Table 7.
Performance of classification models using a combination of lexical and different types of non-lexical features according to standard metrics for the task of annotating caregiver interview session transcripts.
| Cls. | Model | Acc. | Prec. | Rec. | F1 | Kappa |
|---|---|---|---|---|---|---|
| 16 | CRF | 0.654 | 0.652 | 0.654 | 0.653 | 0.603 |
| SVM | 0.664 | 0.653 | 0.664 | 0.639 | 0.606 | |
| SVM-PL | 0.670 | 0.658 | 0.670 | 0.651 | 0.614 | |
| SVM-LIWC | 0.730 | 0.730 | 0.730 | 0.717 | 0.686 | |
| SVM-AF | 0.738 | 0.733 | 0.738 | 0.727 | 0.696 | |
| 19 | CRF | 0.539 | 0.541 | 0.539 | 0.540 | 0.492 |
| SVM | 0.545 | 0.547 | 0.545 | 0.535 | 0.497 | |
| SVM-PL | 0.566 | 0.570 | 0.566 | 0.559 | 0.522 | |
| SVM-LIWC | 0.620 | 0.625 | 0.620 | 0.613 | 0.581 | |
| SVM-AF | 0.638 | 0.639 | 0.638 | 0.631 | 0.601 | |
| 58 | CRF | 0.438 | 0.409 | 0.438 | 0.423 | 0.385 |
| SVM | 0.451 | 0.420 | 0.451 | 0.418 | 0.414 | |
| SVM-PL | 0.480 | 0.462 | 0.480 | 0.456 | 0.446 | |
| SVM-LIWC | 0.459 | 0.445 | 0.459 | 0.429 | 0.422 | |
| SVM-AF | 0.488 | 0.466 | 0.488 | 0.462 | 0.454 | |