Skip to main content
. Author manuscript; available in PMC: 2017 Aug 1.
Published in final edited form as: J Biomed Inform. 2016 May 13;62:21–31. doi: 10.1016/j.jbi.2016.05.004

Table 4.

Performance of classification models using only lexical features according to different evaluation metrics for the task of annotating adolescent interview session transcripts. Highest value for each metric and codebook size across all models is highlighted in boldface.

Cls. Model Acc. Prec. Rec. F1 Kappa
17 NB 0.544 0.603 0.544 0.552 0.497
NB-M 0.670 0.662 0. 670 0.643 0.622
J48 0.595 0.573 0.595 0.580 0.539
AdaBoost 0.627 0.600 0.627 0.609 0.574
RF 0.670 0.662 0.670 0.625 0.616
DiscLDA 0.477 0.454 0.477 0.431 0.388
CNN 0.678 0.633 0.678 0.670 0.509
SVM 0.708 0.705 0.708 0.680 0.663

20 NB 0.487 0.509 0.487 0.482 0.448
NB-M 0.579 0.582 0.579 0.559 0.537
J48 0.479 0.467 0.479 0.470 0.431
AdaBoost 0.504 0.488 0.504 0.493 0.458
RF 0.563 0.564 0.563 0.519 0.514
DiscLDA 0.400 0.410 0.400 0.356 0.330
CNN 0.586 0.588 0.586 0.587 0.476
SVM 0.610 0.611 0.610 0.592 0.571

41 NB 0.406 0.434 0.406 0.405 0.375
NB-M 0.513 0.479 0.513 0.484 0.478
J48 0.396 0.375 0.396 0.382 0.356
AdaBoost 0.436 0.412 0.436 0.421 0.398
RF 0.495 0.487 0.495 0.453 0.455
DiscLDA 0.362 0.387 0.362 0.301 0.304
CNN 0.396 0.369 0.396 0.382 0.170
SVM 0.537 0.513 0.537 0.504 0.502