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Abstract

Triple-negative breast cancer (TNBC) and other molecularly heterogeneous malignancies present a 

significant clinical challenge due to a lack of high-frequency “driver” alterations amenable to 

therapeutic intervention. These cancers often exhibit genomic instability, resulting in chromosomal 

rearrangements that impact the structure and expression of protein-coding genes. However, 

identification of these rearrangements remains technically challenging. Using a newly developed 

approach that quantitatively predicts gene rearrangements in tumor-derived genetic material, we 

identified and characterized a novel oncogenic fusion involving the MER proto-oncogene tyrosine 

kinase (MERTK) and discovered a clinical occurrence and cell line model of the targetable 

FGFR3-TACC3 fusion in TNBC. Expanding our analysis to other malignancies, we identified a 

diverse array of novel and known hybrid transcripts, including rearrangements between non-

coding regions and clinically relevant genes such as ALK, CSF1R, and CD274/PD-L1. The over 

1000 genetic alterations we identified highlight the importance of considering non-coding gene 

rearrangement partners, and the targetable gene fusions identified in TNBC demonstrate the need 

to advance gene fusion detection for molecularly heterogeneous cancers.
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INTRODUCTION

Despite advances in precision medicine, the treatment of many molecularly heterogeneous 

cancers remains challenging due to a lack of recurrent alterations amenable to therapeutic 

intervention. To make significant clinical advances against these recalcitrant cancers, 

integrative genomic and molecular analyses are required to understand their complexity and 

to identify targetable features arising from lower-frequency genetic events. Our laboratory 

has identified six molecular subtypes of one such heterogeneous disease, triple-negative 

breast cancer (TNBC), with each subtype displaying unique ontologies and differential 

response to standard-of-care chemotherapy(1,2). Ongoing genomic analysis of TNBC has 

identified a low frequency and widely varying clonality of therapeutically actionable 

alterations across subtypes, including mutations in PIK3CA and BRAF, amplification of 

EGFR, loss of PTEN, and expression of androgen receptor (AR)(3–5). However, a 

significant proportion of TNBC cases lack somatic alterations of any established “driver” 

gene, highlighting the importance of continued genomic analysis and discovery integrated 

with molecular profiling of the tumor microenvironment(3).

A defining feature of TNBC and other clinically challenging, molecularly heterogeneous 

cancers such as ovarian carcinoma and lung squamous cell carcinoma is copy number 

alteration (CNA), which is frequently accompanied by mutation or inactivation of the p53 

tumor suppressor(4,6–8). The genomic instability that gives rise to CNA can also result in 

chromosomal rearrangements and gene fusions, which have long been recognized as 

oncogenic drivers and effective drug targets in a variety of hematological and solid 

malignancies(9). In recent years, the advent of next-generation sequencing (NGS) has 

enabled the identification of a number of gene fusion events in epithelial cancers, with 

varying frequency and therapeutic relevance(10–14).

In order to broaden our understanding of the somatic alterations underlying TNBC, we 

sought to identify known and novel gene rearrangements impacting the structure and/or 

expression level of protein-coding transcripts. While a number of computational approaches 

have been developed to identify hybrid RNA and DNA sequences using NGS data, 

numerous technical hurdles complicate accurate and efficient gene rearrangement 

detection(15). For instance, widespread regions of sequence homology and current 

limitations in read length result in sometimes-ambiguous alignment and a large number of 

false positives. To combat this, many detection methodologies employ filters designed to 

enrich for biologically relevant gene rearrangements, such as restricting both potential fusion 

partners to protein-coding loci(16). While these filters enrich for currently known gene 

fusions, they are not effective for the discovery of less canonical events, such as 

rearrangements between coding and non-coding regions of the genome. We developed a new 

algorithm, Segmental Transcript Analysis (STA), which uses exon-level expression estimates 

to rank a population of samples based on their likelihood of harboring a rearrangement in a 

given gene. We identified a number of known and novel rearrangements involving 

functionally diverse gene partners in TNBC, and expanded our analysis and discovery to a 

wider, multi-cancer cohort from The Cancer Genome Atlas (TCGA). The DNA-validated 

rearrangements that we identified include non-coding portions of the genome acting as both 

5’ and 3’ partners in clinically relevant hybrid transcripts.
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MATERIALS AND METHODS

Cell Culture

SUM185PE (Asterand, March 2010) and MCF10A cells (ATCC, June 2012) were cultured 

as previously described(1). Ba/F3 cells (provided by Dr. Christine Lovly, Vanderbilt 

University, November 2014) were cultured in RPMI + GlutaMAX (Gibco 61870) with 1 

ng/mL IL-3 (Life Technologies) and 5% (v/v) FBS (Gemini). All cell lines were maintained 

in 100 U/mL penicillin and 100 μg/mL streptomycin (Gemini) and tested negative for 

mycoplasma (Lonza). Cell Line Genetics performed positive short tandem repeat DNA 

fingerprinting analysis on SUM185PE (March 2011); cells were cultured for fewer than 2 

months post-identification. We also verified SUM185PE by manual identification of unique 

variants in NGS data. DNA fingerprinting analysis was not performed on MCF10A or Ba/F3 

cells, but the Ba/F3 cell line displayed the previously published IL-3 dependence 

phenotype(17).

FGFR3/TACC3 siRNA transfection

SUM185PE cells (8000 cells/well) were reverse transfected in a 96-well format with 

RNAiMax (0.1 μL, Life Technologies) and siRNAs (1.25 pmole) targeting the FGFR3 exon 

4/5 junction (Dharmacon D-003133-06), FGFR3 exon 11 (D-003133-05), TACC3 exon 13 

(D-004155-03), TACC3 3’ UTR (D-004155-04), TACC3 exon 4 (D-004155-01), or TACC3 

exon 5 (D-004155-02) (siRNA #1-6, respectively). AllStars Negative Control siRNA and 

AllStars Hs Cell Death Control siRNA (Qiagen) were included as experimental controls. 

Viability was assessed at 72 h by incubating cells with alamarBlue (Invitrogen). For each 

experiment, the mean fluorescence value (Ex/Em: 560/590 nm) of four wells per condition 

was normalized to the negative control.

IC50 determination

SUM185PE cells were seeded in quadruplicate (8000 cells/well) in 96-well plates. After 

overnight attachment, growth medium was replaced with medium (control) or medium 

containing half-log serial dilutions of the FGFR inhibitor PD173074 (Selleckchem). 

Viability was assessed at 72 h by incubating cells with alamarBlue (Invitrogen). Half-

maximal inhibitory concentration (IC50) values were determined after normalization to 

untreated wells and double-log transformation of dose response curves as previously 

described(18).

Ba/F3 IL-3 withdrawal

Stably transfected Ba/F3 cells were seeded in 6-well plates (40,000 cells/well) in growth 

medium ± 1 ng/mL IL-3. Live cell counts were manually determined at three sequential 24 h 

timepoints by visual inspection using a hemocytometer and Trypan blue (Bio-Rad).

Cloning and generation of stable cell lines

The TMEM87B-MERTK expression construct, corresponding to amino acids 1–55 of 

TMEM87B (NM_032824) and amino acids 433-1000 of MERTK (NM_006343), was 

synthesized in a pMK-RQ-Bb vector using GeneOptimizer and GeneArt (Life Technologies) 
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and cloned into pBABE-puro(19) (Addgene) by EcoRI/SalI restriction digest and ligation 

(New England BioLabs). The complete pBABE-puro-TMEM87B-MERTK expression 

construct sequence is deposited in XXXXXX under accession number XXXXXX. To 

generate stably transfected cell lines, pBABE-puro-TMEM87B-MERTK or pBABE-puro 

empty vector retroviruses were packaged in Phoenix cells (Orbigen) and Ba/F3 and 

MCF10A cells were transduced with virus for two 24 h intervals with 8 μg/mL polybrene 

(Sigma), then selected and maintained with 1.5 μg/mL (Ba/F3) or 0.5 μg/mL (MCF10A) 

puromycin (Sigma).

Immunoblotting

SUM185PE cells were lysed 72 h after siRNA transfection. Ba/F3 cells were grown in 

suspension and incubated for 90 m in the indicated media before lysis. MCF10A cells 

seeded in 10 cm plates were incubated for 180 m in the indicated growth media before in-

well lysis. All cells were lysed in RIPA buffer supplemented with protease and phosphatase 

inhibitors. Cell lysates (40 μg [SUM185PE] or 30 μg [Ba/F3 and MCF10A]) were separated 

on polyacrylamide gels and transferred to polyvinyl difluoride membranes (Millipore). 

Immunoblotting was performed using FGFR3 B-9 (1:200, Santa Cruz), GAPDH MAB374 

(1:1000, Millipore), MERTK D21F11 (1:1000, Cell Signaling), phospho-Akt Ser473 D9E 

(1:2000, Cell Signaling), total Akt (1:1000, Cell Signaling 9272), phospho-Erk1/2 Thr202/

Tyr204 D.13.14.4E (1:2000, Cell Signaling), and total Erk1/2 3A7 (1:2000, Cell Signaling).

Segmental Transcript Analysis algorithm

The median-normalized, exon-level RPKM vector for sample i in gene k is denoted as 

. The Fscore for sample i in gene k is defined as

where  is the geometric mean of , ∀i ≠ i′ and d(x, y) is a 

distance measurement (i.e. Euclidean distance) between x and y. Di is the biggest difference 

of RPKM with lag 1 in sample i and  is the standard deviation of  for gene 

k. For ranking Fscore across genes, the normalized Fscore is defined as

For ranking Gscore between samples, the Segmental Transcript Analysis score is defined as
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where  is the mean of Gscore for all genes in sample i and  is 

the standard deviation of Gscore for all genes in sample i.

Corresponding R code is included as a supplementary file. Detailed descriptions of file 

sources, processing, and filtering are available in the supplemental methods.

Transcript and protein annotation

Gene locus and exon data were determined by GENCODE and RefGene annotations as 

described in the supplemental methods. For exon-level expression plots, the exon order is 

based on sequential order of exons in the RefGene annotation. The presence of isoforms 

may cause deviation from the normal exon numbering scheme. For hybrid transcript frame 

calls, the RefGene annotation was processed to generate starting and ending frame values of 

0, 1, 2 (CDS) or -1 (UTR) for each exon. Due to the potential for multiple reading frames at 

a given coordinate, a hybrid transcript between two exon boundaries featuring any 

concordance of starting and ending CDS frame was annotated as in-frame. A hybrid 

transcript between two exon boundaries with non-overlapping CDS frames was annotated as 

out-of-frame. An exon boundary with exclusively UTR status was annotated accordingly.

The domains and protein features depicted in schematics were obtained from 

UniProtKB(20). Features were exclusively selected from annotations with “Reviewed” 

status, and all coding features are to scale.

SUM185PE RNA sequencing

Total RNA was isolated from SUM185PE cells using RNeasy (Qiagen). RNA quality was 

assessed by NanoDrop (Thermo) and Bioanalyzer (Agilent). Two μg of total RNA were used 

for the TruSeq Stranded Total RNA Library Prep Kit (Illumina). Libraries were quantified 

by Qubit (Life Technologies) and qPCR, and library size and quality were assessed by 

Bioanalyzer (Agilent). The constructed RNA-seq library was sequenced at the Vanderbilt 

Technologies for Advanced Genomics (VANTAGE) core on an Illumina HiSeq 2500 using a 

paired-end 100-bp protocol. Reads were de-multiplexed and trimmed using SeqPrep. 

FASTQ files are deposited in the NCBI Read Sequence Archive under accession number 

SRPXXXXXX.

SUM185PE RNA-seq reads were aligned using the TCGA RNA-seq v2 pipeline (https://

cghub.ucsc.edu/docs/tcga/UNC_mRNAseq_summary.pdf, 7/31/2013 revision) to ensure 

compatibility with TCGA data. Reference data and custom scripts for exon-level expression 

quantification were downloaded from the UNC database as referenced in the protocol. 

Alignment was conducted using the default TCGA workflow and MapSplice v12_07, RSEM 

v1.1.13, and UBU v1.2. Cell line RNA-seq data were grouped with the TCGA BRCA 
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dataset for STA input and processed using the STA discovery pipeline described in the 

supplemental methods.

Shah et al. data acquisition

RNA-seq data for 80 TNBC clinical specimens(3) were downloaded from the European 

Genome-phenome Archive as EGAS00001000132 on 5/18/2014. Aligned BAM files were 

converted to fastq using bedtools v2.17.0 and were aligned and processed as described in the 

supplemental methods.

Statistical analysis

All analyses and graphical representations were performed using R v3.2.0. Post-siRNA 

viability ratios were plotted as the mean ± SEM of four independent experiments, and p-

values were calculated using the Wilcoxon rank-sum test with Bonferroni multiple 

comparison adjustment. PD173074 IC50 values were plotted as the mean ± SEM of three 

independent experiments. Ba/F3 IL-3 withdrawal data were plotted as the mean ± SD of two 

conditions with three independent experiments across three days, and p-values were 

calculated using the restricted maximum likelihood (REML)-based mixed effects model.

Supplementary Information

Additional data (Supplementary Figs. S1–S9), their corresponding legends, and expanded 

details of sequence file processing are found as supplementary files.

RESULTS

Gene rearrangement prediction by STA

In order to prioritize downstream computation and minimize filters restricting the genomic 

location of putative rearrangement partners, we developed an algorithm known as Segmental 

Transcript Analysis (STA) that uses a distance matrix approach to generate aberrant 

transcript scores for a population of samples (Methods). Based on exon-level expression 

values across a gene, STA is used to assign a normalized score for each sample by 

quantifying deviation from the population in both magnitude and directionality of 

expression. This approach allows the detection of different structural classes of 

rearrangements – general up- or down-regulation of a transcript might accompany promoter 

or untranslated region (UTR) swapping, for instance, while abrupt gain or loss of expression 

from one exon to the next could result from a breakpoint within the intervening DNA. While 

past discovery approaches using microarray datasets have leveraged exon-level expression 

comparison in individual transcripts(21), the novel population-based comparison method 

employed in STA effectively controls for confounding issues such as alternative splicing and 

normalization artifacts that cause uneven exon-level expression values across genes and 

facilitates detection of modest but biologically relevant changes in transcript levels.

To evaluate the utility of STA as a prediction tool for both known and novel gene 

rearrangements, we developed a vertically integrated NGS analysis pipeline (Fig. 1). Briefly, 

exon-level expression data were collated for a given tumor type and STA scores were 

calculated for each sample on a per-gene basis (Fig. 1A–B). RNA-seq data for each aberrant 

Shaver et al. Page 6

Cancer Res. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcript passing a defined STA score threshold were assessed for evidence of 

rearrangement between the candidate gene and another genomic region (Fig. 1C), followed 

by analysis and realignment of nearby whole-genome sequencing reads (WGS) to identify a 

DNA breakpoint with unique sequence spanning both rearrangement partners (Fig. 1D–E)

(22). Samples displaying a discrete breakpoint upon realignment were classified as DNA-

validated rearrangements. While reliant upon the availability and adequate sequencing depth 

of WGS data, this approach provides independent structural evidence for the validity of any 

detected rearrangements. As a consequence, rearrangements that might be omitted in an 

RNA sequencing-only approach due to concerns about homology and false positivity, such 

as hybrid transcripts between coding and non-coding regions of the genome, can be 

identified with greater confidence.

Using test RNA-seq and WGS data from TCGA, we confirmed the ability of STA to identify 

known gene fusions across multiple cancer types, including CD74-ROS1 in lung 

adenocarcinoma, NFASC-NTRK1 in glioblastoma, and TMPRSS2-ETV4 in prostate 

adenocarcinoma (Fig. 1 and Supplementary Fig. S1A–B)(23–25). The algorithm also 

reliably identified therapeutically actionable anaplastic lymphoma kinase (ALK) fusions in 

lung adenocarcinoma, although DNA validation was not available in all cases due to 

incomplete availability of WGS data (Supplementary Fig. S1C)(11). Numerous aberrant 

transcripts were detected for the RET receptor tyrosine kinase, which undergoes 

rearrangement in 10–20% of sporadic papillary thyroid cancers(26)(Supplementary Fig. 

S1D). When possible, we obtained DNA validation for RET fusions in these samples, 

including known rearrangements with CCDC6, ERC1, and NCOA4 (Supplementary Table 

S1). To evaluate the ability of STA to predict fusions previously identified in TCGA RNA-

seq, we compared the STA score distribution of fusion transcripts across all genes(27) 

(Supplementary Fig. S2A) and recurrently fused kinases(28) (Supplementary Fig. S2B) to 

the distribution for all genes and samples evaluated. In both cases, STA scores were 

significantly higher in the rearrangement-harboring transcripts (p < 2.2×10−6).

Due to the ability of STA to detect aberrant loss of expression in addition to gain, we 

hypothesized that inactivation of tumor suppressors would constitute a substantial portion of 

STA-predicted rearrangements. Indeed, the algorithm displayed a robust ability to identify 

intragenic loss of expression of known tumor suppressors. In a lung squamous cell 

carcinoma sample, we identified a rearrangement resulting in early truncation of the 

SWI/SNF subunit ARID1A (Supplementary Fig. S3A)(29). We additionally validated 

rearrangements with non-coding DNA in bladder and endometrial carcinoma resulting in the 

loss of functional domains of the PI3K negative regulator PTEN and the p300 histone 

acetyltransferase, respectively (Supplementary Fig. S3B–C)(30,31). In a kidney 

chromophobe tumor, we identified a rearrangement between a non-coding portion of 

chromosome 5 and the gene encoding the miRNA-processing enzyme DROSHA that results 

in its early truncation (Supplementary Fig. S3D)(32). Interestingly, inactivating DROSHA 
mutations have recently been reported in over 10% of cases of Wilms tumor, a pediatric 

kidney cancer(33).
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A novel oncogenic kinase fusion in TNBC

To discover known and novel gene rearrangements in clinical TNBC cases, we used NGS 

data from TCGA and performed STA prediction on 173 TNBC tumors. We identified and 

validated at the DNA level a previously uncharacterized fusion involving the MER proto-

oncogene tyrosine kinase (MERTK)(34). In this rearrangement, a nearby gene encoding the 

transmembrane protein TMEM87B acts as 5’ partner, breaking shortly after its signal 

peptide and fusing with the late extracellular domain-coding portion of MERTK (Fig. 2A). 

The resulting fusion transcript displays increased expression and retains the full 

transmembrane and intracellular kinase domains of MERTK, which is overexpressed or 

ectopically expressed in numerous cancers (Fig. 2B)(35). In order to assess if this truncated 

form of MERTK retains its ability to activate the oncogenic MAPK/Erk and Akt signaling 

pathways(36), we engineered a retroviral expression construct encoding the tumor-derived 

TMEM87B-MERTK fusion. In the IL3-dependent Ba/F3 mouse lymphocyte cell line, stable 

expression of TMEM87B-MERTK led to constitutively elevated levels of phospho-Akt and 

retention of robust Erk and Akt signaling even after serum starvation and withdrawal of IL3 

(Fig. 2C)(17). Accordingly, while the TMEM87B-MERTK and empty vector control cells 

grew similarly in the presence of IL3, the fusion protein conferred a clear survival advantage 

after IL3 withdrawal (Fig. 2D–E). Whereas the control cells died by day 3 after IL3 

withdrawal, the TMEM87B-MERTK-expressing cells proliferated under the same conditions 

(Fig. 2E) and could be cultured in the absence of IL3 for at least one month (data not 

shown). These results are consistent with the survival-promoting role of full-length MERTK 

in melanoma, glioblastoma, and other cancers(36–38). To verify that the fusion protein-

modulated signaling could be replicated in breast-derived, basal epithelial cells, we 

expressed TMEM87B-MERTK in immortalized MCF10A cells and observed similar 

activation of Erk and Akt after serum starvation and growth factor withdrawal (Fig. 2F). Of 

note, we identified an identical TMEM87B-MERTK fusion in the lung squamous cell 

carcinoma RNA-seq data set from TCGA, along with a BCL2L11-MERTK RNA transcript 

with the same breakpoint in bladder carcinoma, but WGS data were not available for DNA 

validation (data not shown). An independent RNA-seq fusion analysis of TCGA samples 

corroborated the TMEM87B-MERTK fusion in TNBC and identified identical 

rearrangements in cervical carcinoma and lung adenocarcinoma(27), demonstrating 

selection for a recurrently truncated form of MERTK in multiple cancer types.

FGFR3-TACC3 gene fusion is a targetable driver alteration in TNBC

In order to identify and evaluate an endogenous model of oncogenic gene fusions in TNBC, 

we expanded our analysis to RNA-seq data from 80 additional TNBC tumors(3) and 28 

TNBC cell line models. In both a tumor specimen and the SUM185PE cell line, we 

discovered FGFR3-TACC3 fusions similar to the oncogenic rearrangements recently 

observed in glioblastoma and bladder carcinoma, which result in the fusion of the FGFR3 

kinase domain to the coiled-coil domain of TACC3 (Fig. 3A–B)(12,39). To determine if 

FGFR3-TACC3 is a targetable ‘driver alteration’ in TNBC, we conducted knockdown and 

pharmaceutical inhibition of the fusion protein in SUM185PE cells. Immunoblotting for 

FGFR3 in cell lysates produced distinct bands consistent with the predicted molecular 

weights of the wild-type and fused proteins (Fig. 3C). Two siRNAs targeting FGFR3 (Fig. 

3B, siRNA #1–2) reduced expression of both forms of the protein and decreased cell 
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viability after 72 hr to levels comparable to a cell-death control (Fig. 3C–D). To verify that 

the viability decrease was due to the loss of fused FGFR3 rather than wild-type, we assessed 

two siRNAs targeting the fused portion of TACC3 (Fig. 3B, siRNA #3–4) and two siRNAs 

targeting sequences outside the recombined region (Fig. 3B, siRNA #5–6). The two TACC3 

siRNAs targeting a portion of the transcript contained within the fusion decreased 

expression of the resulting hybrid protein and reduced viability to a level similar to FGFR3 

knockdown, whereas addition of the siRNAs targeting a portion of TACC3 outside the fused 

region did not significantly decrease viability or fusion protein expression (Fig. 3C–D). 

Additionally, SUM185PE cells displayed pronounced sensitivity to the FGFR inhibitor 

PD173074 (IC50 = 48 ± 13 nM), whereas the majority of other cell lines tested displayed 

micromolar or greater half-maximal inhibitory concentrations (Fig. 3E)(40). The only other 

line with similar sensitivity, MFM223, harbors a previously reported amplification of 

FGFR2(41).

Novel and non-canonical rearrangements in TNBC

Additional STA predictions from the TCGA TNBC clinical data set led to the identification 

and DNA validation of a structurally and functionally diverse array of gene rearrangements. 

In one sample, dual 5’ UTR breakpoints result in promoter swapping between the myosin 

heavy chain gene MYH9 and the histone modifier gene NFYC, which was recently 

identified as an oncogene in choroid plexus carcinoma(42). The resulting fusion transcript is 

highly expressed and retains the entire NFYC open reading frame (Fig. 4A). In another 

rearrangement, the 55 kDa isoform of the transmembrane glycoprotein neuroplastin is fused 

to the C-terminus of the cilia-associated transcript CLUAP1, leading to a transcript encoding 

the signal peptide and a single extracellular Ig-like domain from neuroplastin (Fig. 4B). 

Importantly, a small portion of the retained Ig-like domain was previously demonstrated to 

be sufficient for the FGFR1 activation exhibited by the full-length protein(43), implying that 

the NPTN-CLUAP1 gene fusion may lead to the secretion of a paracrine FGFR1 activator.

We also identified rearrangements in TNBC involving immune-related proteins. In one case, 

FBXO3 undergoes rearrangement with the gene encoding the membrane attack complex 

inhibitor CD59, with resultant expression of a transcript encoding the functional domains of 

CD59. Interestingly, the RNA breakpoint for CD59 occurs at a non-annotated splice site 

within the coding sequence that precisely mimics the cleavage site of the mature protein 

from a glycosylphosphatidylinositol (GPI) anchor addition signal (Fig. 4C)(44). The 

consequences of GPI anchor loss and the retention of a portion of FBXO at the C-terminus 

were not assessed; however, soluble forms of CD59 have been previously noted to retain 

their complement-mediated cytotoxicity-suppressive function(45). In a final example, the 

gene encoding the interleukin 6 receptor (IL6R) breaks at the junction between its 

transmembrane and cytoplasmic domains and undergoes rearrangement with the non-coding 

pseudogene RPL29P7 (Fig. 4D). Intriguingly, previous studies have demonstrated that the 

cytoplasmic domain of IL6R is dispensable for its interaction with the gp130 

transactivator(46), and the resulting fusion transcript is highly expressed. We speculate that 

the IL6R-RPL29P7 fusion protein retains the IL6-binding and transactivation capacity of 

wild-type IL6R, and is overexpressed due to loss of the negative-regulatory IL6R 3’ UTR. 

This rearrangement illustrates a mechanism by which 3’ hybrid transcript formation with 
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non-coding regions of the genome can lead to increased expression of tumor-promoting 

genes, similar to the increased expression resulting from 3’ UTR loss in the FGFR3-TACC3 
gene fusion(47) and confirming findings from previous gene fusion discovery efforts in 

breast cancer tumors and cell lines(48,49).

Functionally and structurally diverse rearrangements across cancer

Given the ability of STA to identify novel classes of rearrangements in TNBC, we broadened 

our discovery efforts using 14 additional NGS datasets from TCGA. In total, we analyzed 

5461 tumor samples with RNA-seq across 14 cancer types, of which 1264 (23%) had 

accompanying WGS available (Supplementary Fig. S4). We validated 1178 gene 

rearrangements at the RNA and DNA levels (Supplementary Table S1). Of note, our 

attempts to validate newly discovered rearrangements at the DNA level were confounded in 

part by variable WGS availability and sequencing depth across TCGA studies. We found a 

clear correlation between both the validation rate and frequency of rearrangements detected 

per sample and WGS file size (Supplementary Figs. S5 and S6).

Fusions between two protein-coding genes constituted 40% of the validated rearrangements. 

Among the remaining rearrangements of coding genes with non-coding DNA, a majority 

featured the protein-coding gene as the 5’ partner, as inferred by RNA breakpoints. For 3% 

of total rearrangements detected, however, non-coding regions of the genome acted as 5’ 

hybrid transcript partners and caused deregulated expression of coding genes 

(Supplementary Fig. S7A). To characterize the function of genes undergoing each 

rearrangement type, we classified rearrangement partners according to a previously 

published oncogene and tumor suppressor prediction method(50). The enrichment pattern of 

genes in these categories was consistent with tumor-promoting gain or loss of function 

(Supplementary Fig. S7B–C). Coding genes acting as the 3’ transcript partner in out-of-

frame fusions included a higher proportion of tumor suppressors, for example, whereas in-

frame fusions and rearrangement at UTRs included more oncogenes (Supplementary Fig. 

S7C).

Across tumor types, we noticed a trend of tumor-promoting gene overexpression by a 

structurally diverse set of gene rearrangements. In a thyroid carcinoma sample, we identified 

a rearrangement between a 5’ portion of the long non-coding RNA (lncRNA) MALAT1 and 

the recurrently fused ALK(11), leading to extremely high expression of a transcript retaining 

the ALK kinase domain (Fig. 5A). Of note, the MALAT1-ALK rearrangement occurs 

upstream of ALK exon 16 rather than the most common exon 19 and 20 breakpoints, but 

numerous in-frame methionines in the exon 16–19 region could allow translation initiation 

after the non-coding, 5’ MALAT1 portion of the hybrid transcript (data not shown). We also 

identified abnormally high expression of the MAPK activator HRAS in a head and neck 

squamous cell carcinoma sample. WGS analysis revealed a rearrangement between RNH1 
and a DNA breakpoint upstream of the HRAS transcriptional start site. The 5’ UTR of 

RNH1 is subsequently spliced to exon 2 of HRAS, resulting in elevated transcription of a 

complete HRAS open reading frame (Fig. 5B). We noted a similar overexpression of 

embryonic stem cell-expressed Ras (ERAS) by the PQBP1 promoter in lung squamous cell 

carcinoma, but the DNA breakpoint for that sample occurred within the first intron of ERAS 
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(Supplementary Table S1). Although KRAS fusions have been described in metastatic 

prostate cancer(10), we believe these are the first DNA-validated fusions involving HRAS 
and ERAS to be reported. A similar rearrangement leading to overexpression of the entire 

HRAS coding sequence was identified in a murine Moloney leukemia virus-induced cell line 

and showed the ability to transform NIH 3T3 fibroblasts(51).

DNA breakpoints upstream of the transcriptional start site, as seen in RNH1-HRAS, can 

lead to extreme overexpression that is easily detectable by STA. In an estrogen receptor 

(ER)-positive breast cancer sample, the ER-responsive gene RARA displayed rearrangement 

with a region upstream of PRR11, leading to more than 10-fold increase of PRR11 transcript 

compared to the population average (Fig. 5C). While PRR11 is a relatively understudied cell 

cycle progression gene with normally periodic expression, it is overexpressed in breast and 

lung cancer and PRR11 knockdown inhibits cancer cell proliferation(52,53). A similar 

rearrangement and consequent increase in transcript levels occurred in a thyroid carcinoma, 

where PAX8, the 5’ partner in the recurrent PAX8-PPARG thyroid fusion, is spliced to the 5’ 

UTR of GLIS1, a transcription factor whose expression was previously correlated with Wnt 

pathway activation and epithelial to mesenchymal transition in a mouse model of breast 

cancer (Fig. 5D)(54,55).

The non-canonical rearrangements identified using STA also include clinically relevant 

immune-modulatory genes. In a head and neck squamous cell carcinoma sample, we 

identified a hybrid transcript in which a non-coding portion of chromosome 16 is fused to 

the 5’ UTR of the gene encoding the colony stimulating factor 1 receptor (CSF1R), leading 

to overexpression of a complete CSF1R-coding transcript (Fig. 5E)(56). Additionally, a 

colorectal cancer sample with abnormally high expression of CD274, which encodes the T-

cell suppressor PD-L1, harbors a rearrangement between the second-to-last exon of CD274 
and a non-coding region of chromosome 9 (Fig. 5F)(57). The resulting hybrid transcript 

encodes a near-complete copy of PD-L1; as in the previous IL6R-RPL29P7 rearrangement, 

we speculate that loss of the endogenous negative-regulatory 3’ UTR of CD274 leads to the 

increase in transcript levels.

DISCUSSION

The wide spectrum of rearrangements identified using STA demonstrates the ability of 

oncogenic selection to exploit the modular architecture of the human genome to ensure 

tumor proliferation and survival. While some novel rearrangements emerging from our 

analysis consisted of classic receptor tyrosine kinase fusions, such as TMEM87B-MERTK 
in TNBC (Fig. 2), we also observed overexpression of entire coding transcripts resulting 

from promoter and UTR swapping, including oncogenic Ras family members (Fig. 5B). 

Importantly, our ability to assess rearrangements with non-coding regions led to the 

detection of not only inactivating truncations in tumor suppressors, but also gain-of-function 

events. For instance, the gene encoding the tumor suppressor PD-L1, which has emerged as 

a prime target in the rapidly advancing field of cancer immunotherapy, underwent 

rearrangement and overexpression of a transcript harboring a non-coding sequence in place 

of its endogenous, negative-regulatory 3’ UTR (Fig. 5F)(58). We observed similar 

rearrangements multiple times in our analyses, including the IL6R-RPL29P7 fusion in 
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TNBC (Fig. 4D), and we hypothesize that overexpression by this mechanism may explain 

many of the rearrangements occurring between oncogenes and non-coding regions of the 

genome (Supplementary Fig. S7B). The MALAT1-ALK lncRNA-gene fusion and the 

increased expression of tumor-associated macrophage drug target CSF1R by a non-coding 5’ 

hybrid transcript partner additionally demonstrate the clinical relevance of gene 

rearrangements involving non-coding regions (Fig. 5A,E)(56). Further consideration of these 

non-canonical events in future gene rearrangement discovery will be critical for our 

understanding and treatment of TNBC and other molecularly heterogeneous cancers.

The targetable gene fusions we identified across many cancer types demonstrate the need to 

rapidly advance gene fusion detection for molecularly heterogeneous cancers. Although the 

frequency of individual gene rearrangements in these cancers may be low, the two 

rearrangements we validated with biological relevance for TNBC involve specific molecular 

targets for therapies already in clinical investigation(14) or development(36). If readily 

detectable, several of the gene fusions we identified would provide an immediate 

opportunity for patient alignment to targeted therapy and would serve as biomarkers for 

patient selection in basket trials such as the NCI-MATCH (Molecular Analysis of Therapy 

Choice) Program.

Our results provide evidence for the effectiveness of STA as a quantitative prediction tool for 

both known and novel gene rearrangements. Although our analysis made use of RNA and 

DNA sequencing files already processed by the TCGA Research Network, a pipeline based 

on focused assembly of STA-predicted transcripts could increase the sensitivity, efficiency, 

and breadth of rearrangement detection, accelerating discovery of diagnostic and prognostic 

markers. As tumor sequencing efforts continue, we look forward to optimizing and 

expanding the use of STA to comprehensively catalogue gene rearrangements across cancer.

The novel approach employed in STA enabled the discovery and analysis of known and 

novel gene rearrangements on a genome-wide scale, which has clear relevance to the 

development and repurposing of targeted therapies. Moreover, analysis of the 

rearrangements we identified provides insight into the multi-modular architecture of proteins 

and the diverse functional and regulatory domains selected for and against during 

tumorigenesis. Continued advances in detection methods such as STA will be critical for the 

treatment of diseases such as TNBC and the ability of the field to apply mechanistic insight 

from “exceptional responders” to individual tumor genomes containing unique mutations 

and rearrangements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank members of the Pietenpol lab for their critical review of the manuscript and members of the Lovly lab for 
guidance with the Ba/F3 cell line model. This work was conducted in part using the resources of the Advanced 
Computing Center for Research and Education at Vanderbilt University. The results published here are in part based 
upon data generated by TCGA Research Network: http://cancergenome.nih.gov. T.M.S. was supported by 

Shaver et al. Page 12

Cancer Res. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cancergenome.nih.gov


CA183531, GM008554, and HHMI MIG56006779. B.D.L. was supported by Komen CCR13262005. J.A.P. was 
supported by CA098131, CA105436, and Komen SAC110030. Shared resources were provided by CA068485.

References

1. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of 
human triple-negative breast cancer subtypes and preclinical models for selection of targeted 
therapies. J Clin Invest. 2011; 121(7):2750–67. [PubMed: 21633166] 

2. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. 
Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular 
subtypes. Clin Cancer Res. 2013; 19(19):5533–40. [PubMed: 23948975] 

3. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution 
spectrum of primary triple-negative breast cancers. Nature. 2012; 486(7403):395–9. [PubMed: 
22495314] 

4. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 
2012; 490(7418):61–70. [PubMed: 23000897] 

5. Lehmann BD, Bauer JA, Schafer JM, Pendleton CS, Tang L, Johnson KC, et al. PIK3CA mutations 
in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of 
PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014; 16(4):406. [PubMed: 25103565] 

6. Hu X, Stern HM, Ge L, O'Brien C, Haydu L, Honchell CD, et al. Genetic alterations and oncogenic 
pathways associated with breast cancer subtypes. Mol Cancer Res. 2009; 7(4):511–22. [PubMed: 
19372580] 

7. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 
474(7353):609–15. [PubMed: 21720365] 

8. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung 
cancers. Nature. 2012; 489(7417):519–25. [PubMed: 22960745] 

9. Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994; 372(6502):143–9. 
[PubMed: 7969446] 

10. Wang XS, Shankar S, Dhanasekaran SM, Ateeq B, Sasaki AT, Jing X, et al. Characterization of 
KRAS rearrangements in metastatic prostate cancer. Cancer Discov. 2011; 1(1):35–43. [PubMed: 
22140652] 

11. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the 
transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007; 448(7153):
561–6. [PubMed: 17625570] 

12. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum 
Mol Genet. 2013; 22(4):795–803. [PubMed: 23175443] 

13. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion 
of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310(5748):
644–8. [PubMed: 16254181] 

14. Shaw AT, Hsu PP, Awad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial 
malignancies. Nat Rev Cancer. 2013; 13(11):772–87. [PubMed: 24132104] 

15. Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. 
Biol Cell. 2015; 107(5):111–29. [PubMed: 25631473] 

16. Annala MJ, Parker BC, Zhang W, Nykter M. Fusion genes and their discovery using high 
throughput sequencing. Cancer Lett. 2013; 340(2):192–200. [PubMed: 23376639] 

17. Palacios R, Steinmetz M. Il-3-dependent mouse clones that express B-220 surface antigen, contain 
Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell. 1985; 41(3):727–
34. [PubMed: 3924409] 

18. Bauer JA, Ye F, Marshall CB, Lehmann BD, Pendleton CS, Shyr Y, et al. RNA interference (RNAi) 
screening approach identifies agents that enhance paclitaxel activity in breast cancer cells. Breast 
Cancer Res. 2010; 12(3):R41. [PubMed: 20576088] 

19. Morgenstern JP, Land H. Advanced mammalian gene transfer: high titre retroviral vectors with 
multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic 
Acids Res. 1990; 18(12):3587–96. [PubMed: 2194165] 

Shaver et al. Page 13

Cancer Res. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Magrane M. Consortium U. UniProt Knowledgebase: a hub of integrated protein data. Database 
(Oxford). 2011; 2011:bar009. [PubMed: 21447597] 

21. Giacomini CP, Sun S, Varma S, Shain AH, Giacomini MM, Balagtas J, et al. Breakpoint analysis 
of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human 
cancer types. PLoS Genet. 2013; 9(4):e1003464. [PubMed: 23637631] 

22. Faust GG, Hall IM. YAHA: fast and flexible long-read alignment with optimal breakpoint 
detection. Bioinformatics. 2012; 28(19):2417–24. [PubMed: 22829624] 

23. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine 
signaling identifies oncogenic kinases in lung cancer. Cell. 2007; 131(6):1190–203. [PubMed: 
18083107] 

24. Kim J, Lee Y, Cho HJ, Lee YE, An J, Cho GH, et al. NTRK1 fusion in glioblastoma multiforme. 
PLoS One. 2014; 9(3):e91940. [PubMed: 24647444] 

25. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, et al. TMPRSS2:ETV4 
gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006; 66(7):3396–
400. [PubMed: 16585160] 

26. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel 
rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid 
papillary carcinomas. Cell. 1990; 60(4):557–63. [PubMed: 2406025] 

27. Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, et al. The landscape and 
therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2014

28. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. 
Nat Commun. 2014; 5:4846. [PubMed: 25204415] 

29. Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of 
chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010; 330(6001):
228–31. [PubMed: 20826764] 

30. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, et al. Crystal structure of 
the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and 
membrane association. Cell. 1999; 99(3):323–34. [PubMed: 10555148] 

31. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, et al. Mutations truncating the 
EP300 acetylase in human cancers. Nat Genet. 2000; 24(3):300–3. [PubMed: 10700188] 

32. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates 
microRNA processing. Nature. 2003; 425(6956):415–9. [PubMed: 14508493] 

33. Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR, et al. Recurrent 
somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat 
Commun. 2014; 5:4039. [PubMed: 24909261] 

34. Graham DK, Dawson TL, Mullaney DL, Snodgrass HR, Earp HS. Cloning and mRNA expression 
analysis of a novel human protooncogene, c-mer. Cell Growth Differ. 1994; 5(6):647–57. 
[PubMed: 8086340] 

35. Cummings CT, Deryckere D, Earp HS, Graham DK. Molecular pathways: MERTK signaling in 
cancer. Clin Cancer Res. 2013; 19(19):5275–80. [PubMed: 23833304] 

36. Schlegel J, Sambade MJ, Sather S, Moschos SJ, Tan AC, Winges A, et al. MERTK receptor 
tyrosine kinase is a therapeutic target in melanoma. J Clin Invest. 2013; 123(5):2257–67. 
[PubMed: 23585477] 

37. Wang Y, Moncayo G, Morin P Jr, Xue G, Grzmil M, Lino MM, et al. Mer receptor tyrosine kinase 
promotes invasion and survival in glioblastoma multiforme. Oncogene. 2013; 32(7):872–82. 
[PubMed: 22469987] 

38. Brandao LN, Winges A, Christoph S, Sather S, Migdall-Wilson J, Schlegel J, et al. Inhibition of 
MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic 
leukemia. Blood Cancer J. 2013; 3:e101. [PubMed: 23353780] 

39. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, et al. Transforming fusions of FGFR 
and TACC genes in human glioblastoma. Science. 2012; 337(6099):1231–5. [PubMed: 22837387] 

40. Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, et al. Crystal structure of 
an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 1998; 
17(20):5896–904. [PubMed: 9774334] 

Shaver et al. Page 14

Cancer Res. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, et al. Integrative 
molecular profiling of triple negative breast cancers identifies amplicon drivers and potential 
therapeutic targets. Oncogene. 2010; 29(14):2013–23. [PubMed: 20101236] 

42. Tong Y, Merino D, Nimmervoll B, Gupta K, Wang YD, Finkelstein D, et al. Cross-Species 
Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes. 
Cancer Cell. 2015; 27(5):712–27. [PubMed: 25965574] 

43. Owczarek S, Kiryushko D, Larsen MH, Kastrup JS, Gajhede M, Sandi C, et al. Neuroplastin-55 
binds to and signals through the fibroblast growth factor receptor. FASEB J. 2010; 24(4):1139–50. 
[PubMed: 19952283] 

44. Sugita Y, Nakano Y, Oda E, Noda K, Tobe T, Miura NH, et al. Determination of carboxyl-terminal 
residue and disulfide bonds of MACIF (CD59), a glycosyl-phosphatidylinositol-anchored 
membrane protein. J Biochem. 1993; 114(4):473–7. [PubMed: 8276756] 

45. Brasoveanu LI, Fonsatti E, Visintin A, Pavlovic M, Cattarossi I, Colizzi F, et al. Melanoma cells 
constitutively release an anchor-positive soluble form of protectin (sCD59) that retains functional 
activities in homologous complement-mediated cytotoxicity. J Clin Invest. 1997; 100(5):1248–55. 
[PubMed: 9276743] 

46. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: 
mechanisms of production and implications in disease. FASEB J. 2001; 15(1):43–58. [PubMed: 
11149892] 

47. Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, et al. The tumorigenic FGFR3-
TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest. 2013; 123(2):855–
65. [PubMed: 23298836] 

48. Asmann YW, Necela BM, Kalari KR, Hossain A, Baker TR, Carr JM, et al. Detection of redundant 
fusion transcripts as biomarkers or disease-specific therapeutic targets in breast cancer. Cancer 
Res. 2012; 72(8):1921–8. [PubMed: 22496456] 

49. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, et al. Identification of 
fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol. 2011; 12(1):R6. 
[PubMed: 21247443] 

50. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative 
haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. 
Cell. 2013; 155(4):948–62. [PubMed: 24183448] 

51. Ihle JN, Smith-White B, Sisson B, Parker D, Blair DG, Schultz A, et al. Activation of the c-H-ras 
proto-oncogene by retrovirus insertion and chromosomal rearrangement in a Moloney leukemia 
virus-induced T-cell leukemia. J Virol. 1989; 63(7):2959–66. [PubMed: 2542606] 

52. Ji Y, Xie M, Lan H, Zhang Y, Long Y, Weng H, et al. PRR11 is a novel gene implicated in cell 
cycle progression and lung cancer. Int J Biochem Cell Biol. 2013; 45(3):645–56. [PubMed: 
23246489] 

53. Zhou F, Liu H, Zhang X, Shen Y, Zheng D, Zhang A, et al. Proline-rich protein 11 regulates 
epithelial-to-mesenchymal transition to promote breast cancer cell invasion. Int J Clin Exp Pathol. 
2014; 7(12):8692–9. [PubMed: 25674234] 

54. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, et al. PAX8-PPARgamma1 
fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000; 289(5483):1357–60. 
[PubMed: 10958784] 

55. Vadnais C, Shooshtarizadeh P, Rajadurai CV, Lesurf R, Hulea L, Davoudi S, et al. Autocrine 
Activation of the Wnt/beta-Catenin Pathway by CUX1 and GLIS1 in Breast Cancers. Biol Open. 
2014; 3(10):937–46. [PubMed: 25217618] 

56. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade 
reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint 
immunotherapy in pancreatic cancer models. Cancer Res. 2014; 74(18):5057–69. [PubMed: 
25082815] 

57. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells 
in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl 
Acad Sci U S A. 2002; 99(19):12293–7. [PubMed: 12218188] 

Shaver et al. Page 15

Cancer Res. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



58. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 
2012; 12(4):252–64. [PubMed: 22437870] 

Shaver et al. Page 16

Cancer Res. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Quantitative prediction by STA facilitates an integrated fusion detection pipeline
A–E, Stepwise description of STA discovery pipeline with accompanying schematics and 

example data. A, Exon-level expression values for a population of samples plotted as 

continuous lines. Samples passing STA score threshold (B) are plotted in red and denoted by 

asterisks; samples below the threshold are plotted in black. B, ROS1 STA scores for each 

sample plotted in descending order. Samples with an STA score of 2 or above are plotted in 

red; samples with an STA score below 2 are plotted in black. C, Schematic of RNA-seq 

reads. Dotted lines denote continuous read segments. D, Schematic of discordant whole-

genome sequencing (WGS) read pairs. Thin lines represent denote read pairs. E, Schematic 

of breakpoint-spanning WGS reads identified after realignment. In C–E, colors indicate 

alignment location of individual read segments, as depicted in the description at left. 

Schematics are not to scale.
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Figure 2. The TMEM87B-MERTK gene fusion in TNBC promotes constitutive oncogenic 
signaling and cell survival
A, Diagram of the TMEM87B and MERTK proteins and the DNA-validated gene fusion 

protein product. Protein features are labeled. B, Protein schematics indicating membrane 

topology (not to scale). Colors indicate protein sequences as indicated. In A and B, dotted 

lines represent protein regions encoded by the gene fusion transcript. C, Immunoblot 

analysis of the indicated proteins from Ba/F3 cells transfected with an empty vector or one 

expressing the TMEM87B-MERTK fusion gene. Cell lines were grown in the continuous 

presence of 5% FBS and 1 ng/mL IL3 (+) or switched to 0.5% FBS and no IL3 (−) for 90 

min. D–E, Graphs depicting growth curves of Ba/F3 cells transfected with the TMEM87B-

MERTK fusion gene (solid line) or empty vector (dotted line). Cells were grown in the 

continuous presence of 1 ng/mL IL3 (D) or switched to no-IL3 media at day 0 (E) and 

viable cell counts were obtained by hemocytometer with trypan blue exclusion at the 

indicated timepoints. Error bars represent standard deviation of three replicates and p-values 

comparing the two conditions are specified at top left. F, Immunoblot analysis of the 

indicated proteins from MCF10A cells transfected with constructs identical to C. Cells were 

grown in complete growth media with 2.5% horse serum (+) or switched to base media with 

0.5% horse serum and no growth factor additives for 180 min (−). aa: amino acid; BRCA: 

breast invasive carcinoma; SP: signal peptide; TM: transmembrane.
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Figure 3. The FGFR3-TACC3 gene fusion is a targetable driver alteration in TNBC
A–B, diagram of the protein products of the FGFR3-TACC3 gene fusions found in a tumor 

sample from TNBC patient TTR0001024(3) (A) and the SUM185PE TNBC cell line (B). 

Protein features are labeled and dotted lines outline protein regions encoded by the gene 

fusion transcript. Numbers indicate amino acid position in the wild-type proteins and arrows 

indicate targeting locations of the siRNAs used in the experiments. C–D, Immunoblot 

analysis of the indicated proteins from SUM185PE lysate (C) and relative viability of the 

cells (D) after 72-hr treatment with the indicated siRNAs (depicted in B), a non-targeting 

control (NT), or a cell death-inducing positive control (CD). In C, the legend indicates 

proteins expected to undergo knockdown based on siRNA target location. Wild-type (WT) 

and fused forms of FGFR3 are denoted by a filled and hollow arrow, respectively. In D, 

viability as assessed by alamarBlue is normalized to the non-targeting control. Error bars 

represent standard error of the mean of four independent experiments. Asterisks indicate p < 

0.001 when compared to NT control. E, Half-maximal inhibitory concentrations (IC50) of 

the FGFR inhibitor PD173074 for the indicated cell lines as assessed by alamarBlue assay. 

Error bars represent standard error of the mean of three independent experiments.
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Figure 4. Triple-negative breast cancers harbor a functionally diverse array of gene 
rearrangements
A–D, Four examples of STA-predicted rearrangements in triple-negative breast cancers from 

TCGA. Each panel features an exon-level expression diagram and STA score plot for the 

gene and cancer type analyzed. Red indicates the representative DNA-validated 

rearrangement that is depicted at the bottom of each panel as a schematic of the resulting 

aberrant protein. Blue indicates additional aberrant transcripts meeting STA score threshold. 

Black indicates background population below threshold. Protein features and untranslated 

regions (UTRs) are labeled and dotted lines indicate hybrid transcript junctions. aa: amino 

acid; BRCA: breast invasive carcinoma; Cyto: cytoplasmic domain; nt: nucleotide; SP: 

signal peptide; TM: transmembrane.
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Figure 5. Overexpression of oncogenic transcripts across cancer types results from gene 
rearrangement with coding and non-coding DNA
A–F, Six examples of STA-predicted rearrangements from additional tumor types in TCGA, 

representing the categories described at left. Each panel features an exon-level expression 

diagram and STA score plot for the gene and cancer type analyzed. Red indicates the 

representative DNA-validated rearrangement that is depicted at the bottom of each panel as a 

schematic of the resulting aberrant protein. Blue indicates additional aberrant transcripts 

meeting STA score threshold. Black indicates background population below threshold. 

Protein features and untranslated regions (UTRs) are labeled and dotted lines indicate hybrid 

transcript junctions. aa: amino acid; BRCA: breast invasive carcinoma; COADREAD: 

colorectal carcinoma; Cyto: cytoplasmic domain; HNSC: head and neck squamous cell 

carcinoma; nt: nucleotide; SP: signal peptide; THCA: thyroid carcinoma; TM: 

transmembrane.
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