Skip to main content
. Author manuscript; available in PMC: 2017 Aug 1.
Published in final edited form as: J Biomed Inform. 2016 May 13;62:21–31. doi: 10.1016/j.jbi.2016.05.004

Table 6.

Performance of classification models using a combination of lexical and different types of non-lexical features according to standard metrics for the task of annotating adolescent interview session transcripts.

Cls. Model Acc. Prec. Rec. F1 Kappa
17 CRF 0.682 0.673 0.682 0.677 0.636
SVM 0.708 0.705 0.708 0.680 0.663
SVM-PL 0.715 0.711 0.715 0.696 0.673
SVM-LIWC 0.742 0.740 0.742 0.727 0.704
SVM-AF 0.751 0.750 0.751 0.739 0.715

20 CRF 0.581 0.579 0.581 0.580 0.540
SVM 0.610 0.611 0.610 0.592 0.571
SVM-PL 0.639 0.642 0.639 0.630 0.604
SVM-LIWC 0.653 0.653 0.653 0.657 0.619
SVM-AF 0.682 0.685 0.682 0.674 0.651

41 CRF 0.493 0.485 0.493 0.457 0.502
SVM 0.537 0.513 0.537 0.504 0.502
SVM-PL 0.565 0.543 0.565 0.542 0.535
SVM-LIWC 0.538 0.518 0.538 0.507 0.503
SVM-AF 0.568 0.549 0.568 0.546 0.538