Table 6.
Performance of classification models using a combination of lexical and different types of non-lexical features according to standard metrics for the task of annotating adolescent interview session transcripts.
| Cls. | Model | Acc. | Prec. | Rec. | F1 | Kappa |
|---|---|---|---|---|---|---|
| 17 | CRF | 0.682 | 0.673 | 0.682 | 0.677 | 0.636 |
| SVM | 0.708 | 0.705 | 0.708 | 0.680 | 0.663 | |
| SVM-PL | 0.715 | 0.711 | 0.715 | 0.696 | 0.673 | |
| SVM-LIWC | 0.742 | 0.740 | 0.742 | 0.727 | 0.704 | |
| SVM-AF | 0.751 | 0.750 | 0.751 | 0.739 | 0.715 | |
| 20 | CRF | 0.581 | 0.579 | 0.581 | 0.580 | 0.540 |
| SVM | 0.610 | 0.611 | 0.610 | 0.592 | 0.571 | |
| SVM-PL | 0.639 | 0.642 | 0.639 | 0.630 | 0.604 | |
| SVM-LIWC | 0.653 | 0.653 | 0.653 | 0.657 | 0.619 | |
| SVM-AF | 0.682 | 0.685 | 0.682 | 0.674 | 0.651 | |
| 41 | CRF | 0.493 | 0.485 | 0.493 | 0.457 | 0.502 |
| SVM | 0.537 | 0.513 | 0.537 | 0.504 | 0.502 | |
| SVM-PL | 0.565 | 0.543 | 0.565 | 0.542 | 0.535 | |
| SVM-LIWC | 0.538 | 0.518 | 0.538 | 0.507 | 0.503 | |
| SVM-AF | 0.568 | 0.549 | 0.568 | 0.546 | 0.538 | |