Skip to main content
. Author manuscript; available in PMC: 2017 Aug 1.
Published in final edited form as: J Biomed Inform. 2016 May 13;62:21–31. doi: 10.1016/j.jbi.2016.05.004

Table 7.

Performance of classification models using a combination of lexical and different types of non-lexical features according to standard metrics for the task of annotating caregiver interview session transcripts.

Cls. Model Acc. Prec. Rec. F1 Kappa
16 CRF 0.654 0.652 0.654 0.653 0.603
SVM 0.664 0.653 0.664 0.639 0.606
SVM-PL 0.670 0.658 0.670 0.651 0.614
SVM-LIWC 0.730 0.730 0.730 0.717 0.686
SVM-AF 0.738 0.733 0.738 0.727 0.696

19 CRF 0.539 0.541 0.539 0.540 0.492
SVM 0.545 0.547 0.545 0.535 0.497
SVM-PL 0.566 0.570 0.566 0.559 0.522
SVM-LIWC 0.620 0.625 0.620 0.613 0.581
SVM-AF 0.638 0.639 0.638 0.631 0.601

58 CRF 0.438 0.409 0.438 0.423 0.385
SVM 0.451 0.420 0.451 0.418 0.414
SVM-PL 0.480 0.462 0.480 0.456 0.446
SVM-LIWC 0.459 0.445 0.459 0.429 0.422
SVM-AF 0.488 0.466 0.488 0.462 0.454