0001 0.066
LOC154092 1.13 0.18 0.52 -0.95 0.46 -1.13 0.0001 0.066
G0S2 0.29 -1.77 1.01 0.01 3.44 1.78 0.0002 0.078
OR52N4 2.56 1.36 1.71 0.77 0.67 -0.58 0.0002 0.081
TRPAT 2.22 1.15 1.14 0.19 0.52 -0.96 0.0002 0.086
LAMB3 0.28 -1.81 0.68 -0.56 2.38 1.25 0.0002 0.092
ST20 0.92 -0.11 0.71 -0.49 0.77 -0.38 0.0003 0.101
STK31 0.95 -0.08 0.71 -0.49 0.75 -0.42 0.0003 0.101
CcClL24 0.02 -5.70 0.07 -3.93 3.40 1.76 0.0003 0.109
CD33 0.07 -3.93 0.13 -2.97 1.95 0.96 0.0003 0.109
IL10 0.61 -0.72 1.69 0.76 2.78 1.48 0.0003 0.110
LZTS1 1.12 0.17 0.86 -0.22 0.76 -0.39 0.0003 0.113
ITGB3 1.60 0.68 1.07 0.10 0.67 -0.57 0.0004 0.120
DLEU2 1.74 0.80 1.44 0.52 0.82 -0.28 0.0004 0.134
(Continued)
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Table 1. (Continued)

Gene symbol FC low® FC low log2® FC high® FC high log2® FC interaction® FCint. log2’ p-value?® g-value

STX1A 0.79 -0.34 0.52 -0.93 0.66 -0.59 0.0004 0.135
LOC730227 1.11 0.15 0.77 -0.37 0.70 -0.52 0.0005 0.146
CXCL2 0.61 -0.71 1.24 0.31 2.04 1.03 0.0005 0.146

3Fold change gene expression for the virus-stimulated PBMCs (low responders) relative to the unstimulated PBMCs (low responders}
PLog, of the fold change, described in (a).

°Fold change gene expression for the virus-stimulated PBMCs (high responders) relative to the unstimulated PBMCs (high responders}.
9Logs, of the fold change, described in (c).

®Interaction fold change is the ratio of the fold change for the stimulated (high responders) relative to unstimulated (high responders) (c) relative to the
stimulated (low responders) relative to the unstimulated (low responders) (a)
fLog, fold change for the interaction (e).

9pP-value associated with the test for a gene expression difference in high responders (response to viral stimulation), relative the response of low responders
(response to viral stimulation). For CADM1, p-value = 0.0008 and g-value = 0.203

doi:10.1371/journal.pone.0160970.t001

two doses of measles vaccine, comprehensive genome-wide information on gene expression
changes after measles vaccination and/or infection is limited.

Our transcriptome profiling study delineates significant gene expression differences that dis-
criminate between high and low neutralizing antibody responders (to measles vaccination) in
PBMC:s stimulated in vitro with measles virus. The identified genes include cytokine genes, cell
signaling genes, transcriptional targets of NF-kappa B, C-type lectin transmembrane receptors,
and other immune function-related genes (Table 1). The top gene found (p-value<1.0E™",
Table 1) is CD93, which is a receptor required for antigen-driven B-cell differentiation for main-
tenance of immunoglobulin production and preservation of plasma cells in the bone marrow.
[39] CD93 was not only the most significant gene, but it was also among the top three genes with
the highest fold change (FC interaction = 6.55) for differential gene expression (upon viral stimu-
lation) between high and low antibody responders. The other two genes with high fold change
were the phosphotyrosine interaction domain containing 1 gene (PID1, FC interaction = 12.78,
p-value = 3.34E"") and vanin 1(VNNI, FC interaction = 8.09, p-value = 6.01E*°). CD93 (identi-
fied also as a complement protein 1q receptor—C1qRp) encodes a C-type lectin transmembrane
receptor, expressed primarily during the early stages of B cell differentiation (although can be

Table 2. Top Ingenuity enriched pathways of differentially expressed genes to measles virus stimulation in high vs. low antibody vaccine
responders.

Top Ingenuity canonical pathways Pathway Genes Individual gene
enrichment p- expression p-values
value

1. Granulocyte Adhesion and Diapedesis 1.34E%7 CCL2,CCL3,CCL16,CCL18,CCL20, CCL24, CLDN11, 4.97E%2 10 1.85E°%°

CLDN12,CLDN14, CLDN23, CXCL2, CXCL3, CXCL5, CXCLS6,
CXCL13,FPR2, GNAI1,IL1B, IL1R1, IL36RN, ITGB3, MMP14,
MMP19, PPBP, SDC4

2. Lymphocyte and Monocyte Adhesion and | 5.76E°° CCL2,CCL3,CCL16,CCL18,CCL20, CCL24, CLDN11, 4.97E% 10 1.85E°
Diapedesis CLDN12, CLDN14, CLDN23, CXCL2, CXCL3, CXCL5, CXCL6,

CXCL13,GNAI1, IL1B, IL1R1, IL36RN, MMP14, MMP19,

PPBP, SDC4
3. Differential Regulation of Cytokine 7.41E04 CCL2,CCL3,CCL16,CCL18,CCL20, CCL24, CLDN11, 4.97E2t0 1.85E°
Production in Macrophages and T Helper CLDN12,CLDN14, CLDN23, CXCL2, CXCL3, CXCL5, CXCLS6,
Cells by IL-17 CXCL13,GNAI1, IL1B, IL1R1, IL36RN, MMP14, MMP19,

PPBP, SDC4

doi:10.1371/journal.pone.0160970.1002
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Table 3. Pathway enrichment of differentially expressed genes upon measles virus stimulation using independent annotation sources.

Effect of Viral Stimulation (in all Interaction (high vs. low Ab
subjects) responders)
Source? Term MP N° p-value g-value N° p-value g-value
GOA Extracellular Space 685 49 1.9 2.9 23 71E1 6.0E°
GOA Cytokine Activity 92 12 21E%7 2.2E04 8 3.6E°7 1.9
GOA Chemokine Mediated Signaling 51 15 2.5 2.0E"° 6 1.867° 4.9
GOA Inflammatory Response 263 27 1.5E72 41E°° 12 5.0E%7 2.0E
MSigDB NABA Matrisome 539 58 3.8E% 1.7E28 28 1.3E76 1.2E"2
MSigDB Hallmark of Inflammatory Response 181 29 1.3E'8 2.9E7° 16 2.7E3 6.6E'°
KEGG CP Cytokine Cytokine-Receptor Interaction 187 28 3.3E"7 4.6E'8 10 1.1E°¢ 1.5E04
KEGG CP Chemokine Signaling 164 16 1.3E%7 8.6E%° 5 7.1E°3 2.4E°"
KEGG CP Focal Adhesion 161 9 4.2 8.3E7°2 6 1.2E73 8.1E702

3The annotation source: GOA, human Gene Ontology Annotation; MSigDB genesets, excluding those derived from GO terms, genomic proximity, and
cancer; KEGG CP, our filtered subset of canonical pathways (see Methods).

PThe total number of genes that are annotated with the given term.

°The number of genes from our analysis and passing statistical significance thresholds (see Methods) that are annotated with the given term.

doi:10.1371/journal.pone.0160970.t003

expressed by different cell lineages, including activated macrophages). CD93 expression is re-
induced during plasma cell differentiation and the long-lived plasma cells demonstrate high
expression level of this protein, which is crucial for their maintenance in the bone marrow niche.
[39,40] Studies in a CD93-deficient mouse model revealed the key role CD93 has in terms of the
survival of antigen-specific long-lived plasma cells and the persistence of antigen-specific anti-
body response.[39]

Interestingly, the expression of CD93 was downregulated upon measles virus stimulation in
our study (in both antibody responder groups); however, this downregulation should be inter-
preted only in the context of gene expression in PBMCs (and not in specific cell populations).
A study of gammaherpesvirus infection in mice has demonstrated that the majority of normal
B cells were activated in the course infection with downregulation of CD93. [41] Different B
cells may undergo different degrees of CD93 expression (including loss of CD93); however, the
degree of downregulation or upregulation in different individuals and cell subtypes may under-
lie differences in cell homing, adhesion and cell survival. The downregulation (FC log2) in the
high antibody responder group was limited compared to the low-responder group (i.e., CD93
expression remained at a higher expression level after viral stimulation in the high antibody
responders compared to the low antibody responders), which is in agreement with the associa-
tion of higher CD93 expression with long-term antibody persistence after vaccination. Further-
more, CD93 cytoplasmic domain has been shown to interact with moesin for cytoskeleton
remodeling, and thus this protein may have a role beyond maintenance of long-lived plasma
cells in the processes of cell adhesion, cell migration and phagocytosis.[42] Another interesting
finding is the identification of IL24 as the second-ranked top gene (p = 5.8E™'>, Table 1), dem-
onstrating transcriptional differences in high vs. low neutralizing antibody responders. IL-24 is
a novel cytokine with a recently described role in regulating antigen-driven driven B cell differ-
entiation and plasma cell vs. memory cell commitment in germinal centers; therefore, its
expression can be directly related to antibody production.[43]

Different annotation sources emphasize several major enrichment themes among the genes
passing statistical criteria: cytokine/chemokine activity/extracellular messengers, inflammatory
response and cell adhesion/chemotaxis/migration. Specifically, Gene Ontology (GO) annotates
many genes as cytokine and chemokine signaling localized in the extracellular space. MSigDB
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Fig 1. Legend. Network biology of gene expression in measles vaccine high and low antibody responders.Simultaneous visualization of overall
stimulation response (gene expression in response to viral stimulation in all subjects) and differential responses (in high vs. low antibody responders)
within the context of a high-confidence biologic network. Each gene is represented as two circles, the outer colored by the virus-induced fold change in
all subjects (FC, presented as log, Stim FC) and the inner by the statistical interaction between high and low responders (i.e., difference in stimulated
FC between the high and low antibody responder groups, presented as log, FC between high and low responders).

doi:10.1371/journal.pone.0160970.g001

genesets highlight the importance of inflammatory response and the matrisome (the “ome” of
extracellular matrix proteins). The filtered set of KEGG canonical pathways likewise highlights
both cytokine and chemokine signaling pathways and cell adhesion/migration processes,
which is similar to Ingenuity pathways results.

Our network biology analysis mapped genes with significant statistical associations with
either overall (in all study subjects) virus-induced gene induction/suppression, or significant
genes that discriminate the transcriptional patterns between high and low antibody responder
groups to reveal their molecular interaction and biological relationships (Fig 1). Several mod-
ules are evident: one predominant module is centered on IL6, VEGFA, LEP, and the two tyro-
sine-protein kinases SRC and EPHA2, and includes genes with a distinct known relation to
innate/adaptive immunity. Interleukin 6 is produced by various cell types, including macro-
phages and T cells to initiate and promote immune function, and is also a critical survival
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factor for the resident bone-marrow plasma cells.[44] Leptin is a known protein important for
regulation of metabolism and body weight, which plays an important role in the modulation of
inflammatory/innate and adaptive immune responses following infection or vaccination.[45]
A second predominant module is linked to chemotaxis/inflammation and is centered on CCR2
(encodes a receptor for monocyte chemoattractant protein-1, involved in monocyte chemo-
taxis/infiltration in inflammation) and several other key chemoattractants (or their receptors)
for Band T cells, monocytes, dendritic cells and granulocytes (i.e., CXCL3, CXCL6, CXCL12,
CXCL13,CCL7, CCL19, XCR1). A third smaller module is centered on CCL8, which is also a
chemotactic protein with a role in inflammatory response and migration/activation of mono-
cytes, T cells and NK cells. Previous studies have identified similar or identical genes (e.g., IL-6,
CXCL3, CCL7, CCL19, CCR2), pathways and biological processes, involved in the differential
response of human PBMCs and dendritic cells to measles infection or viral stimulation.
[46,47,48] Intriguing is the facts that several of the highlighted genes/proteins (i.e., IL6,
CXCL12, and CD93) are known potent survival signals for the maintenance of plasma cells in
the bone marrow and thus their expression may have a direct impact on the regulation of long-
term humoral immune responses and immune memory.[44]

The overlap between our data-driven gene-to-biology analysis approach and our biology-
to-gene knowledge-driven geneset approach indicates and supports the major involvement of
six genes in the differential transcriptional responses observed in the two extreme antibody
response groups. These include CD93 (discussed above); CD33 and CADM1, involved in cell
adhesion, regulation of proliferation and signal transduction; VEGFA, an important cell growth
factor; VNN, involved in T cell migration and the response to oxidative stress; and IL10,
encoding a cytokine with pleiotropic immunosuppressive and immunomodulatory properties,
which affects antigen presentation and both T and B cell function (including antibody produc-
tion).[49,50]

To the best of our knowledge, this is the first study examining and characterizing genome-
wide transcriptional responses (using unbiased mRNA-Seq technology) to measles virus in
PBMC:s of measles-vaccine recipients, which represents the extremes of the neutralizing anti-
body response after vaccination. Current state-of-the-art paradigms advocate for performing a
comprehensive series of unbiased systems biology studies in order to thoroughly define
immune/molecular signatures of immune responses. [5,6,7] In this work, we identified
immune signatures responsible for (or indicative of) the maintenance of antigen-specific bone
marrow plasma cells and development/maintenance of adaptive B cell immune responses to
measles vaccination. Due to sample availability, our study design did not include a longitudinal
sampling (before and after vaccination), nor the integration of multiple omics-level data into
predictive models of vaccine response). At this early stage of knowledge, the current results
and identified genes/pathways provide the framework for future systems-level studies in order
to better understand measles vaccine-induced immunity.

Two major strengths of our study are the collection of unbiased high-quality mRNA-Seq
data from samples of a well-characterized cohort of measles vaccine recipients (after two doses
of MMR vaccine and no wild type measles virus exposure), and our statistical (gene-to-biology
and biology-to-gene) and bioinformatics approaches, which enabled us to identify specific
genes (e.g., CD93, IL24, IL6, CXCL12), pathways and processes (e.g., cell adhesion and migra-
tion, cytokine/chemokine activity and regulation, inflammatory response) and network com-
ponents that are biologically relevant. The major limitation of the study is the possibility of
false-positive associations of transcriptional changes with antibody titers. To guide interpreta-
tion and help evaluate the level of evidence, we report both p-values and g-values (for the per-
variable analysis), and use a complementary knowledge-driven biology-to-gene approach (as
part of our analysis) to control for false-discovery rate. In addition, the interpretability of our
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findings should be the context of in vitro PBMCs re-stimulation post-vaccination and may not
necessarily reflect gene expression is different cell populations in vivo after vaccination. Our
findings are novel, however, as this is the first reported mRNA-Seq gene expression study
assessing gene expression in cells from high and low measles vaccine responders. We believe
the differential ability of the cells/PBMCs (from high and low responders) to respond to viral
stimulation may reflect differences in cell homing, adhesion, and cell survival of specific cell
subtypes (e.g., plasma cells) and, indirectly, antibody titer. However, validation of the identified
genes/pathways in a larger measles vaccine systems biology study (including assessment of
gene expression in specific cell subtypes) is necessary and is underway in our laboratory.

In conclusion, we report the first comprehensive transcriptome-level characterization
(mRNA-Seq data) of responses to measles virus stimulation in high and low antibody respond-
ers to measles vaccination, using vaccinomics, statistical and network biology approaches to
define plausible regulators (genes/pathways/networks) that drive and/or underlie the observed
differences in neutralizing antibody titers after measles vaccination. Studies such as ours enable
us to explain how specific markers of adaptive (or innate) immune response are influenced by
transcriptional (or other) changes dues to vaccination, and to develop a panel of biomarkers or
models that predict and explain the immune response to measles vaccine.
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